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Motto. One is mathematics and Euler is its prophet. This phrase was coined half as a joke at a
mathematical party in Budapest about 50 years ago by Tibor Gallai. In these remarks we mention
some of the things the prophet Euler has handed down to us and sometimes give some later
developments. Many of the recollections and conjectures in these remarks are those of the first
author, and first person references are used to keep the exposition informal.

In 1737 Euler proved that the number of primes was infinite by showing that the sum of their
reciprocals diverges, i.e.,

Y lec. (1)

p prime

He did this by using the (invalid) identity

Ea-n(-3)

Though invalid—Euler rarely worried about convergence—it can be fixed by looking at
E-l-2f

as s = 1. For this, see Ayoub [1], who said elsewhere [2] that Euler “laid the foundations of
analytic number theory.”

Denote by m(x) the number of primes p < x. It is curious that Euler after having proved (1)
never asked himself: how does 7(x) behave for large x? For (1) immediately implies that for
infinitely many x, m(x)> x' "% In fact, for infinitely many x, 7(x) > x/(log x)'**. It seems to me
that with a little experimentation Euler could have discovered the prime number theorem

(x)

x— o0 x/]ogx

After all, he did discover the quadratic reciprocity theorem by observation, and that seems to be
at least as hard to see. But as we will see again later, such questions did not seem to occur to
Euler. The prime number theorem was first conjectured shortly before Euler's death by Legendre
in 1780 in the form

A%}~ logx—c¢’

with ¢ = 1.08. In 1792 Gauss, who was only 15 at the time, even noticed that
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) O(1)

f Iog v

gives a much better approximation to w(x) than x/log x, a most remarkable achievement! Again,
it is strange that Gauss and others did not prove that

|
k s log &

) x C3X
log x log x
and that if lim,_ _ m(x)/(x/log x) exists, then it must be 1. All these results were proved by
Tchebychef around 1850. Both Euler and Gauss could easily have proved all this. The prime
number theorem was first proved by Hadamard and de la Vallée Poussin in 1896 using analytic
functions, which were not available to Euler and Gauss.

More than 40 years ago, I conjectured that if 1 €a, <a, < -:- is a sequence of integers for
which

—<u(x)<

— =00, 2)

then the sequence {a,) contains arbitrarily long arithmetic progressions. This conjecture is still not
settled; I offer $3,000 for its proof or disproof. If my conjecture is true, then Euler’s result that
T1/p diverges immediately implies that the primes contain arbitrarily long arithmetic progres-
sions. Until this year, the longest such progression known was due to Weintraub [33] and has 17
terms: 3430751869 + 872972104, t=0,1,..., 16. With patience and a good computer one could
probably find more primes in arithmetic progression. In fact, 18 such primes were found by P.
Pritchard, who reported this in January 1983 at the AMS meeting in Denver. The discovery was
also described in The Chronicle of Higher Education, 2/9/83, p. 27.

It often happens that a problem on primes can be solved by generalizing it, and proving it for
some more general sequences which share some property with the primes, such as being equally
numerous. Even using this idea, my $3,000 problem really seems to be very deep. Schur
conjectured, and van der Waerden proved [30), that if we divide the integers into two classes, then
at least one of the classes contains arbitrarily long arithmetic progressions. Fifty years ago, Turan
and T conjectured [13] that if 7, (n) is the smallest integer such that every sequence of integers of
the form

l<a, <a;<--- <a,msn

contains an arithmetic progression of k terms, then for every k,

r k(") =0.
N—'m

This conjecture is clearly stronger than van der Waerden’s theorem, but weaker than (2). About 30

years ago K. F. Roth [28] proved the conjecture for k = 3. The general conjecture was finally

proved by Szemeredi in 1972 [29). For further information see [14).

A much stronger conjecture on primes states that for every k there are k consecutive primes
which form an arithmetic progression. The longest known has only six terms: 121174811 + 301,
t=0,1,...,5 [19]. This conjecture is undoubtedly true but is completely unattackable by the
methods at our disposal.

Denote by p(n) the number of unrestricted partitions of n, that is, the number of ways of
writing n as a sum of positive integers. For example, p(5) =T because 1 + 1+ 1+ 1+ 1=2+1+
1+1=2+2+1=34+1+41=3+4+2=4+1=35. Leibniz asked Bernoulli about p(n) in 1669,
but it was not until Euler saw that

1+ T p(n)x" —ﬂ(l—x)

n=]
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and ingeniously proved that
n (l __xn')_ E (___])"xut_‘nénfl
=1 A= oo
that any progress was made. Combining the last two equations gives a recursion relation
p(n)=p(n-1)+p(n-2)=p(n=5)-p(n-"T)+p(n-12)+ -
that lets values like p(200) = 397299029388 [15] be calculated. This was the start of generating

functions.
As far as I know, Euler never tried to estimate p(n) as a function of n. Hardy-Ramanujan [15]

and Uspensky were the first to obtain the asymptotic formula for p(n),

p(n)= e, ®

In 1937 Rademacher [26] found a convergent series for p(n) and later I [11] and Newman [24]
gave an elementary proof of (3). These estimates are complicated, but the inequality

oyn'/?

e <p(n) < gt

could very easily have been obtained by Euler. These questions which seem so natural to us now
must not have occurred to Euler. It could have been that the idea of function was not yet a natural
one. Euler was more concerned with representing integers in various forms. He spent 40 years, off
and on, Irying to prove that every positive integer is a sum of four squares, only to have Legendre
give the first proof in 1770. And think of how much time he must have spent on doing things like
the following, finding integers x, y, z, w such that

x+y,x+z,y+zare all squares (see below and right),

Tabelle
Giir ble Sablen, weldyein ber Formm®*~—n*
enthalten find.
m |oallmm = nn/mm 4 nnj| m* - n*
4l 1 3 5 3-9
9] 1t 8 10 16, §
9 4 5 13 5- 13
16 1 15 17 3. 5.17
6t 9 7 25 25.7
as| 34 26 16.3.13
as},9 16 34 16, 3. 17
49| 1 48 50{| 25.16.2.3
49]16 33 65 3. 5.11,13
64| 1 63 65 9.5 713
8149 33 130 64.5.13
121 4 117 12§ 25.9.8.13
121| ¢ 112 130|| 16.2,5.7:13
15149 13 170 144.5:17
14425 119 169 169. 7,17
169( 1 168 t70|| 16.3.5. 7. 19
169(8: 88 asoll ag.16.5.1L
335(64 161 389 289.7.33

Euler’s Algebra (v. 2, chap. 15, §235, p. 351) contains this table of squares m?, n?, their difference and sum, and
m* — n* (the left column heading has a printer’s error).
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xy | x, xy t y are all squures,

x2+y2, x? 4 2%, y* + 27 are all squares,

2yt x4yt e wl xt+ 22+ wh, y? + 27 + wl are all squares,
x + yis a square, x* + y? is a cube,
x+y+z,xy+yz+zx, xyz are all squares,

and so on ([8], ii, XV-XXI). Perhaps not many today are very interested in this.

Euler was the first to consider the function ¢(n), the number of integers | < m < n relatively
prime to n, and this function bears his name (see Glossary). Euler derived a formula equivalent to
the well-known

¢(n)-nl'l(l --l-)

Pln P

but he never investigated the function any further, though a great deal of work has been done on
it since. It is one more example of Euler’s lack of curiosity about functions. There is still a
surprising number of unsolved problems about ¢(n). Carmichael conjectured [4] that the number
of solutions of $(n)=m can never be 1 (ie., if $(n)=m then there is an n,+n, with
¢(n,)=m). Though the conjecture is known to be true for m < 10*® [17), it is probably
unattackable by the methods at our disposal. I proved [10] that if there is an integer m for which
$(n)=m has k solutions, then there are infinitely many integers with this property. If n is prime,
¢(n)=n— 1 of course; Lehmer conjectured [21] that ¢(n) divides (n — 1) only if n is prime. This
copjecture also seems unattackable. On the other hand, it is an easy exercise to show that ¢(n)
divides n if and only if n=2°3% R. L. Graham has conjectured that for every a there are
infinitely many n for which ¢(n) divides n + a.

353 Sroegter Whbwire,
Ben:

rand tirmen wic fheu tinige Nuflihmpm
o asrietly s gy ok
£~ k* 30 g0 fermer nefme man = 0, b b
=40, r.nn_g‘-h‘ﬂq.s. 1, Woteus I = Gy
25 169; felglich t= 530, D mem ot = ;30400 I3
g=9; k=2; h=7, s belommenwiz 222 ; busg;
irraus p = 17, =265 wnl 1 = 756 ; Ducens finbet
men 35 = T 4 PRt 9 =003 wab ol nm el ;
Boler fernet y = X~ PP = 4300685 wi¥ 2K
~ qq = - 150568 ; wride Sabi audh pofichy

werten Lam, woll alobemm bis Summe in ber Diffee
reng und wmgefrbes ble Differeny in ter Eumme vee
wanbeit wetben ; folalidh fmd unfere Deey gejuciees

i

Stierx~y = nigg = (17)"
¢ x-teafyetem (sn)t
¥ -2 =3704008{po)*

' Siely sabers Jnbiem Mot grfusbes wuden s
bov obigem Robells, wom wis frjon sy kkny
wb gga, hhzy; m b e B85
33. 0. 95 B 9. 5. 35 0y, aifadef t=3 5.4 =908
Dol mmlmy, gen, kxsmbher, f
cfh=6mb brgks w1 o wies, P
—bb=- 448, jam +bbxgpomb =
e befommen wie xx = it 4 pp + 1

4 304 + 37000 @ T, W e’
. ORI v s SRE

<,
RS

Euler then demonstrates (p. 352), using his table values, how to obtain integers x, y, z such that sums and differences
of any pair of these is a square. In his example, he obtains x = 434,657, y = 420,968, ; = 150,568.
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The well-known conjecture of Fermat states that xj 4 x} = x§ has no positive integer solutions
for A - 2. Buler proved the statement Tor k = 4 and almost proved it for k = 3 (sce [8), i, XXI,
XNI1D). It has recently been proved by Wagstafl for all & € 125,000 [31]. The general conjecture
scems to be out of reach at present. Euler conjectured the following generalization:

xf=xt+xd+ - +xf,

has no nontrivial solution in integers for k > 3. This conjecture was disproved by Lander and
Parkin [18] who found the equation

144 = 133° + 110° + 84° + 27°.
This is so far the only known counterexample. The case k = 4 scems to be of special interest; in
1948 M. Ward [32] showed that there are no nontrivial solutions for x, g 10,000, and in 1967

Lander, Parkin and Selfridge [20] extended the result to x, < 220,000. Euler was not even able to
find four fourth powers whose sum is a fourth power and it was only in 1911 that the example

3534 =315+ 272* + 120* + 30*

was found by R. Norrie ([8]; ii, XXII).
In the same direction, Euler gave a complete parametric solution of the equation

x}+yd=ut+ 0,
namely,
x=1-(a-3b)a?+3b?)  u=(a+3b)-(a’+3p?)
y=(a+3b)(a+3b%)—1 v=(a2+3b%) - (a-3b)

and proved that for infinitely many integers n, n=x*+ y*=u* + v* by giving a complicated
parametric solution [16] which includes the smallest solution

133¢ + 134* = 158* + 59* = 635, 318, 657.
After Ramanujan surprised Hardy by knowing that

1729 =10+ 9 =122 + 1P

was the smallest integer which is the sum of two cubes in more than one way, Hardy asked him if
he knew any integer which was the sum of two fourth powers in more than one way. Ramanujan
answered that he did not know any such numbers, and if they existed, they must be very large.
Thus, both were unaware of the old work by Euler. It is not yet known if there are any integers
which are the sum of two fourth powers in more than two ways, i.e., if the number of solutions of
n=x*+y*is at most 2.

Denote by f{¥(n) the number of solutions of n= x>+ y3 Mordell proved that
limsup, .. . f{¥(n) = oo and Mahler [23] proved that £{¥(n) > (log n)'/* for infinitely many n. As
far as | know there is no nontrivial upper bound known for £{®(n). Very likely f{?(n) < ¢,(log n)
for all n, if ¢, and ¢, are sufficiently large absolute constants.

Euler was the first to evaluate £, 1/72 In 1731 he obtained the sum accurate to 6 decimal
places, in 1733 to 20, and in 1734 to infinitely many ( = #?/6). Ayoub [2] said about his proof that
“it opened up the theory of infinite products and partial fraction decomposition of transcendental
functions and its importance goes far beyond the immediate application.” Euler studied further
what we now call the Riemann {-function (= L7_, n”* when Re(s) > 1) and in 1749 he proved the
functional equation

£(1 =) =n"2'"T(s)cos T4 (s)

for s=1,2,... and said that he was certain it was true for all real 5. It was not until 1859 that
Riemann proved this.
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As far as we know, Euler was the first to define transcendpntal numbers as numbers which are
not the roots of algebraic equations. It is perhaps curious that he never proved their exisience. The
proof of Liouville was well within his reach. Maybe Buler considered the existence of transcenden-
tal numbers as sclf-cvident, which by our standards, is certainly not the case.

Of course, not even Euler was perfect. His proofs of Fermat's Last Theorem for exponent 3, as
well as his proof that every prime has a primitive root, are considered incomplete by our present
standards. He regularly used infinite series without paying any attention 1o convergence (neverthe-
less his prools are almost always correct except for rigor, which is easy to supply).

However, in at least one instance, Euler's intuition completely misled him and he produced a
false “proof” which could not be corrected by methods at his disposal. Euler wanted to prove that
£=_, p(n)/n =0, where p(1)= 1, p(n)=0 if n is oot square-frec and u(n)=(—1)" il nis the
product of k distinct primes (p(n) is known as the Mdbius function). He simply argued as
follows:

-]
5 L0 L1~ 1/p)=0. (@)
nw=l P

This argument is, of course, inaccurate, since Lj., #(n)/n is not absolutely convergent and (4)
was first proved correctly by von Mangoldt at the end of the nineteenth century. Equation (4) is
known 10 be equivalent to the prime number theorem.

Another error of a different kind was pointed out to me by Mordell. Euler proved that if p
divides x? + ny? without dividing both x and y, then p is «* + no? for n = 1,2,3. He then used the
same arguments for n =35, though Fermat knew long before, and Euler knew too, that the
conclusion was not true. (We know now that the reason is that unique factorization fails.)
Edwards [9] thinks it was Euler’s age, his blindness, or his secretary that may have caused the
mistake.

We close with some of the less important things Euler did, to give an idea of his immense range
and power. Before Euler, only three pairs of amicable numbers were known. These are pairs like
220 and 284, where the sum of the proper divisors of one of the numbers is equal to the other:
110+55+44+22+20+ 11+ 10+5+4+2+1=284 and 142+ 71 +4+2+ 1 =200 The
pair (220, 284) was known to Pythagoras; another pair, (17296, 18416), was found by Fermat in
1636; and the pair (9363584, 9437056) was found by Descartes in 1638. In 1750, Euler gave 62
new pairs ({8}, i, I). Amicable pairs are still studied. There were 1095 pairs known in 1972 [22] and
a 152-digit pair was found in 1974 [27]. In 1955 I showed [12] that if A(x) is the number of
amicable pairs (m, n) with m < n < x, then lim, . , A(x)/x = 0; Pomerance showed in 1981 [25]
that A(x) < xe (o8 * "'’ In the other direction, I conjecture that there are infinitely many pairs; in
fact, it is likely that A(x)> cx' ™,

In a letter, Goldbach called Euler’s attention to multigrades: sets of integers with equal sums of
different powers, as in

15+ 5% 4+ 9% 4 175 + 18F = 2% + 3k 4 1% 4 15% +19*
for k=0,1,2,3,4, and Euler proved the first theorems about them. They have been studied a great
deal since then, It was also in a letter to Euler that Goldbach made his famous conjecture that
every even integer greater than 4 is a sum of two primes, and that has been studied even more
than multigrades. There has not been much progress since Chen showed in 1966 (5] that every
sufficiently large even integer is a sum of a prime and a product of at most two primes.

Euler discovered that if p= 4k + | is a prime, then p can be written p = x2 + y* in exactly one
way; this led him to look for numbers d such that if n = x? + dy? with (x, y) =1 in exactly one
way, then n is prime. He found 65 of them, with 1848 the largest ([8], ii, XIV). It seems likely that
he found them all, since it is known that their number is finite (6] and there is at most one greater
than 10%* [7]. So in a way, Euler said the first and last words on this subject.

Euler proved that every even perfect number (i.c., equal to the sum of its proper divisors, as
28=14+7+4+2+ 1)isof the form 27~ '(27 — 1) for p and 27 — | prime and gave the firstof a
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long, list of necessary conditions that an odd perfect number will have o satisly (8], i

Fermat thought all the Fermat numbers 24" + | were prime. Euler factored 22 + 1 in 1732:
27" 4 | was not factored until 1971 [3).

Euler was the first to look at that equation that keeps coming up in popular journals, x* = y*
(18], ii, XXIID).

And Euler discovered, no one knows how, that the polynomial n? — n+ 41 is a prime for
n=1.2,...,40.

If Euler had never done anything except number theory, he would still be remembered as one
of the great mathematicians.
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