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We shall consider graphs (hypergraphs) without loops and multiple edges . Let Ybe a family
of so called prohibited graphs and ex (n, Y) denote the maximum number of edges (hyperedges)
a graph (hypergraph) on n vertices can have without containing subgraphs from Y A graph (hyper-
graph) will be called supersaturated if it has more edges than ex (n, Y). If G has n vertices and
ex (n, Y)=k edges (hyperedges), then it always contains prohibited subgraphs . The basic question
investigated here is : At least how many copies of L E Y must occur in a graph G" on n vertices with
ex (n, Y)+k edges (hyperedges) ?

Notation. In this paper we shall consider only graphs and hypergraphs without loops
and multiple edges, and all hypergraphs will be uniform . If G is a graph or hyper-
graph, e(G), v(G) and y(G) will denote the number of edges, vertices and the chromatic
number of G, respectively . The first upper index (without brackets) will denote the
number of vertices : G", S", T ",P are graphs of order n . Kph)(m r , . . ., m p) denotes the
h-uniform hypergraph with m,+ . . .+mp vertices partitioned into classes Cl , . . ., C p ,
where JQ=mi (i=1, . . ., p) and the hyperedges of this graph are those h-tuples,
which have at most one vertex in each C i . For h=2 KP(ni l , . . ., nt p) is the ordinary
complete p-partite graph .

In some of our assertions we shall say e .g. that "changing o(nl) edges in
G" . . .". (Of course, o(-) cannot be applied to one graph .) As a matter of fact, in
such cases we always consider a sequence of graphs G" and n-- .

Introduction

Let T" •P denote K,(n,, . . ., n p ) with the maximum number of edges with
n,+ . . .+np=n . In 1941, P . Turán [211 proved, that :

Among the graphs G" with n vertices and containing no Kp+1 , there exists exactly one
having maximum number of edges, namely, T" .P .

ComtstnATOxtc . 3 (2) (1983) 1 8 1-192
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21
In particular, if e(G")>h- 1 then G" contains a Ki . Rademacher, (1941,

z
unpublished) improved this result by showing that if e(G")>

n4
, then G" contains

at least L2J K3's . Perhaps this was the first result in the area we call "the theory of

supersaturated graphs" . P. Erdős [5], [10], generalizing this result, showed that .
For every fixed p there exists a constant c p >0 such that if 0<k<cpn and e(G")=
=e(T"`P)+k, then G" contains at least as many K p+i's as the graph obtained from
T"'P by putting k edges in one of its maximal classes (so that the neiv edges form no
triangle) . (For further results see [1-3], [4], [18-19]) .

In general, we shall always fix whether the considered objects are ordinary or
(for some given h_-3) h-uniform hypergraphs . We shall also fix some family Y
of prohibited graphs (hypergraphs). For a given Y, ex (n, Y) denotes the maximum
number of edges a graph G" can have without containing subgraphs from Y . Given
E, we shall try to determine the minimurra number of copies LEA a graph G with n
vertices and E edges must contain . This minimum will be denoted by fln, Y, E),
and problems of this type will be called extrernal problems for supersaturated graphs .

Theorems on supersaturated graphs are sometimes interesting for their own
sake, in other cases for applications . Many of these applications have the following
form : we would like to prove that ex (n, Y)-f(n) and

(a) for some L* we know-by some theorem on supersaturated graphs-
that if e(G") >f(n), then G" contains "many" cppies of L* .

(b) Further, we know, that if G" contains "many" copies of L*, then it con-
tains an LEY .

Thus we obtain that ex (n, Y)-f(n) . Arguments of this type were used, e.g .,
in the proof of [17] :

1 P	

ex (ii, K, (p, q» - 2 4 q-1n2-(1/P)+0(n),

where L*=K2(l, p) was used . Similarly, let Q$ be the cube graph . We proved in
[14] that

ex (n, Q8) = 0(n 315) .

In order to do this we counted the number of C'_(_-G " under the condition that
e(G") >en". Finally we mention that [23] implies a "supersaturated graph theorem"
for the number of walks W1+I (of k edges) and using this result we have proved several
sharp results in [12], among others, that

n 313

ex (n, (C'', Cb}) _ ( 2

	

+o (n312) .

In the last paragraph we shall give another application of this kind : combining
Theorem 2 and the Lovász-Simonovits theorem we deduce the Erdős-Simonovits
sharpening of the Erdős-Stone theorem, (see below) .

One of our most general results will be
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Theorem 1 . Given a family Y of h-uniform hypergraphs, let

T, = {LEY : v(L) - t} .

For every c-0 there exists a c' ::-0 such that if

(1)

	

e(G") ex (n, Y°)+en',

then G" contains at least c'n' prohibited

Remark . One could say, that in the formulation of Theorem 1 Y is not needed at
all, we could restrict ourselves to Y, This is true . However, this form of Theorem 1
enables us to formulate a sharp result for the general case .
Corollary 1 . Restrict ourselves to h-uniform hypergraphs and assume also that a finite
family P of prohibited graphs is given . Find the largest t for which

(2)

		

ex (n, Y)-ex (n, ~) = o(n") .

Then, for every, c-0, there exist c', c" :::-0 such that

c'n` -- f(n, Y, ex (n, Y)+cn') -- c"n` .

(Or, in simpler words, if an h-uniform hypergraph has by cn' more hyperedges than
what is allowed in the extremal graph problem, then it contains at least cn' prohibited
LEY, but nothing more can be guaranteed .)

Here the lower bound follows immediately from Theorem 1, while the upper
bound can be obtained as follows . By the maximality of t, (2) does not hold for t+ 1 .
In [16] it is proved that

lim ex (n, ')/(
h

),i--

exists, (moreover, the ratio is monotone decreasing) . Let

c, = lim
ex (n, Y, i)- ex (n, Y)

_ 0.

(h)

By definition, if c<cl and n is sufficiently large, then we may choose G" so that
h

e(W)=ex (n, Y)+[c
h~ J ,

but G" contains no graphs from

	

In other words,
the prohibited graphs in G" have at most t vertices . This proves the upper bound for
small values of c, and if we know it for small values, that implies the statement for
large values as well .

Theorem 1 has many equivalent forms .

Theorem P. We consider h-uniform hypergraphs . For every L with t=v(L) for
every c>0 there exists a c'>0 such that if

e (Gn)

	

ex (n, L) + cn',

then G" contains at least c'n` copies of L .

183
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(Below, if Y_ {L}, we shall often write ex (n, L) instead of ex (n, {L}) . ) Clearly,
Theorem 1 * is a special case of Theorem 1 . The following assertion is a very important
subcase of Theorem 1* . Let, for p~h, KPh)(m,, . . ., mP) denote the following gener-
alization of the complete p-partite graphs . Fix p disjoint sets of vertices, Cl, . . ., Cp,
where C, has m ; elements, and take all those h-tuples which contain at most one vertex
from each C, . The corresponding generalization of the complete bipartite graph is
Kh h) (M" . . ., in,) . A theorem of Erdős [7] asserts, that

(3)

	

ex (n, K, h) (rn, . . ., m)) = 0(n'-1,"") = o (nh) •

(In case h=2 we get the Kővári-T . Sós-Turán theorem [17]) . Now, applying
Theorem I* to this K,(h)(m, . . ., m) we obtain

Corollary 2. Given c-0, there exists a c' >0 such that if an h-uniform hypergraph
G" has at least enh hyperedges, then it contains at least c'n''" copies of L=Khh) (m, . . ., m) .

One can easily see that Corollary 2 is not only a special case of Theorem 1,
but is also equivalent to it . We shall prove the more general

Theorem 1**. There exist c=c,,,,,,>0 and c*=c ;,h-0 such that every h-uniform
G" with

(4)

	

E = e(G") ::- c,,,, n'- (J/,,h-1)

edges contains at least
E

em,hn

	

nh

copies of K, (h) (m, . . ., m) . This is sharp: almost all hypergraphs with E hyperedges
contain

( O l nm" . ( nh )'n")

copies of Krih) (in, . . ., m) .*

The behaviour of ex (n, Y) is fairly complicated and our knowledge on it is
rather poor . Some of the "most elementary" problems defy all our efforts to solve
them. The situation is much nicer for ordinary graphs . The authors have described
the function ex (n, -IW) and the structure of extremal graphs for sufficiently well
in [13], [8], [9], [20] :

Erdős-Stone-Simonovits theorem [13] . Let p=p(Y)=min X(L)-1 . ThenLEY
1

ex (n, ~) _ (1--) ( n 2 + o (n2) .
p

Erdős-Simonovits theorem [8], [9], [20] . Let p =p (Y) = min Z (L) - 1 . Then every
extremal graph S"for Y can be obtained from the Turán graph Tn,P by deleting and

adding o(n") edges . Further, the minimum degree d(S")= (1- 1 +o(l)) n.
p

* The proof of the sharpness will be left to the reader .
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These results are interesting for us in two different ways . On the one hand we
shall deduce them from our general result, (for the simpler Erdős-Stone-Simono-
vits theorem this have already been done in [11]), on the other hand, we can formulate
Theorem 1 for ordinary graphs in a more explicit form .

Theorem 2 . Let us consider ordinary graphs and let p=min x(L)- I for a given
family Y of prohibited graphs . If there exists a (p+1)-chromatic LEY Ti ith t vertices,
then for every c>-0 there is a c'> 0 such that if

e(G") > (1 1 +c)( 2 ),
P

then G" contains at least c'n' prohibited subgraphs .

The above theorems gave lower bounds on the number of prohibited subgraphs
in a supersaturated graph . The next theorem is a stability theorem in the following
sense: it asserts that either a supersaturated (ordinary) graph G" contains many pro-
hibited subgraphs or it has almost the same structure as the extremal graphs for Y .

Theorem 3. Let us consider ordinary graphs. Let Y be a finite family of prohibited
subgraphs and p(Y)=p=mien Z(L) -l . Let t be the maximum number of Vertices in

the (p+l)-chromatic graphs of Y. If e(G")>ex (n, Y) and G" contains only
o(n r) prohibited subgraphs, then it can be obtained from T" ,p by changing o(n') edges.

This will easily imply the Erdős-Simonovits theorem and also

Theorem 4. Let us consider ordinary graphs. Let Y be a family of prohibited sub-
graphs, p=min x(L)-1, and assume that, for some k=k"=o(n'), we have e(S")=

LEY
=ex (n,

)
+k=E. Suppose further that S" is extremal for the supersaturated pro-

blem, that is, it contains the minimum of LE .1 among the graphs G" with E edges .
Then S" can be obtained from T" , P by changing o (n') edges .

Some recursions on ex (n, Y) andf(n, Y, E)

The following graph theoretical operation will be used in our proofs .

Definition . If L is an (h-I)-uniform hypergraph, L('' will denote the h-uniform
hypergraph obtained by fixing r new vertices xl , . . ., x, and taking the hypergraph
whose vertices are the vertices of L and the new vertices ; the hyperedges are those
h-tuples which consist of an edge of L and a new vertex .

Example . If L = Kp' ) (m, . . . , m), then L(') = K,++,' ) (r, m, . . ., m) .

The next theorems are recursions on the number of prohibited subgraphs and
on ex (n, _91) . They may seem rather technical at the first sight, however, they are
often very useful .

Theorem 5. Let L be an (h-1)-uniform hypergraph, v(L)=v . Assume that a sequence
E,, ::-ex (n, L) is fixed and f(n, E) is a function for which
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(i) f(n, E)=0 for E<E" ;

f(n, E) is monotone increasing and convex for every fixed n while E"-E~ (2) .
(ü) f(n, E+E")~f(n, E) +f(n, E") .
(iii) If' H" is an (h-1)-uniform hypergraph with E edges, then it contains at least

f(n, E) copies of L .

Then every h-uniform h}pergraph S" with F hyperedges contains at least

f	 (n' 4n) r
(5)

	

c	nur-u-r

copies of L( r ) , for some constant c >0 .

Remarks. Conditions (i) and (ü) are merely technical assumptions . We are interested
primarily in functions of form

(6)

	

f.
(n, E) = Jt(n)E° if E--E,,,

l0

	

if E < E",

for some a > 1 . For these functions (i) and (ü) automatically hold and (5) reduces to
4q

• nt(n)rF- r if F = F" - 4nlE" .

(7)

	

.f(n, L('), F) -- g (n, F) _
0

	

if F -_ F„ .

One further comment on (i) and (ü) is that if f(n, L, E) denotes the minimum number
of L's an (h -1)-uniform hypergraph G" with E edges must contain, then f satisfies
(ü), but often is not convex . This is, why we must choose a smaller function fwhich is
already convex and still satisfies (ü) .

The following theorem is very similar to the previous one .

Theorem 6. Under the conditions of Theorem 5 every h-uniform hypergraph S" with
F hyperedges contains at least

r (	cP )(8}

	

n f n, nh(r_1)+1

copies of L(r) for some constant c-0 .

These recursive theorems on oversaturated graphs contain regular extremal
graph theorems as a particular case . Thus, e.g ., we shall use Theorem 6 to prove

Theorem 7. There exist a constant c>0 and an integer n o(L, c, h) such that

11 1-1)+1

	

1
ex (n, LI r i)

	

c • n

	

r r • ex (n, L) r f n ::- no (L, c, h) .

This recursion theorem will yield the old result of Erdős, [7] :

Erdős-theorem. ex (n, K ;,h ) (m, . . ., in)) = 0 (nh-01»1")) .



Indeed, for h=1 the theorem is trivial . (For h=2 it follows from the Kővári-
T. Sós-Turán theorem, but we do not need this .) We may use induction on h :
if we know Erdős theorem for Khhl'>(m, . . ., m)=L, then, applying Theorem 7 to
this L with r=m, we obtain the theorem for L('")=Kh1)(m, . . ., m) .

Proofs

As we have mentioned, most of our results will be derived from Theorem 5 .
Proof of Theorem 5. Given a vertex x, S x will denote the (h-1)-uniform hypergraph
whose vertices are the same as the vertices of Sn and whose edges are those (h-1)-
tuples, which together with x form a hyperedge of S n . We shall count the pairs {(L, x)
L _C Sj, first fixing x, then faxing L . These pairs will be called "incidences" .

(A) If x is fixed, we have at least f (n, e(S,,)) copies of L in Sx (by the definition
of f ) . Thus the number of incidences is at least ff(n, e(SJ) . Let

(9)

4
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]$]

x

g(E) = g(n, E) := jf(n, E) if E > E„
`f(ti, En ) if E

	

E,, .

Clearly, g(E) is convex, further, Z e(S,)=hF. Thus
C

(10)

	

, f (n, e(SJ)

	

(g(e(Sx))-f(n, E„)) n (g(hn ) -f(n, En)j .

(B) Let q L denote the number of x"s such that L9; Sx . Then the number of
L(' ) Sn is exact!v T ( r ) , where T denotes the number of L 9 L(r) generating

L(O (in the way described in the definition of DO) . Extending (x

x(x-1)(x-2) . .. (x-r-;-1 ) if x

	

r-1

X?)

	

0

	

if x

	

r-1,

we get a convex function. We know that Z qL is also the number of incidences . Thus
L

by (10)

(11 )

	

qL n
lg (hn ) - Í(n, En) I

By the convexity of (Y ) we get that the number of Lt's Sn is at least

f (n, hn) -f (n, En)

(12)

	

t
en

	

cn° -1
T

	

r
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(since the number of summands is the number of L's on n vertices, which is asympto-
tically en':) .

(C) As a matter of fact, (12) is just the sort of formula we needed, and it does
not use (ü) . However, it is not a nice looking formula . This is, why we assume (ü)
and derive a simpler form of (12) . (Only relatively simple formulas can effectively be
used .) We try to prove

hFl _f(n,
En) f

(n, hF} .
(13 )

	

f (n, 11 J

	

41 11

If we can prove this, then (12) immediately will give Theorem 5. However, for

4n
<En , f=0, therefore the theorem guarantees no L(r) at all . Thus it holds . For

hF
4n -E

n ,

therefore (ü) yields (13), completing the proof . I
Proof of Theorem 1**. We use induction on h, applying Theorem 5 to L=
= ch-1)(Kh _ 1 1n, . . ., m ) and

h-1--
0

	

if E -_ cn

	

mh-$ = E„
h 1

(14)

	

f(n, E) = m(h-1) E

	

crI

	

nh-1

	

it E - E" .

(Theorem 1** is trivial for h=1 ; the function f(n, E) trivially satisfies (i) and (ü),
and-by the induction hypothesis-(iii) as well, with some constant c=ch-1 •)
By Theorem 5 any h-uniform S" with F edges contains at least

nm(h-1) ,	
11h

	 F
I Y11

l

(15)

	

L ,

	

~-
n(h-1)má-(1r-1)m-m

copies of V"')=Kh1')(m, . . ., n1) . Indeed, here m=r, r=(h -1) m, and we may use
the second case of definition (14), since

1
+7-mhl1F = An

mh-1 r"

implies

(15) yields that S" contains at least

copies of L("' ) , completing the proof.

P. ERDŐS and M. SIMONOVITS

hF

	

hF
n

	

4n

hF _
47 -

1
+' 1 m h-1

CI?

rnh

\n

	

, 11 hm
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Proof of Corollary 2. If F= an' for some constant a>0, then (16) yields c ' 12~nn
for some c'-O.
Proof of Theorem l . In [111 Erdős proved the following simple but very useful lemma

Lemma . For a fixed integer m and fixed constants q i-0, c >O there exists a constants
rj > 0 such that if

(17)

	

e(G") - (q+c) ( h ),

then for at least q (n?) induced subh} pergraphs G' 9 G"

(18)

	

e(G') =
(q + 2)(h)

Let now

q = lim
ex (n, Y,)

n

	

(

R
)

We-may fix an m such that ex (m, Y,)< (q+ 2 ) ( h ) . Apply the above lemma to this
m, c, and the G" in Theorem 1 . We obtain that G" must contain at least n (m) sub-
hypergraphs Gm satisfying
(19)

	

e (G') ::- ex (m,

Thus each of these Gm's contains a prohibited LE Y, . Thus we obtain at least q (m)
prohibited subgraphs LEY, in G"; however, many of these are counted many

times . This does not really matter, since each L is contained in at most (117-1)
n t

induced G'c---G" . Thus we obtain at least

a*

n (m
;?
)I(m-t)

	

c'n`

different copies of prohibited subgraphs from Y, .

Observe, that Theorem 2 immediately follows from the Erdős-Stone-Simo-
novits theorem and Theorem 1 . Next we shall prove Theorem 3 . For this we shall
use the following result of Lovász and Simonovits [19] (which is a particular case of
a more general theorem) .

Lovász-Simonovits theorem . Let C be an arbitrarily large constant, p be a fixed
integer. There exist a 6>O and a C' >0 for it~hich, if

e(G " ) = e(T"•p)+k, (0 < k -- bn2),

and G" contains only CknP -1 copies of Kpt,, then G" can be obtained from a T"-
by changing at most C'k edges .
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Remark . This is a "stability theorem" : T"^p contains no Kp+,, and adding k edges
n p- 1to it we get a graph U" with (p) Kp+ís on each of the new edges . The above

theorem asserts that either G" has "much more" Kp+ ,'s, or it has almost the same
structure as U" .

Proof of Theorem 3. Let us fix an arbitrary c>0. Define a (p+l)-uniform hyper-
graph H" on the vertices of G" as follows . The hyperedges of H" are the (p+ 1)-
tuples forming a Kp+ ,( -- G" . Select an LEA° with Z(L)=p+1 and v(L)=t. Now,

(a)

	

either e(H")-cnp+l, or
(b)

	

take a minimal K(,+ll)(ml, . . ., mp+,) for which KPEtl(m, • • • , snp+,)DL•

The minimality means that first we embed L into Kp+,(t, . . ., t), and then delete all
vertices of Kt,+I(t, . . ., t) not belonging to L . Thus m,+ . . .+tnp+,=v(L)=t . By
Theorem I *, H" contains at least c'n' copies of K( P,1, 1) (m,, . . ., mp+ ,) . Thus G"
contains at least c'n t copies of KPf, (m,, . . ., mp+,) ;?L, which ;yields, that "G"
contains at least cn t prohibited subgraphs". In Theorem 3 we assumed that G" has
only o(n) prohibited L's . Thus, for any c>0 and n>no(c), G" contains at most
cnp+' copies of K,,, . In other words, G" contains at most o(np+ I) Kp+ ,'s . By the
Lovász-Simonovits theorem, G" can be obtained by changing o(n 2) edges in T"'p . I

Proof of Theorem 4 . Again, add k edges to T"^p and regard the resulting graph
U" . If the new edges form a bipartite graph (what can be assumed), then U" contains

t-2
no (p+2)-chromatic LEA • Thus it contains at most ek ( np ) prohibited L : in-

deed, if LS_ U", then v(L)-t and L contains one of the new edges . This shows that
if S" is extremal for the supersaturated problem in the sense that it has minimum

number of prohibited LE Y, then it contains at most ck t1 )r 2 prohibited subgraphs .
( P

Applying Theorem 3 to S" we complete the proof . I

Proof of Theorem 6. Let us consider an h-uniform S" with F hyperedges. If U is
an (h -1)-tuple of vertices and R is an r-tuple such that each x; E R forms a hyperedge
of S with U, then (U, R) will be called "flower". The proof below will be very similar
to that of Theorem 5, with the difference that we shall count these "flowers" instead
of the "incidences" .

Let sI, and aR be the number of "flowers" (U, R) for fixed U and R, respec-
tively . The number of flowers is

(20)

	

s=~s t,=ZaR .
U

	

R

Clearly, if T denotes the number of ways an L(r) is obtained from an L 9 L(r), then
the number of DO C S" is at least

(21 ) T 1 f(II, aR) T 1(g(aR)-g(E,,» -- 7 (R)
í

z g Zn R -g(E")
(R)



(22)
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by the convexity of g . Let du denote the number of hyperedges containing the (h -1)-
tuple U. By (20),

hF
tt

d0

	

( ti

	

h-1

	

SFr
S = I a, = ZS" -

	

r

	

lh- l)

	

r

	

' yth(r-I)+1

since ZdO=hF. A short calculation, using (ü), yields the desired result .
V

Proof of Theorem 7. Using the notations of the above proof, observe that if S"
contains no L(r ), then, for every R, a, ex (n, L), otherwise, there were ex (n, L) + 1
(h -1)-tuples U such that each xER forms an edge of S with each U . Some of them
would form an L which generates with R an L (r ) in Sn .

Thus (22) yields that
hF
l1

r

	

1t-1

	

(

	

)r
(23)

	

( t1) ex (n, L) '
lh

n
l

	

r

	

' (r!
+0(1)	)	n

	 F

lh-1)
Rearranging (23) we get the desired assertion . I

Remark. Formally we may deduce Theorem 7 from Theorem 6 : Set
E

if E E" = ex (n, L) + 1
J '(n, E) = ex (n, L) + 1.

10

	

otherwise .
It is easy to see that Theorem 6 can be applied with this f(n, E) and yields Theorem 7 .

Appendix

We will deduce the Erdős-Simonovits theorem mentioned in the introduction
from Theorem 3 . Let S" be an extremal graph for Y . Fix an LoE Y with y (Lo)=p+ 1,
and with the maximum number of vertices, t . Since S" contains no L o at all, we may
apply Theorem 3 : S can be obtained from T", P by changing o (n 2) edges .

(The proof above is that easy, because we used the fairly deep Lovász-Simo-
novits theorem .)
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