
ON SUMS OF RUDIN-SHAPIRO COEFFICIENTS II

JOHN BRILLHART, PAUL ERDŐS AND PATRICK MORTON

Let fa(n)} be the Rudin-Shapiro sequence, and let s (n) _
J'1_ o a(k) and t(n) _ Jn_0(-1)ka(k) . In this paper we show that the
sequences {s(n)/ F} and {t(n)/ v} do not have cumulative distribu-
tion functions, but do have logarithmic distribution functions (given by a
specific Lebesgue integral) at each point of the respective intervals [V3/5,
F] and [0,r] . The functions a (x) and s(x) are also defined for real
x ? 0, and the function Is(x) - a(x)]/ F is shown to have a Fourier
expansion whose coefficients are related to the poles of the Dirichlet
series Z , a(n)/n', where Re 7 > z 2-

1 . Introduction. In this paper we are concerned with the Rudin-
Shapiro sums

[x]
(1 .1)

	

s(x) _ 2 a(k),
k=0

[x]
(1 .2)

	

t(x) _

	

(-1) ka(k),
k=0

where the numbers a(k) are defined recursively by

(1 .3) a(2k) = a(k), a(2k + 1) _ (_1)ka(k), k >_ 0, a (0) = 1 .

An explicit formula for a(k) is given by

(1 .4)

where e(k) _ 2;=o E,e ; +I and k = 2i=0 e j T, e; = 0 or 1 . (See [1], Satz 1 .)
The properties of these sums have been developed in [1], where it is

shown that

(1 .5)

	

5
<

s(n) <
F6

n

t(n) < V 3r
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for n _> 1, and that the sequences { s(n )/ Jn ) and { t(n )/ F ) are dense in
the intervals [r3-/5 , V-6 ] and [0,,v'3-1 .
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Here we study the quotients s(n )/ F and t(n )/ F further by
introducing the limit functions

sA(x) = lim (4kx
kyx

k
µ(x) = lim t(4 x)

k-oo V4 kx

n=1

which are defined for x > 0 . We show that A(x) and µ(x) are continuous
functions of x, but are non-differentiable almost everywhere . Since A and
µ satisfy the functional equations

(1 .7)

	

A(4x) = A(x),

	

µ(4x) = µ(x),

the curves {(x, A(x)) ; 1 < x s 4) and {(x, µ(x)) ; 1 < x < 4} represent
the limiting behavior of the quotients s(n )/ F and t(n )/ F on the
intervals [4 k 4k+I - 11, as k , oo . (See Figure 1 in §4 .)

Equation (1 .7) implies also that A(x) has a Fourier series expansion of
the form

(1 .8)

	

A(x)

	

cn e'tnl°gX/l°
g z

~

where c„ E C. This series is (C, 1) summable to A(x) for all x > 0, and is
convergent in the usual sense for almost all x > 0 . In fact, we are able to
give an explicit set on which (1 .8) is convergent, the set of x > 0 which are
simply normal to the base 4 . (See §4, 5, and [6) .) This allows us to say, for
example, that (1 .8) converges when x = m + s , where m is a non-nega-
tive integer .

Formula (1 .8) then leads to an explicit formula for s(x) of the form
0c

rin/log2
(1 .9)

	

S(X) _ VX 2 c nx

	

+ a(x)

	

x > 0
n = -oo

where a(x) is an extension of the function a(n), defined for real argu-
ments x ? 0 . The function a(x) is bounded, and has an explicit represen-
tation in terms of the digits of x to the base 4 . Formula (1 .9) accounts for
the roughly "periodic" behavior of the sequence (s(n )/ F ) .

We show further that the Fourier coefficients c n are related to the
poles of the function n(T) defined by the Dirichlet series

r1(T) _ I
a(n)

,

	

Re T > 2 .
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This function has a meromorphic continuation to the whole complex
plane, and its only poles . in the half-plane Re T > 0 occur among the
points y„ = 1/2 + 7rni/log 2, n C Z. We prove that y„c„ is equal to the
residue of q(T) at T = y,,, and use this fact to show that infinitely many of
the points y„ are poles of q(T) . This is seen to be a consequence of the fact
that A(x) is not everywhere differentiable .

Finally, we use A(x) to prove the non-existence of the cumulative (or
natural) distribution function of the sequence {s(n )/ F } on the interval
(V3/5,á). By this we mean the limit limX_,'~x-'D(x, a), where a E
(V3/5, F6 ),and D(x, a) is the number of times s(n) <_ av'n for 1 <_ n < x .

In the positive direction, we prove that the logarithmic distribution
function for {s(n )/ F }, defined to be

lim
x-> 00

1

	

1 = L(a),
109X 1<r-_<x_

s(r)<af

does exist for all a C [ál3/5, r~. We show that
L(a)

	

1

	

1 A,= log 4 fE~ x ,

where the integral is a Lebesgue integral and Ea is the set Ea = {x :
1 < x < 4 and X(x) <_ a} . In other words, L(a) is simply the (multiplica-
tive) Haar measure of the set Ea . There are similar results for { t(n )/ F ) .

We would like to thank Igor Mikoli6-Torreira for carrying out the
computations in Table 1 (§6), and Richard Blecksmith for providing us
with the graphs in Figure 1 (§4) . We are also grateful to A . J. E. M .
Janssen for his remarks concering several of our proofs .

2. The functions A(x) and µ(x) . We first prove the existence of the
limit

(2 .1)

	

A(x) = lim s(4kx)

	

x > 0,
k oo ~4kx

where s(x) is defined in (1 .1) . We will require the following formulas from
[1] (see Satz 3), all of which hold for integers n > 0

s(4n) = 2s(n) - a(n), s(4n + 2) = 2s(n) + (-1)'a(n),
s(4n + 1) = 2s(n),

	

s(4n + 3) = 2s(n) .
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We set p(d) = X(1 - d), where X is the nontrivial character (mod 4), so
that

1, if d =- 0 (mod 4),

p(d) _ -1, if d =- 2 (mod 4),

0, if d is odd .

Then, using (1 .3), the relations in (2.2) can be written as the single formula

(2 .4) s(4n + d) = 2s(n) - p(d)a(4n + d),

	

n?0,0<-d<3 .

We will also need the 4-adic expansion of a non-negative real number
x, namely

x = 2 d,4 - r,
r=0

where the dr are integers, 0 <_ d r < 3 for r ? 1, and infinitely many dr are
not equal to 3. We set

k
(2.6)

	

bk = [4kx] _ 2 dr4k- r

r=0

and note that

(2 .7)

	

bk = 4bk_ I + dk , for k ? 1 .

THEOREM 1 . The limit in (2.1) exists for all x > 0, and is given by the
formula

(2 .8)

	

~(x) =
s(x)

- ~ 1

	

p(d)a(br)2-r
Vx

	

rX
I

	

r

Proof. We have from (2.6), (2 .7), and (2.4) that

s(4kx) = s([4 kx]) = s(b k ) = s(4bk_ I + dk )

= 2s(bk _,) - p(dk )a(bk )

= 2s(4k-Ix) - p(dk)a(bk),

for k ? 1 . Continuing this reduction gives
k

(2 .9)

	

s(4kx) = 2kS(x)

	

2 p(dr)a(br)2
k-r'

r=1

Hence

kX)

	

rs

4kx)

	

S~) _
YX r2l p(dr)a(br)2

.

Y

fork? 1 .
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Equation (2 .8) now follows by letting k oo, since the series on the right
side of (2.8) converges absolutely .

COROLLARY. If n is a positive integer, then

(2 .10)

	

X(n) = s(n-1) .

Proof. In the notation of (2.5) and (2.6) we have that x = do = n,
d,. = 0 for r >_ 1, and bk = 4k n . Thus the infinite sum in (2 .8) becomes

and so

(2.15)

00

	

00

(2.11)

	

2 p(dr)a(br)2 -r = 2 a(n)2- r = a(n),
r=I

	

r=I

A(n)
_ s(n) - a(n) _ s(n - 1)

~

	

-

	

~
Vn

	

V
r
n

	

Vn

Equation (2.11) suggests the following extension of the function a(n) .

DEFINITION . For x ? 0, set x = Y. o dr4- r as in (2 .5), and define
x

(2.12)

	

a(x) = 2 p(dr)a(br)2 r ,
r=1

where br = [4rx ] and p(d) is given by (2.3) .

Using (2.12), we may now write (2.8) in the form

(2.13)

	

A(x) _ (s(x) - a(x))x-1/2,

	

x > 0 .

We also note the functional equation

(2.14)

	

A(4x) = A(x),

	

x > 0,

which is an immediate consequence of (2.1) .

LEMMA 1 . For k ? 0 and x > 0 we have the estimate

A(x) _ S(4kx)

V4kx
2-kx -1/2 .

Proof. It is clear from (2.12) that I a(x) 1< 1 .Thus, (2.13) implies

A( x ) - S~) < X -1/2 .
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The lemma now follows on replacing x by 4 kx and using (2.14) .

LEMMA 2 . (a) If x > 0, then A(x) E [,13/5,x] .
(b) The set f A(x) x > 0} is dense in [V3/5 , r].

and

s(x,) < s([x,]) < r6 .
Úx1

	

AX1]

	

ti

Now take x, = 4kx, where k is chosen large enough so that x, ? 1 . Then
the above estimates give

Proof. For each x, ? 1, equation (1 .5) implies the inequalities

~5
X- 1/2 < S ([ x l]+1) - 1

1 áx,] + 1

	

VX,

< s([x,] + 1) - a([x,] + 1)

5 _ 2-kx-1/z < s(4 kx) < v6 ,
J4 kx

and letting k - oo proves (a) .
We also note from (2 .10) that A(n) = s(n )/ F + 0(1) . Thus (b)

follows from the fact that the set fs(n)/ F n ? 1} is dense in [íi3/5 , F].

EXAMPLE . Let x = (3n + 2)/3, where n is an integer >_ 0 . Then we
have the expansion

2

	

°° 2x=n+ 3 =n+ 2 4r ,
r1

so do = n, dr = 2 and b k = 4k n + E;-'2 . 4r in the notation of (2.5) and
(2.6). Using (1 .4) it is easy to see that a(bk ) _ (-1) "a(n) for all k ? 1 .
Thus (2.12) and (2 .3) imply that

a(x) _ 2 P(2)a(br)2-r =
(-1)"+1a(n),

r=1
so from (2.13),

I/2~( 3n32
1
=[s(n) + (-1)"a(n)] ( 3n + 2 )
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In particular,

(2 .16) X(3)=2V3 =F6 and A(3)=(2-1)V3 = V3
2

	

5

	

5 .

We now investigate the limit
k

(2 .17)

	

µ(x) = lim t(4 x)

	

x > 0,
k-x V4kx

where t(x) is defined in (1 .2) . For this we recall the elementary formula

(2 .18)

	

t(n) = s(2n + 1) - s(n),

	

n > 0,

from [1) (Satz 2) .

THEOREM 2 . The limit in (2 .17) exists for all x > 0 . We have

(2 .19)

	

µ(x) _ V~2X(2x) - X(x),

and

(2.20)

	

µ(4x) = µ(x) .
Proof. From (2.18) it follows easily that

(2.21)

	

It(x) - s(2x) + s(x)Is 1 for x >- 0 .

Hence for any x > 0,

µ(x) = hm
t(4kx)

= lim
s(2-4 kx) -s(4kx) + O(1)

k- oc Y4kx

	

k-oc

	

l/4kx

_ Fa(2x) - X(x) .

Equation (2.20) follows immediately from (2.17) .

COROLLARY 1 . For x > 0,

A(x) = 4'2 µ(2x) + µ(x) .

Proof. Equations (2.19) and (2 .14) imply that

µ(2x) _ V2 X(x) - A(2x) .

Multiplying through by F and adding to (2 .19) yields the result .

COROLLARY 2. If n is a positive integer, µ(n) - t(n - 1)/ F .

Proof. Immediate from (2 .19), (2 .10), and (2 .18) .
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By virtue of (2.19), the function µ(x) inherits its properties from A(x) .
In particular, we have

LEMMA 3. For k ? 0 and x > 0,

(2 .22) g(x) - t(4kx)
V4kx

< 3 -2 -kx-1/z .

Proof. We see from (2 .19), (2.21) and Lemma 1 (with k = 0) that

t(x)
- N(x)Vx

t(x)- s(2 x)+ s(x) + s(2x) - rA(2x) + A(x) - S(X)

< 3x - '/ z .

The assertion (2.22) is therefore a consequence of this estimate and (2 .20) .

Just as in Lemma 2, one may use (2.17), (1 .6), and Corollary 2 of
Theorem 2 to prove

LEMMA 4 . (a) If x > 0, then µ(x) E [0, v'3- ] .
(b) The set (µ(x) x > 0) is dense in [0, F].

EXAMPLE . If x = (3n + 1)/3, then the expansion

1

	

°°

	

1x=n+3=n+ ~ 4r
r=1

implies by (2.3) and (2 .12) that a(x) = 0 . Hence

3n + 1

	

3 	'/2A(	3	) - s(n)( 3n + 1 )

It follows from this and equations (2.19), (2.16) that

µ( 1 ) F ,

	

µ(2 ) = 0.
3

	

3
The examples of this section suggest that (x--A(x) is a rational number

whenever x is . This is indeed true, as we shall now show .

THEOREM 3 . If x > 0 and x E Q, then rx-A(x) E Q.



Proof. By (2.13) it suffices to show that a(x) E Q if x C Q, since
s(x) E Z . If x is rational, the 4-adic expansion of x must be ultimately
periodic

for some period length p and some k o ? 1 . To prove that a(x) C Q it is
enough to prove that

(2 .23)

	

p( dk+2p) a (bk+2p) - p(dk)a(bk),

	

k > ko,
by formula (2 .12) . Clearly p(dk+2p) = p(dk ), k ? ko , and so
the term a(bk+2p) •

From (2.6) we have

(2 .24)

where the value
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cc
x =

	

dr4 - ' where dk+p = dk , k >_ ko ,
r=0

p
bk+p = 4pbk + 2 dk+r4p-r = 4pbk + bkk

r=1

we consider

We first compute a(bk+p ) using (1 .4), in which e(n) is the number of pairs
of consecutive ones in the binary representation of n . Now the binary
representation of bk+p is pieced together from the binary representations
of b k and bk, by (2.24) . Moreover, a 1 occurs simultaneously in the last
binary digit of bk and the first binary digit of bk if and only if 21 dk and
dk+ l = 2 or 3 . Thus we have

a (bk+p) = a(bk)a(bk)(-1)dkI dk+i/2]

= a(b k )ek , for k ? ko ,

where Ek = ± 1 . Since bk +p = bk, Ek+p = Ek for k > ko ; we deduce that

a(bk+2p) - a(bk+p)Ek 6k+p = a(bk)5

and this proves (2.23) .

	

11

COROLLARY . If x > 0 and x E Q, then Fµ(x) E Q.

Proof. This is clear from (2.19) .

As a further example of Theorem 3 we note that

1

	

1

	

_ 65297 _ 17 •23 • 167
V73

	

73

	

65408

	

2' -7-73 '

1

	

_ 111 _ 3 . 37
a 73

	

65408

	

2' -7-73
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is readily obtained from 4-adic expansion

1 = .000320013 .73

We remark that the converse of Theorem 3 is certainly false, since
there are irrational numbers x = 2 r - o dr4- r for which dr is always odd; for
these x we have a(x) = 0 from (2.3), so FX(x) = s(x) E Z .

3 . The continuity of A(x) and µ(x). In this section we show that
A(x) and A (x) are actually continuous functions of x, for x > 0 . Equation
(2.19) shows that it is enough to prove this for A(x).

We first consider the function a(x) .

THEOREM 4. Let xa > 0. Then a(x) is continuous at x o if and only if x o
is not a natural number . If x a is a natural number, then

(3 .1)

	

lím a(x) = 0 and lim a (x) = a(x o )
X xo

	

x- X0

Proof. We prove the theorem in three parts
(i) a(x) is continuous from the right at any xo > 0 ;
(ü) a(x) is continuous from the left at xa (4 N ;
(iii) lim x ~ 0 a(x) = 0, if x o E N.

Here N denotes the set of natural numbers .
(i) Assume xo = 1'o dr4 - r as in (2.5), and define x„ by 4"x„ _ [4"xo]

+1=b,,+1, for n 1, so that x„ > x o and x„ -xo as n , oo . If
xo < x* < x,,, then x* _ E' o d*4- r with d* = d r for 0 < r < n . Hence,
by (2 .6), b* _ [4x*] _ [4rxo ] = br for 0 < r < n, and by (2.12) we have
that

G 2

CC

	

OC

~a(xo) - a(x * ) j _ 2 p(dr)a(br)2-r - 2 P(d*)a(b*)2-r
r=1

	

r=1

lp(dr)a(br) - p(d*)a(b*)12 r < 2 21-r = 21-»
r=n+1

	

r=n+1

This clearly implies (i) .
(ü) Here there are two cases
(a) If x o = 2°O d,4 - ', where infinitely many dr are nonzero, then we

set x„ _ 2 ;_ o d,4- r, so that x" < xo and x„ , x o as n , oo. If x* satisfies
x„ < x* < xo , then clearly x* _ 1 a d*4-r with d* = dr for 0 < r !- n,
and as in (i) we find that I a(xo ) - a(x*) < 2 1- " .



ON SUMS OF RUDIN-SHAPIRO COEFFICIENTS II

	

49

(b) In the second case, x o = 2i=o d r4 - r, where s =- ! I and d, -7L- 0. Let
n ? s + 1 and define

s-1

	

d - I

	

n
x„=x o -4 "_ 2 dr4-'+	 s	

s + E 3 .4-rO
r=0

	

4

	

r=s+l

For any x* in the interval xn < x* < xo , we then have x* _ 2'o d*4 - r,
with

Thus, we see from (2.12) that
n

	

o0

a(x *) _ Y. p(d*)~(b*)2_r +

	

p(d*)a(b*)2-r
r=1

	

r=n+l
S - 1

	

oc

2 p(dr)a(br)2 r + p(d, - I)a(b*)
2-s

+ 2 p(d*)a(b*)2-r
r= 1

	

r=n+ 1

s-1

2 p(dr )a(br)2-r + p(d - 1)a(bs - 1)2
- s + O(2 - ")

r= 1

since b* = 4b* 1 + d* = 4ós _ 1 + ds - 1 = b,- 1 . On the other hand,
s

	

o0

a(xo) _

	

p(dr)a(br)2 -r + 2 p(0)a(b )2-r
r=1

	

r=s+1
s-1

	

00

2 p(dr)a(br)2-r
+ p(ds)a(bs)2-s + a(bs) 2 2-r

r=1

	

r=s+l
s-1

2 p(dr)a(br)2 -r + p(ds)a(bs)2-s + a(bs )2 - s,
r= 1

and subtracting the expressions for a(x*) and a(xo ) gives

a(x*) - a(xo)

= [p(d, - 1)a(bs - 1) - p(ds)a(bs) - a(bs)]2-s + O(2 - ") .

We now claim that the expression E s inside the brackets is zero . To
show this we must consider the three possibilities ds = 1, 2, or 3 (note
d s 0 by assumption) . Recall that bs = 4bs _ l + ds .

If d s = 1, then

Es = p(0)a(bs - 1) - a(bs ) = a(4bs 1 ) - a(4ó5, l + 1)
= a(bs-,) - a(bs - 1 ) = 0, by(1 .3) .

d* =

dr ,

ds - 1,
for 0<r5s - 1,
for r = s,

,3, for s+ 1 <-r<-- n .
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If d s = 2, then ES = -p(2)a(bs ) - a(bs ) = 0.
If d s = 3, then ES = p(2)a(bs - 1) - a(bs ) _ -a(4bs , + 2) -

a(4bs_, + 3) _ -a(2b s -, + 1) + a(2bs-, + 1) = 0, again by (1 .3) .
Thus, we have that a(x*) - a(xo ) I = O(2 - "), when x„ < x* < xo ,

for any n ? s + 1, and this shows that a(x) is continuous from the left at
xo .

(iii) Assume now that x o E N, and define
"

x"=xo-4-"=xo- 1 +

	

3 . 4- r,

	

n? 1 .
r=1

As in (ü) we have for any x* in the interval x" < x* < x o that x* _

E o d *4- r, where

d* _r
xo - 1, for r = 0,

,3,

	

for 1 <- r < n .

Hence, a(x*) _ 1r-, p(3)a(b*)2-r + O(2-") = O(2 - "), since
But this implies a(x*) 0 as x* -> x o from below .

	

0

REMARK . The same proof shows that the complex valued function

p(3) = 0.

00
(3 .2)

	

a,r(x) _ 2 p(dr)a(br)2
-",

r= I

defined for complex numbers r with positive real part, is continuous at x o
whenever x o N, and that

lim a,r (x) = 0,

	

lim a,r(x) = a,,(xo ), if x o C N.
x_xő

	

x _xo

THEOREM 5 . A(x) is continuous for x > 0 .

Proof. Let xo > 0. If x o N, then it follows from Theorem 4,
equation (2.13), and the fact that s(x) is a step-function that A(x) is
continuous at x o . If xo E N, the same considerations show that X(x) is
continuous from the right at x o . Furthermore, by (2.13), (3 . 1), and (2.10)
we have that

lim A(x ) = lim [s(xo - 1) - a(x*)](x *)-112
x*-xő

	

. - X 0

= s(xo -
1)

- A(xo ) .
VX 0

Therefore X(x) is continuous at x o .

	

0
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COROLLARY l . The function A(x) maps both intervals (0, oo) and [1,4]
continuously onto [~3/5 , F] .

Proof. This is immediate from Theorem 5, (2.14) and Lemma 2 .
Alternatively, one may deduce Corollary 1 from the intermediate value
theorem and the values X(513) = 4315, X(8/3) _ F .

COROLLARY 2 . The function µ(x) maps (0, oo) and [1, 4] continuously
onto [0, F].

We remark that the continuity of a(x) for x > 0 also follows from the
fact that the functions fk(x) = s(4 kx)(4 kx) - '/2 converge uniformly to
A(x) on any interval [a, b] with 0 < a < b, by (2 .15) . The functions fk(x)
are step functions with jump discontinuities of order 2-x -1/2 at the
points x for which 4kx C N. The continuity of A(x) may then be deduced
from the following general result, whose proof we leave to the reader .

THEOREM. Let J be an interval, and let { fk(x)} be a sequence of
functions converging uniformly to f(x) on J. Assume for every xo in J that

dk(x o ) = lim SUP I fk (x) - fk (x o )I , 0, as k > oo .

Then f(x) is continuous on J .

4 . The non-differentiability of A(x) . Although A(x) is a continuous
function, it is differentiable almost nowhere . To prove this we first recall
the following definition. (See [6], Ch . 8.)

DEFINITION. A real number x o > 0 is normal (to the base 4) if and
only if the numbers xo , 4xo , 42xo, . . .,4"xo, . . . are uniformly distributed
modulo 1 .

An equivalent definition is the following. Let k >- 1, and let Bk be a
block of k digits to the base 4. Also let x o = J o d,4 - ', and denote by
N(m, Bk ) the number of occurrences of the block Bk in the initial block
.d,d2 . . .dm of x o - do. (For example, if x o = .1121121102 and BS = 11211,
we have N(10, BS) = 2.) Then xo is normal if and only if

(4 .1)

	

1ím 1 N(m, Bk ) = 4
_k ,

M -0c m
for all k ? 1 and all blocks Bk of length k.
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It is well-known [6] that almost all positive real numbers are normal .
In particular, almost all positive real numbers x o = 1x o dr4- r have the
property that d„ = d„ + , = 0 for infinitely many n . This is the essential
fact we use in proving

THEOREM 6. If x o > 0 is normal (to the base 4), then A(x) is not
differentiable at x o . Thus, A(x) is non-differentiable almost everywhere .

Proof. Since F A(x) = s(x) - a(x), it is enough to prove that

(4 .2)

	

h
{a(xo + h) - a(xo ) I

is unbounded as h - 0 + . The theorem then follows from the fact that the
step function s(x) has right derivative 0 for all x o > 0 .

So let xo = 2°°o d r4- r, choose an n ? 1 for which d„ = d„+, = 0, and
set h = 4- n . Then the 4-adic expansion of xo + h is

n - I

	

oa

xp + h = 2 d,4- r + 4-n +

	

dr4-r .
r=o

	

r=n+1

Putting br = [4r(xo + 4`)], we have br = br for r <- n - 1, while b„ _
4b„_ 1 + 1 = bn + 1 and b„+1 = 4b,, = b„ +1 + 4 . Thus (L3) implies a(b,,)
= a(b„,) = a(bn ) and a(b;, + ,} = a(b,,) = a(b„) = a(bn+ 1 ) . Furthermore,
using (1 .4) and considering the binary expansions of bm and bn,, we see
that a(b;,,) = a(bn, ), for m ? n + 2 . Hence

a(xa + 4-") - a(xo) =
n~1

P(dr2a(br) +

	

p(dr2a(bY)

r=1

	

r=n+1

x p(dr)a(br)- Y

	

2r
r=1

_ -a(bn )2`,

and so

(4.3)

	

4"{a(xo + 4') - a(x a )) _ -a(b„)2" _ ±2 n .

Since there are infinitely many n for which do = d" + , = 0, this proves
that the expression (4 .2) is indeed unbounded as h - 0 + .

	

0

We remark that the same proof shows A(x) is not differentiable at
any positive rational x o whose denominator is a power of 2 .

The proof of Theorem 6 can also be modified to show that for a
normal number xo , the quotient (4.2) takes on all real values infinitely
often as h - 0+ . For one can choose a sequence nk with dnk = d'R+1 = 0,
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k > 1, such that a(b„ k ) changes sign infinitely often . (For example, the
block 00300 occurs infinitely often among the digits of x o . If the block
starts at the index n, and n k = n, nk+l = n + 3, then a(b'k+i ) _ -a(b„ k ) .)
It follows from (4.3) that the quotient (4.2), which is continuous in h for
small h, takes on arbitrarily large positive and negative values as h , 0 + .
The intermediate value theorem then shows the truth of the claim above .
This remark is due to A . J. E. M. Janssen (private communication).

FELIS ELECTRICA

FIGURE 1 . Polygonal approximations to A(x) and µ(x), (X(x) >_ µ(x).)

The upper graph in Figure 1 is the polygonal curve joining the points

n

	

n

	

n s(45 +n-1)
(1 + 45,A(1 + 45)) = 1 + 45 ,	

V45 + n

	

, n=0,1, . . .,3 . 4 5 .
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The lower graph is the same with the function s replaced by the function t,
and A replaced byµ .
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5. The Fourier series of A(x) . It follows from the continuity of
X(x) and (2.14) that the function

(5 .1)

	

.f(x) = A(4x/2m )

is continuous for all x and has period 2v. Thus fhas a Fourier series

which is (C, 1) summable to f(x) for all x. (See [3], p. 62) Using
A(x) = f ( 7r log x/log 2), this easily yields the following result for A(x).

THEOREM 7 . The function A(x) has the logarithmic Fourier series
expansion

00

(5 .2)

	

a( x ) _ I Cneminlogx/1°gz,

	

x > 0
n = -oo

where

	 1 f4A(x)

	

_ 1

	

irm
(5 .3)

	

Cn = log 4 Jl x1/2+Yn dx,

	

yn - 2 + log 2 ,

and where the infinite series converges in the (C, 1) sense for all x > 0, i .e .

with

n=-00
Cn = 2~ J 2m f(g)e - `

nade
0

°°

	

1
2 Cne,inlogx/1og2 = lim

k + 1 (ao + a 1 + . . . +U k ),
n = -oo

	

k-~ o0

k
=

	

rrin log x/log2Uk

	

Cn
e

n= -k

COROLLARY. For x > 0 we have
00

s(x) _ 2 cnx1/2+,rni/log2 + a(x) ,
n = -oc

where the series is (C, 1) summable for all x > 0, and c n is defined by (5.3) .

Proof. This is immediate from (5.2) and (2.13) .

We note that the series in (5.2) and (5.4) are convergent in the usual
sense for almost all x > 0, by the deep theorem of Carleson [2] . However,



Then

where the d r are digits .
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h = 2 hr4-r ,

	

0 <_ hr < 3 , h,,+1 0 .
r=n+1

n

	

o0

xo + h = 2 dr4 -r +

	

(dr + hr )4-r .
r=0

	

r=n+1

Since dr and hr are digits, not all equal to 3 past some point, we have that

(dr + hr)4-r < 2 6 •4 -r = 2 . 4 -n ,
r=n+1

	

r=n+1

so

ra- 1

x a + h = 2 dr4- r + 2 d,4- r,
r=0

	

r?ra
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it is possible to give a direct proof of this fact . We first prove

LEMMA 5 . If x a > 0 is normal (to the base 4), then

(5 .5)

	

la(xa + h) - a(x a )l = O(jhl 1/4 ), as h --> 0,

where the implied constant depends only on x 0 .

Proof. Let x 0 = 2 0 dr4- r, and assume 4 - n- ' < h < 4- n, n

	

so
that

n

	

"0

(5 .6)

	

xa + h =

	

dr4- r + 7, h'4-r ,
r=0

	

r=n

where the hr are digits and h n = 0 or 1 . If h n = 1, then there is a carry
into the n th place in (5 .6) . However the carrying will stop as soon as some
dr 3,r<n .

In order to estimate how long the carrying continues, we apply (4.1)
to the number x o and the block B, = 3 . By that equation we may choose
an n o so that

N(m, B,) < 38 , for m >_ n a .

Therefore, if n > no , the number of digits dr equal to 3 between n/2 and n
is at most 3n/8 < n/2 . Hence there is an ro > n/2 for which dro 3, and
this implies that
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Now apply (2.12) with br = [4rx o + 4'h], br = [4rxo ], to give

(a(xo + h) - a(xo)l _ 2 p(d'.)a(br)2-r - 2 p(dr)a(br)2 -r
r? r0

	

r? r0
2

	

2-r= 4 < 242

	

4 2h 1 14 ,
r? r0

for n ? n o . Thus

la(xo + h) - a(xo )I = O(h 1 / 4 ), ash , 0 +

A similar discussion shows that

Ia(x o - h) - a(xo)l = 0(h1/4), as h , 0+

and this completes the proof of the lemma.

THEOREM 8 . If x o > 0 is a normal number (to the base 4), then the
Fourier series (5 .2) of A(x) converges at x o . Thus, (5 .2) and (5 .4) converge
for almost all positive real numbers x .

Proof. Since xo is not an integer, s(xo + h) = s(x o ) for small h, and
so (2.13) gives that

Now (xo + h)- '/Z is bounded as h -> 0, and (1 + h/xo )' /2 = 1 + h/2x o
+ 0(h2 ) = 1 + 0(1 h I "), as h - 0. Therefore, Lemma 5 implies that

A(xo + h) - A(xo )I = O(1 h''/ 4 ), as h -- 0 .

We set y = 1 + h/x o , and use the fact that h _, x o log y as h - 0 to write
the last estimate in the form

j~(xoY) - ~(xo) = O(1log y '/4 ), as y - 1 .

Is(xo) - s(x o ) a(xo + h) + a(x o )A(x o + h) - A(xo ) =
Uxo + h Uxo ~xo + h

	

4x0
s(xo) 1 - , ll h a(xo + h) - a(xo )+I

Uxo+hh xo Úxo + h

+ a(xo ) - 1 .,fl + h
l/xo + h ~1 xo
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If z o = log x o/log 2, then this gives the following estimate for the
function f(z) = A(4 °/ 2~)

lf(zo + h) -f(zo)l = O(JhJ 1/4), ash - 0 .

But this condition implies the convergence of the Fourier series of f at z o
(see [3], p. 41), and therefore the convergence of (5.2) at xo .

	

El

REMARK. If we define a simply normal number to be a number x o
which satisfies the condition (4.1) just for k = l, i .e. for blocks of length
one, then it is clear that the conclusions of Lemma 5 and Theorem 8 hold
for the larger set of simply normal numbers . Thus both (5.2) and (5 .4)
converge for example at the point

x=m.01230123 . . . 4 =m+ 85,
where m is a non-negative integer . Similarly, (5 .2) and (5 .4) converge at
any point x o = Y°° o d,4- r which has the property that d, 0 or 3 for
large r, e .g. the point x o = .1212 • • • 4 = 2/5 .

Our results for A(x) and s(x) are easily extended to the functions
µ(x) and t(x) using (2.18) and (2.19) . For example, ,u(x) has the logarith-
mic Fourier series

where

00

µ(x) -

	

Cn {(-I)nV2 - Il eninlogx/log2
n= -oo

which is (C, 1) summable to µ(x) for all x > 0, and which is actually
convergent in case x is normal to the base 4 (for then 2x is also normal) .
Moreover, (2.18) implies easily that

t(x) = s(2x) - s(x) + 1
(1

+ (-1)[d'/2])(-1)d°a(bo)

xli(x) + b(x)

Cn{(-1)n~2 - 1}x1/2-nni/log2 + b(x),
n= -oo

b(x) = a(2x) - a(x) + 1 (1 + (-1)[d'/21)(-1)d°a(bo),
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and x is given by (2.5) . The function b(x) has properties analogous to
those of a(x) . For instance, b(n) _ (-1)na(n ), for n ? 0 ; b(x) is continu-
ous at x. if x,, =,'= N ; and

lim b(x) = 0,

	

lim b(x) = b(x o ), if x o E N.
x-xo

	

x- xó

6 . The Fourier coefficients cn . Concerning the coefficients c n , we
first prove

THEOREM 9. Infinitely many of the coefficients cn are nonzero ; in fact
c„

	

O(I n1 -2-s ), as n , - oc, for any 8 > 0 .

Proof. Assume that c n = O(1 n 1 -2-s ) for some S > 0 . Then the series
in (5 .2) converges to X(x) for all x > 0, and the differentiated series

00?Tl

	

nC x ~rin/log2 = ~( x)x log 2 n=_o n

converges uniformly for x ? 1 . Therefore X'(x) _ A(x) for all x > 1,
which contradicts Theorem 6 . Hence c n = O(1 n 1 -2-5 ) is false .

	

El

We shall now relate the c n to the behavior of the function 'q(T)
defined by the Dirichlet series

rq(T) - 2 ann ) .
n=1

By virtue of (1 .5), this series converges in the half-plane Re T > 1/2, and
absolutely for Re T > 1 . (See [5], p. 123.) Using partial summation to
express n(T) as an integral gives

q ( ) -

	

s(n) - s(n - 1)
T

	

-1 +

	

s(n)
n=1

	

n

	

n=1

	

n 7

	

(n + 1) T
O0

	

n+1

	

1
_ -1 + T

	

s(n)f

	

7+i dx
n=1

	

x

= -1 + rf00 S(x) dx, for Re r >>1
We substitute s(x) _ v-x A(x) + a(x), and find

(6.2)

	

'q (T) _ -1 + Tf.	X(x)/2
dx + Tf 011 a(x)

dx .
1 x

	

1 x



Now rearrange the first integral using (2.14)

00 (6.3) fx X	(+x)2 dx =
k o

f4k

xT i	 ~, dx

Similarly, the second integral may be written in the form

f(6.4)

	

x

a(x)

	

=

	

ak a(x)
A

1 x
1
A

k=o f4k x

4 1

	

x a(4kx)
dx .r+I

	

2kr1 x

	

k=o 2

To evaluate the integrand, we need the following result .
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oc

	

4

	

h(x)2

	

2k(2z-1) u r+1/2 du'A =O

( 1 - 2'-2T)-' f4
x

	 (; )2 dx

00
4 a(4kx)22krxr+l dx

k=0

LEMMA 6. In the notation of (2 .5) and (2.6) we have that
k

(6 .5) a (4 kx) = 2'a(x) - 2 p(dr )a(br )2k - ' for x > 0, k
r- 1
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Proof. From (2.14) we have A(4 kx) = A(x), so from (2.13) we find
that

S(4kx) - 2ks(x) = a(4 kx) -2 ka(x) .

Equation (6.5) is now immediate from (2.9) .

With (6 .5) we can write the infinite sum in (6 .4) as follows
CC

a(4kx)	a(x) _ x

	

k-'_2kr
2kr

	

k(21-- 1)

	

2

	

P(dr) a ( b )2
k=0

2

	

k=0
2

	

k=1

	

r=1
a

	

00
21-2T

)-1 a(x) - 2 P(dr)a(br) 2-r 2 2k(1-2T)
r=1

	

k=r

_ (1 - 21-27 )_1 a(x) - ( 1 -
21-2r) 1a2-r(x)1

where a,(x) is defined by (3.2) .
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Putting the results of (6 .6), (6 .4), and (6.3) into (6.2) gives finally that

(1 -2 1 -2T)n(r)

= 21-z T - 1 + r f4
z

	 (x)2 dx + 7 f
4 a(x) - a2T(x) dx,

initially for Re T > 1/2. But the integrals in this formula define analytic
functions of T for Re r > 0 . (In fact the first integral is entire .) Thus (6.7)
defines the analytic continuation of n(T) to the half-plane Re T > 0, and q
has at most simple poles at the points r for which 21-27 = 1, i .e. the points
y„ = 1/2 + 7ni/log2, n E Z. This proves

THEOREM 10 . The function n(T) defined by (6.1) has a meromorphic
continuation to the half-plane Re T > 0, with at most simple poles at the
points y„ = 1/2 + ani/log2, n E Z .

In fact, the function n(T) has a meromorphic continuation to the
whole complex plane, but we shall not give the proof of this fact here .
Rather, we point out the following connection between c„ and the behav-
ior of n(T) at the point T = y,, .

THEOREM 11 . The n th Fourier coefficient C„ of A(x) is related to the
residue R„ of n(T) at y„ by the formula

(6 .8)

	

C„ = R„/Y„ = 710(y, )/ (y,, log 4),

where no(T) _ (I - 21-2T )n(T) .

Proof. Since 2 2 Y^ = 2, we have a 2,(x) = a(x) for all n e Z and x > 0 .
Putting T = y„ in (6.7) gives therefore that

no(yn) = y„ f 4 xA(Z)Y„ dx = y„log 4 . c„ .

Equation (6.8) is immediate from this and the fact that n o(y„) = log 4 • R,, .

COROLLARY 1 . Infinitely many of the points y„ are simple poles of n(T) .
In fact, R„ O( 1 n I - ' - s ) as n , -- oo, for any 8 > 0 .
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Proof. Immediate from (6.8) and Theorem 9 .
Equation (6 .8) can also be used to estimate the size of e ll . To do this

we note the Dirichlet series expansion for 71o(T)

(6 .9)

	

r1 0 (T) _ (I - 2' -27),q ( T )
= n'

a ( n ) - 2
n

c
(4n))

where

(6 .10)

	

a*(n) _

If we set

x a* ( n )

n 7~n

a(n),

	

if 41 n,
-a(n),

	

if 4 1 n .

(xj
s*(x) _ 2 a*(k),

k=0

in analogy to (1 .1), then it is easy to see that
s*(x) = s(x) - 2s(x/4) = a(x) - 2a(x/4)

= O(1), as x , oo .

Hence (6 .9) converges for Re T > 0. This implies the following corollary to
Theorem 11 .

COROLLARY 2. For any S > 0 we have c„ = O(1 n 1 -1 /z+s)

Proof. We use Satz 33 of Landau [5], p. 784 (with a = 0, T = 1,
S < 1/2, a = 1/2) to deduce that

710(Y„) = O(1 n 11/26), for all S > 0 .

The corollary is then clear from (6.8) .

We conclude this section with a short table of the coefficients c,, .

n Re c„
TABLE 1

Im C, I c„
0 1 .5053 0 1 .5053
1 - .0663 .0911 .1126
2 - .0927 -.1331 .1622
3 .0018 -.0031 .0035
4 .0352 .0116 .0370
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The values were computed using the first 1,500,000 terms of (6.9) and
the formula

N a*(k) _	 s*(N)

	

~

k

	

°~ s*(x)
y„ logo c„ _

	

kY~

	

(N + 1)Y" + Y„ N+1 xy"+,
A,

=1

where N = 1 .5 X 10 6 . The total error, due to roundoff and to the integral
in this formula, is at most .002 in absolute value, and so c„ 0 for
0<_n--<4.

7. The cumulative distribution. In this section we use the function
A(x) to show that the sequence (s(n )/ F ) has no cumulative distribution
function on the interval (3/5 , F) . Recall the following general defini-
tion .

DEFINITION . Let fun ) be a sequence of real numbers contained in an
interval J, and let a E J . If D(x, a) denotes the number of n < x for
which u„ < a, and if the limit lim a ,~ x -'D(x, a) = D(a) exists, then the
sequence fun ) is said to have the distribution D(a) at a. D(a) is called the
cumulative distribution function of f u„).

THEOREM 12 . The cumulative distribution function of ( s(n )/ F ) does
not exist at any point of (x/3/5 , F).

Proof. Let a C (43/5 , r), and assume D(a) exists for the sequence
u„ = s(n )/ Jn in the above definition .

(a) We first show that D(a) must equal one. By Corollary 1 to
Theorem 5 we may choose an x, C [ 1, 41 for which N(x, ) < a . Let e be
such that 0 < e < 1 and

A(x)<a whenlx-x,I <e,

and set M - maxi ,, Y, f A(x). Then M < a. Set S = a - M, and choose
k o so large that 2-k°(x 1 - e) -'/ 2 < S . From (2 .15) we have for any x
satisfying I x - x, 1< e and for any k ? k o that I A(x) - s(4kx)/ d4kx I <-
2-kx -1 ; 2 C 2-ko(x, - e)-1/2 < 8, So

~4kx

It follows that s(r)/ F < a for every integer r of the interval 4k(x, - e)
< r 5 4k(x, + e). But the number of integers in this interval is

4k(x, + e) - 4 k (x, - e) + O(1) = 2e4k + O(1) .
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Thus if we put xk = 4 k(x l - e) and xk = 4 k (x l + e), we have

D(xk , a) = D(xk , a) + 2e4 k + 0(1) .

Dividing both sides by xk = (x, + e)xk/(x, - e) and letting k - oo then
gives that

which implies D(a) = 1, as claimed.
(b) We now show that D(a) = 0 ; this will contradict (a) and prove

the theorem. We choose an x, E [ 1, 4] with A(x, ) > a, and an e for which

0<e< 1 and A(x)>a whenjx-x, l <e.

We also pick k o so that 2-ko(x, - e) -'/'- < S, where this time S = m - a
and m = min ix_ ,c I -~ E A(x) . As before, we have for any x with I x - x, 1< e
and any k >- ko that

whence

i.e. that D(a) = 0.

s(4kx)
>A(x)-S>m-(m-a)=a .

~4 kx

and letting k - oo shows that

- e
D(a) = D(a)

x,

	

+
2,-

x , + e

	

x, + e'

A ( x ) - s(4 kx)

V4 kx < S,

Thus s(r)/ Fr > a for all the integers r in the interval

4k(x, - e) < r 5 4 k (x, + e),

and

D(xk , a) = D(x k , a),

where xk = 4 k(x, + e) and xk = 4k(x, - e) . Therefore

xl D(xk , a) = xD(xk,
a)- x , + ,k

	

k

	

1

D(a) = D(a) •
l

	

",x i +

11
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For the sequence u„ = t(n )/ F we have the analogous

THEOREM 13 . The cumulative distribution function of the sequence
(t(n )/ Fn ) does not exist at any point a C (0, V-3) . However it does exist
when a = 0, and D(0) = 0 .

Proof. The proof that D(a) does not exist for a in (0, r) follows,
mutatis mutandis, the proof of Theorem 6 . Thus assume that a = 0. To
show D(0) = 0 we proceed as follows . Let nv be the v th integer for which
t(n) = 0. Clearly

n D(n, 0) < ri D(n~, 0) =v

	

n v

if n„ <- n < n, t ,, and so it suffices to show that
v/n„ -> 0 as v - oo .

However, by the Vorbemerkung in Satz 13 of [1], if

k

v = 2 e,2'
r=0

is the binary representation of v, then
k

nv = I Er 22r+1 _ 1 .

Thus n v > 22k+1

r=0

- 1 > 2v' - 1, and so v/n v < 2v/(v 2 - 2)

L(x, a) _ 21 <„< X
u„

~
a

- 0 as

As the above proofs show, the nonexistence of the cumulative distri-
bution functions is attributable to the fact that the sequences s(n )/ F
and t(n)/ F behave very "sluggishly" .

8. The logarithmic distribution . It is possible to show that a mod-
ified distribution function does exist for the sequences (s(n)/ } and
(t(n )/ F ) . The type of distribution we consider is defined as follows .

DEFINITION . Let (u„) be a real sequence contained in an interval J,
and let a C J. If



and if the limit

lim	1L( x, a) = L(a)
X x log x

exists, then the sequence (u,,) is said to have the logarithmic distribution
L(a) at a. L(a) is called the logarithmic distribution function of the
sequence .

We shall prove that both sequences ( s(n )/ F } and (t(n )/ Jn ) have
logarithmic distributi on functions which are defined everywhere in the
respective intervals [ár3/5, ~-6 ] and [0, V]. We need a lemma.

LEMMA 7. Let a E [V315, F] be fixed and let S,, denote the set
Sa = ( x 1 < x < 4 and A(x) = a) . Then S,, has measure zero .

Proof. Let xo = 2°°_o d r4 -r be an element of S,,, which is normal to the
base 4 . Choose an n >- 1 for which d_, = 0 for n j < n + 3, and set

x n = x o + 4- n,

	

yn = xo + 4-n + 4-n-3 = xo + h n .

As in the proof of Theorem 6 we have that I a(xo) - a(x„) ~= 2-n. Now if
x* satisfies x n < x* < yn , it is easy to see that x* _ 1' o d*4

-r, with

dr , r < n,
1,

	

r = n,
0,

	

r = n + 1,n+2.
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Thus

d* _r

la(x*) - a(xn)l =

and it follows that

la(x0) - a(x*)I =la(xo ) - a(xn ) + a(xn) - a(x * )l
2-n - 2-n- 1= 2-n-1

Furthermore, equation (5.7) implies

IA(xo) - X(x*)l =

00 p(dr)a(br)- p(d*)a(b*)
r=n+3 2r

00
2'-' = 2-n-1

r=n+3

a(x *) - a(xo) + 0(1x* - xo l)
>/x *

Ko 2 -n - x,4 -n > IC 2 2-n , for n ? n o ,
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where Ko , K 1 , K Z are positive constants and no is sufficiently large .
Therefore, for n >_ no satisfying d„ = d,7+1 = d„+z = d,,+3 = 0, we have

A(x *) a for x„ < x* < x„ + 4 - n -3 .

If m denotes Lebesgue measure, we deduce

64
(8 .1)

	

1
m(Sa n (xo, xo + h„)) <

h = 65
< 1,

li

	

,

for an infinite sequence of h„'s tending to zero .
On the other hand, if Xa denotes the characteristic function of the set

Sa , then

(8 .2)

	

hm(Sa n (xo , x o + h»

- I rx o+h
h

	

Xa(t)dt , Xa(xo), as h -- 0,
x 0

for almost all x o (see [41, p . 173) . Equation (8 .1) shows therefore that all
normal numbers xo in Sa lie in the null set of exceptional numbers for
which (8.2) does not hold, since for these x o , Xa(xo ) = 1 . But this implies
m(S") = 0 .

	

El

The argument in the above lemma is due to A . J. E. M. Janssen
(private communication) .

We can now prove

THEOREM 14. If a C [v3/5 , r1, then the logarithmic distribution func-
tion of the sequence (s(n )/ ) exists at a, and has the value

(8 .3)

	

L(a) = log

	

I A,
g 4 Ea

where Ea is the set

(8 .4)

	

Ea = {x 1 < x < 4 and A(x) < a} .

Proof. Let Ik denote the set of integers r contained in the interval
4k < r < 4k+ ', k ? 0, and consider the sum

Ok( a )
4 k+1 -1

- 2r
r=44

wa(r/4 k )
r

	

'
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where wa is the characteristic function of the set Ea . Note that vk(a) is just
a Riemann sum for the function wa(x)/x on the interval [l, 4], since

4 k, i
, wa(rl4k)

	

k
Gk(a)_ I	 k 4-

r=4k

	

r/4

Now A is a continuous function, so it is clear from (8.4) that the
discontinuities of wa are contained in the set Sa = { x 1 < x < 4 and
X(x) = a} . By Lemma 7, Sa has measure zero, and therefore wa is
Riemann integrable . (See [4], p. 64 .) Consequently,

(8 .5)

	

h(a) = limQ,(a) =
I

a wa(x)
dx =

JEa
xdx .

Note also that h(a) is a continuous function of a, since the set Ea+£ tends
to the set Ea as E - 0+ , and since Ea_ £ tends to Ea - Sa as E - 0 + ,
which differs from E a by the null set Sa .

This fact implies easily that

(8 .6)

	

"
k-x

	

k-
Uk (a - 2-k) = "

a
Qk (a + 2 -k ) = h(a) .

For instance, if k o is fixed and k ? k o , we have

Qk( a -
2 ko) < Qk(a - 2 k) < ok(a + 2-k) < ak(a + 2 -k0 ) .

Thus by (8 .5),

h(a - 2-ko) < liminfv k (a - 2-k) < lim SUP ak(a + 2-k )
k -> oc

	

k oc

h(a + 2-ko ) .

But for large ko , both sides of this inequality can be made arbitrarily close
to h(a), and this proves (8.6) .

We now show that the limit of

A(r) -
3(r)

as k -> oo, is h(a) . From (2.15) we have

Vr

'r Elk

	

r
s(r)<af

1 < 2 -k , for r E Ik,
lr

67



68

	

JOHN BRILLHART, PAUL ERDŐS AND PATRICK MORTON

and so

for these r . It follows that

akin - 2 k) C &k(a) < ak(a + 2 -k ) .

Letting k -> oc and using (8.6) then gives

lim ák (a) = h(a) .
k oc

Thus we have also
1 m-1

(8 .7)

	

lim - , ak(a) = h(a),
m-O0 m k=0

since the (C, 1) method is regular .
Finally, suppose that n >_ 1 is arbitrary and m is chosen so that

4' <_ n < 4m+ 1 . Then m = [log n/log4], and
ni- 1

	

n

log n m k=0
akla)

	

log n

Hence by (8 .7),

s(r) < a

	

implies A(r) < a + 2-k ,
Vr

A(r) < a - 2-k implies
s(r)

< a
Vr

2
r=1

s(r)Sav'r

1

	

n

	

1

	

1

	

_

	

1

	

f 1
?I oo log n r~1 r

	

log 4 h( a)

	

log 4 f xA,
s(r)n~af

and this proves (8 .3) . 0

THEOREM 15 . If a E [0, F], then the logarithmic distribution function
of the sequence { t(n )/ F } exists at a, and has the value

( )

	

1

	

f

	

1
L a= log 4 f x dx '

where E,, = {x 1 < x < 4 and ,u(x) < a) .

Proof. The theorem is proved by exactly the same argument used to
prove Theorem 14, the crucial point being that the set S, _ { x 1 < x < 4
and µ(x) = a) has measure zero . We omit the details .

I ~ m+ 1	1 	
&k(a) .r

	

logn m + l k=o
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