Discrete Mathematics 46 (1983) 145-150 145
North-Holland

TREES IN RANDOM GRAPHS

P. ERDOS
Mathematics Institute of the Hungarian Academy of Sciences, Budapest, Hungary

Z. PALKA
Adam Mickiewicz University, Poznan, Poland

Received 7 June 1982
Revised 7 July 1982
We show that for every & >0 almost every graph @ e @{n, p) is such that if
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where d = 1/g, then G contains a maximal induced tree of order r,
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1. Introduction

Let us consider the probability space %(n, p) consisting of all graphs on n
labeled vertices where each edge occurs with probability p = 1—g, independently
of all other edges. The aim of this note is to find such natural numbers which are
likely to occur as orders of maximal induced trees contained in a graph Ge
%(n, p) when 0<p<1 is fixed. By a maximal induced tree we mean an induced
tree which is not properly contained in any other tree,

A similar problem devoted to maximal complete subgraphs of G was consi-
dered by Bollobés and Erdis [2], who showed that for every £ >0 almost every
(a.e.) graph G e%(n, p) is such that if

1
og n{r{(z_ﬂlagn

u+£)1ogb log b

where b=1/p, then G contains a clique of order r. The largest integer r for which
a.e. graph Ge%(n, p) contains a topological complete r-graph was derived by
Bollobas and Catlin [1]. Let us remark that some bounds of the orders of maximal
induced trees in a graph Ge&%(n, p) for p>0.06 have already been given by
Karofiski and Palka (see [4, 5]).

In Section 2 we give an upper bound for the order of an induced star in a
random graph. This result (which may have interest on its own) is used in proving
the main theorems presented in Section 3. An open problem with a discussion is
given in the last part of this paper.

0012-365X/83/$3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)



|36 P Endiis. 2. Palka
2. A lemma

Here we will comsider the existence of an induced (1, ri-tvec in o graph
Ciedin, p), By a (1, ri-tree we mean a complete bipartite graph K, , which has
twor vertes classes of 1 and r vertices, respectively (such a graph is often called a
stur), Let the vertex from the first class be called the root of the star. To simplify
the notation we shall put b= 1/p and d = 1/, The following lemma will be useful
in proving our main resalts given in Section 3.

Lemma. For every e =0 and 2=r=(2-¢) (log n)/llog d) a.e. graph G Gin, p)
comtaing an induwced 11, rl-tree.

Proof. Let X, denote the number of induced (1. ri-trees inoa graph Goe §in, p).
The expectation of X, is

E =E(X )= n(” . ])p'q"".

To find the second moment of X which is the sum of the probabilities of ordered
pairs of K, we have 1o consider two different situations. First let us assume that
two Ky, 's have the same root and vertices from the second classes have |
=rl common elements. The probability of such event is

Zr=T A D=5

mill=p™'q

Further, one can choose

aar=a(", YO, )

ordered pairs of such K, 's. Secondly, two (1, ri-trees can have different roos,
Then the following three possibilities should be taken into the consideration:

(i) The roots are not connected by an edge and vertices from the second classes
have | (D=I=r) common elements: there are

an=2()(" 2" 2

ordered pairs of such K, ,’s and the probability of cach is

vy BE-A

pal ) =pPrg

(it} The roots are connected and the edge joining them belongs to one of K, 's;
there are

R ey
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ordered pairs of such K, ,'s and the probability of each is

I T

Ps=pq=.

(iii) The roots are connected and the edge joining them belongs to both K, 's;
there are

__j(;)(ﬂ—z)(n—l—r)
B e\ -1
ordered pairs of such K, ,'s and the probability of each is

Pa=p
Therefore

2r—1 2D
q,

E(X2)= aspst+azps+ 2, [a(Dpyll+ astDpsth)]
=0

fca?(uwm[1+o(:—l)] + L aDpsib' +nl

Thus, denoting the variance of X, by @] we have for sufficiently large n

o E(X?) : (D(" ;—lf_r)

B —1=su(n+§1 ("_1)
;

=o(l)+ Y rPn~bld" " =o(1)+ Y F.

=1 I=1

dm—nr}{bl" -I+ 1‘.1

Now if n is sufficiently large and 2=[=r—1, then
F<F+F ;.
Consequently
Prob(X, =0 <o?/E2<F,+F. +riFa+F._)=o0(l}
for all 2=r=(2—¢)(log n)/(log d) and large n. This completes the proof of the
lemma.
Let us see that only one more step is necessary to show that the largest order of
an induced star in a.e. graph G %(n, p) is

s log n
log d

As a matter of fact,

+ollog nlh

logn

Prob(X,=1)=E(X,}=0o{1) forall r=(2+¢g) i
log d
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3. Main results

Let 1{G) denote the order of the smallest maximal induced tree of a graph G.
Theorem 1. For every £ >0 a.e. graph G & 4(n, p) satisfies

__dogn logn
(1 e}bgd{ttﬂl-c:{lw}hgd_

Prool. Let Y, denote the number of maximal induced trees of order i in a graph
G e 4in, pl. Let

L logn
k=1 E}loﬂ.d‘

Then
_ gy logn] ; i
Pmblt{ﬁ]f-tl £) d} Prob L;Jl{H:-I}]]ﬂ'_IE[Y,}.

Now, for any 1=i=k and sufficiently large n we have

E(Y)= (:t}(l —ipg! Mgt igU- A

i
ii-exp{-{n—llipq'*‘li*

ﬂ{nuﬁ—m.-l"'iﬁi""rll}l
={nexp[-npg* '+2} <n ™.

Pmb{r{G}-ﬁH -:1:§::]=n{n

which proves the left hand side of the desired inequality. Now we show that a.e.
graph G & %(n. p) contains a maximal induced tree of order less than (1+&)
(log n)/{log d). From our Lemma we can deduce that ae. graph Ge 9(n, p)
contains at least one induced (1, r)-tree, where

=lngn+[l+'rllnglng n
. logd log o

and ¥ >0 is a constant, It is easy to see that this tree is the maximal tree, As a i

' (1)

matter of fact, the probability that there is a vertex in the graph G connected with
exactly one vertex belonging to the tree is at least

(n=r—=1)}r+1pq" =(ogn) (1 +oll)),
when r is given by (1). This completes the proof of the theorem.
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MNow, let T(G) denote the order of the largest induced tree of a graph G. Then
the following result holds.

Theorem 2. For every e =0 a.e. graph G £%(n, p) satisfies

lognm . log n
<TG =<(2+&) :
log d =k log d

(2—=)

Proof. The left hand side of above inequality follows immediately from our
Lemma. Now let Z, denote the number of induced trees of order k. Let us take

k=(2+E¢)

log n
Eea (2)
Then

ElZ. )= (:)kk-zph-1qlh - 1Hk—2)2

= "keﬁpk--lqﬂ: Tk = ?'H'J{{c n—-:."-'t]k

where ¢ is a constant, Thus a.e. graph G €%(n, p) contains no induced tree of
order k given by (2).

Since the largest tree is at the same time the largest maximal tree, so we can
formulate the following corollary of Theorems 1 and 2.

Corollary. Given £ =0 a.e. graph Ge%(n, p) is such that if

logn logn
1+e)——<r<(2- :
( E}i{)gd r<{ Emlﬂgd
then G contains a maximal induced tree of order r, but G does not comiain a
maximal induced tree of order less than (1—e)(log n)/{logd) or greater than
(2+e)(log n)/(log d).

4. An open problem

Up to now the edge probability p was fixed. Now, let p be a function on n, i.e.,
p=pin) and tends to zero as n—=. The following open problem is worth
considering.

Problem. Find such a value of the edge probability p for which a graph Ge
%(n, p) has the greatest induced tree,

As a comment to this problem let us notice that Erdds and Rényi have shown
[3] that if A denotes the number of vertices of the greatest tree contained in a
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graph G € %(n, p), then for p=1/n

lim Prob{d=nle(n)}=0

i

and

Tim ProblA=nYwin)}=1

where w(n) is a sequence tending arbitrarily slowly to infinity. We are sure that
for p=¢/n, where ¢ =1 is a constant, a graph G £ %(n, p) contains a tree of order
n'* (e >0 is a constant) but we also conjecture more, namely that G %(n, ¢/n)
contains a tree of order y(c)n, where yic) depends only on c.
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