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1. In what follows we are dealing with some statistical properties of partitions resp. 
unequal partitions of positive integers. We introduce the notation 

(1.1) 

for a generic partition n of n where 

11.2) m = mfl7) and the i,‘s are integers. 

Let p(n) denote the number of partitions of n. Accordmg to the classical result of 
G. H. HARDY and S. RAMANUJAN (see El]), 

(1.3) pw)=(l +~l))--$~erp -$Jt‘ . 
\’ ( i V6 

(The o-sign and later the O-sign refer to ~-XI.) 

2 J. DEHES raised the foliowing interesting problem. What is the number of parrs 
(n, , I7,) of partitions of n which do not have equal subsums? This problem has not been 
solved yet but its investigation led P. TURAN to some unexpected phenomena. The pairs 
with the l&es property* are obviously contained in the set of pairs of partitions not 
having common ~ammands. P. TCRAN proved (see [6]) that the number of parrs of 
partitions (of n) having no common summands is 

i2.1) 

l Apart kom the common complete subsums of course, we exclude the patur (i., =n. i, =n) here. 
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at most. This estimation shows that the number of pairs with the D&es property is 
“small” (in comparison with the total number p(n)’ of the pairs). This smallness 
suggested that “almost all” pairs (i.e., with the exception of d&n)‘) pairs at most) have 
“many” common summands. Indeed, P. TURAN proved (see [6]) that almost all pairs of 
partitions of n contain 

o-4 (g? - d,,)v~;logn 

common summands at least (with mulhplicity). Afterwards P. TL’RAN proved an 
analogue of the above result for k-tuples of partitions with tixed integer k 2 2 (see [7]). 

This result was generalized for k = o(~ ‘i) by C. POMERANCE [2]. 
Thinking ofthe fact (which is easy to prove) that “almost all” partitions of n (i.e., with 

:ne Exception of c+(n)) partitions at most) contain 1 as summand [\, n(o(n))- ‘l-times 
at ieast (w(n) /’ z arbitrarily slowly) one can imagine that the phenomenon (2.2) is 
perhaps caused by certain summands of great multiplicir~. That this is not the “real” 
reason turned out in 181. Namely, in his paper [S] P. TUR,~N proved the existence of 

co.mmon summands in “almost all” k-tuples of unequal pmririons of the form 

(2.4) 

where 

(2.5) tn=m(II*) and the 2,‘s are integers. 

We remind the reader that G. H. HARDY and S. RAMANLJAN’S formula (see Cl]) asserts 
the relation 

(2.6) 40) = 
1+0(l) 

mexp - !n 
( -1 vy3 vJ 

for the number q(n) of unequal partirions (2.4H2.5) of n. 

3. Another approach to the original problem would be, as P. TURAN proposed. the 
investigation of the integers which can be represented by sub-sums. This investigation 
led us to other surprising phenomena we are dealing with in this paper. Our Theorem I 
yields that (not in the strongest form) almost nil partitions of n represent alI integers k of 
Cl, n] as subsums, i.e., in the form 

k= ; ,, (i,==i, for it!). 
,= 1 
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The analogue of this assertion does not hold for unequnl partitions (e.g., it is easy to 
see that k = 1 cannot be represented in a positive percentage of the unequal partitions of 
n) but our Theorem II yields a weaker result of similar type. 

4 Let M(n) denote the number of such partitions II of n for which it is not true that 
every integer k of the interval [l. n] is representable by a subsum of iI. Then we assert 

ltteorem L 

(4.1) h-f(n) = (1 + O(~))~d.). 

Corollary. The number of partitions ofn which represent ail integers k of the intercal 
Cl, n] as subsums is 

14.2) 
( 

1 --&+O(qqdn,. 

consequently, almost all partitions of n represent all integers k of [l. n] as subsums. 

For the proof of Theorem I, we need a number of lemmata. We use the results of 
P. TURAN and M. SZAUY on the distribution of summands in the partitions of n (see 
C3l c419 PI). 

5. Using the notation (l.l), we define 

Lemma 1 (M. SZAWY-P. TUR.~N [3], Corollary of Theorem II). If.4 is resrricted by 

(5.2) d 11 lognjnj 2RVGlogn - 3J~Ioglogn 

then the relation 

(5.3) SAn.K4 = (1 + O(&))$&h31 

holds uniformly in (5.2) apart /ram 

(5.4) [p(n) n - 5’4 log n 

exceptional n’s at most. 

Throughout this paper c’s stand for explicitly calculable positive constants not 
necessa.riIy the same in different occurrences. 
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LHUU 2 (M. SULAY-P. TURAN [S], Corollary 1). With rhe resrriction 

(5.5) 

the relation 

log6n5pS - 5& log log n 

(5.6) 

holds uniformly with the exception of q(n) n - ‘9 log n partitions of n at mosf. 

IEIIUBS 3 (M. SUUY-P. TURIN [5J, Lemma 4). The inequalities 

(5.7) 

and 

(5.8) m -z 5~‘J;;logn 
= 2n 

hold with the exception of q(n) nm2 l7’s at most. 

Lerman A Using the abbreviation 

(5.9) U(k) = log 
I 

we hate, for 

(5.10) & fi 
log’n5kk ~J;;Iogn-gY$IogIogn. 

the uniform estimation 

(5.11) 

WI 

f A#=(1 +o(&))fnj exp;)-ldx 
fi=k 

0 

apart from q(n) n -“*log n Fs at mast, 

Proof. Owing to Lemma 2 and Lemma 3: we have 
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where 

i.e, 

= 5, (l+o(&))$%‘ogl~exp~ 
rla=sf 

*p)+oi~~og~n~= 
-__ 

&I 

=(l +o(&)){~~Jlog I-expj 

1 

Kx )dx+Odlogn)} + 

-3 

+ O(jGlogS.n) = 

=(I +O(c&))* 
dx + 0 (&log n) + 0 (J;; log%). 

Here, the last integral is 

thus, 

;kip = (l + o(j&))&lOgl 

k 

exp( HX )dx= 

-3 

with y = log 
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Lemnm 5. There exists n positice constant c such that dropping cp(n)nM5i4 log n 

suitable partitions of n at most, the remaining ones have the property rhat 

(5.12) i,~loglo n>O 

implies 

(5.13) ;c,~j.,+, +ip+2+. . .+i,. 

Proof. After dropping q(n) ne5j4 log n II’s at mo st all the previou,s lemmata will be 
applicable. Owing to Lemma 2, 

I~;s~~,~*.-9~,,,~*,~“l<c10g9.1n <Wo n 

for n > no. Therefore, for sufficiently large n, 

implies 

(S.14j 

For 

Lemma 4 and Lemma 3 yield that 

thus the inequality (5.13) holds in the case (5.15). Next let 

(5.16) 
fi n>nz. .- [ I fi G sps-- 

ii 

Icv 
Glogn-9~&loglogn-1. 

27L v’ x 

Then, owing to Lemma 4 resp. Lemma 2, we get 

&+, +&+1 
3 

+...+i,$-n 
x 

IL2 exp (x)- 1 
dx 2 

0 
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resp. 

These estimations imply (5.13) in the case (5.16). Thus. Lemma 5 is proved for 
sufficiently large n and the increase of the constant c completes the proof for all n. 

6 We shall use HARDY-RAMANUJAN’S stronger formula (see [I]) in the form 

(6.1)&z)= 

One can get easily from (6.1) that 

(6.2) p(n)= ---k- 
4n ,5 

Let pi(n) denote the number of partitions of n not containing 1 as summand. We 
have obviously 

(6.3) p,(n)=p(n)-p(n- 1) for n>I 

and using (6.2) we get 

=?@(g +0(i)). 
Thus we have proved 

16.4) 

for n> 1. 

13 
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To the representations of the “small” integers we shall need the number fin, i. j) of 
partitions of n containing neither the summand i nor the summand j where i, j are 
integers and 

(6.5) l=<i<j. 

Now we assert 

Lemma 7. Under the resrricrions 

(6.6) 

the relations 

1 ~ii<j~log’On, n>c, 

p(n,i,,j)=p(n)-p(n-i)-p(n-j)+p(n-i-j)= 
05.7) 

hold. 

=*(Fp(n))=O(Tp,(n)) 

Proof* The relation 

holds obviously for O<y< I. From this we get 

i.e, 

If 2 p(n.i,j)?r=(l-~‘)(l-~j) 1+ t p(n)Jfl , 
PI=1 “=, , 

(6.8) p(n.i,j)=p(n)-p(n-i)-p(n-j)+p(n-i-j) 

for n>i+j. 
Using (6.81, (6.6) and (6.2) we get 
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7. Now we turn to the proof of Theorem I. Owing to Lemma 6, we have obviously 

,M(n)lp,(n)=p(n)-p(n-l)= I+0 
( (;I=n))+ 

for n > c and we have to prove only the estimation 

(72) 
1og’O n 

M(n~-p,(n)~ccppl~~~ 

t’ n 

for n>c. i.e.. we have to prove that the p(n- 1) partitions of n ( >c) containing 1 as 
summand represent all integers k of the interval [l, n) by subsums apart from 

(7.3) 
Iog30 n 

c -P,(n) 

partitions in question at most. 
The partitions of n containing 1 as summand represent 1 and we investigate the 

representations of 2, 3 and 4 for n > c. 
The number of partitions of n ( r c) containing 1 as summand but not representing 2 

is obviously 

(7.4) =p(n-l,1.3)~cS2p,btb 

tn 
owing to Lemma 7. 

The number of partitions of n ( > c) containing 1 as summand but not representing 
3 resp. 4 is obviously 

(7.5) 

resp. 

139 
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(7.6) 
loglO n 

Sph3,4)SccPp,(n) 

owing to Lemma 7. 
(7.4X (7.5) and (7.6) yield that the partitions of n (>c) containing 1 as summand 

represent 1, 2, 3 and 4 by subsums apart from 

log2O n 

cxp1(“) 
partitions in questton at most. 

Next let 
(7.8) n>c, 5Sk61og’“n. 

Taking into consideration Lemma 7 and (7.7) too, 

k=(k-l)+l or k=(k-2)+2 or k=(k-2)+1+1 

is a representation of k by a subsum apart from 

(7.9) 
logi n 1og2e n 

c-p,(n)+p(n,k-2,k-l)sc- 
6 Ji 

PlW) 

partitions in question at most. 
These estimations show that the partitions of n (BC) containing i as summand 

represent all integers k of [I, log” n] by subsums apart from 

(7.10) (loglO n) c 
log”0 n 
-p*(n) 

4% 

partitions in question at most. Increasing the constant c we can apply also Lemma 5 
for the remaining partitions owing to 

cdn) n 
log30 n 

-5’410gn<c~ p,(n) 
y n 

.4fter dropping 

exceptional partitions in question at most let I7 be an arbitrary partition of n ( > c) from 
the remaining ones and k an integer with 

(7.11) ljksn. 
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We prove by induction that k is representable by a subsum of I7. This assertion has 
been proved for 15 k $log’* n (and is trivial for JG=~I. We assume that 

(7.12) 

and that 

log’*n<k<n 

(7.13) 

Let 

all the positive integers less than k are representable 

by subsums of lT. 

(7.14) 
def 

E.* = n 

and define the index ~20 by 

(7.15) i.,>khi.,,, 

which makes sense owing to i0 > k and I= i., <k. Now. i., > k > log’* n and Lemma 5 
preclude the possibility of 

(7.16) (n >)kz i.u+r+t-i.,+z + . . . - ;, 

because (7.16) would imply p+O and 

. . 
%>+*! +n,+2+. . . -t;, 

in contradiction with (5.13). Therefore. we can define an index Y by 

(7.17) i,,, +i,+,+ . . +i.,+i.,,,,>k=>E.,,, -/-,+2+. . . +i.,. 

This gives that 

Ilk*>. v-1 +i,+,+. . +A, then (7.13) and (7.18) make it sure that 

where 

I 

k-i.,+,-... -A= 1 ii,<&,, 
j=l 

(7.19) 

Then, 

k=i.,+,+... +r.,+i.,,+ . --ii, 

is a representation of k by a subsum owing to (7.19) and Theorem I is completely 
proved. 
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8 For the proof of Theorem II we shall use, for 

(8.1) 

the function 

Rezz=O, 

(8.2) 

and the well-known formula 

(8.3) 

in all angles 

J($=exp ( 79 1 
-+-log-f- +0(l) 
6z 2 2x > 

for E-+0 

(8.4) 

(log means the principal logarithm). 
These give that 

under the restriction (8.4). 

9. We use the notation 

(9.1) p= 
a, +a,+. . . +a,=n 

a,>a2>...>a,11 > 

for a generic unequal partition l7* of n where 

(9.2) m=m(i7*) and the q’s are integers. 

According to HARDY-RAMANUJAN’S formula (see Cl]), the relation 

19.3) 4(n)= 1 +o(l) 
( > 
“J;; 4$‘4 3',4 exp $ 

holds for the number q(n) of unequal porfitions of n. 
Then. as it was indicated in 3, we assert 

lkeorem II, Let k,, be an integer wifh 

(9.4) 
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Then. the unequal partitions of n represent all integers k L$ the interd [k,, n-k,,] as 

subsums apart from 

(9.5) (20(2/&~“4Cn-’ ‘O)qn, 

unequai partitions of n at most. 

10. The proof of Theorem II requires some lemmata 

Lemma 8 Let kO be an integer with 

(10.1) 1 sko$n’ 5 

Then, for n>c, the unequal partitions of n represent dl integers k of the intcwal 
[k,, n1’5] as subsums of IWO terms apart from 

(10.2) 20 (2,‘, 3)-kgnl 

unequal partitions of n at most. 

Proof. For arbitrary,positive integers n and k with k 2 3. let q(n. k)denote the number 
of unequal partitions of n containing only one of s and k -s at most (as summand) for 
every integer s of the interval [l. t] where t = [(k - 1):2] (i.r, not having subsums of the 
form (k-s)+s with k-s>sll). We are going to pro*-e that the inequality 

(10.3) 

holds for 

(10.4) 

Let us observe that the relation 

holds for \w( < 1. Cauchy’s formula gives the representation 

for O< D< 1. Let us define g&) by 

110.7)g,M= IsO, (l- exp ( - kz) 

\ (l+exp(-sz))(l +exp(-Ik-sbzl) 
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for 
(10.8) 

Then we have 

(10.9) 

x=Rer>O. 

It 

9(n,k)= k Sg,(x+iy)exp(njiii~))d” 

for x>Q. 
Let C, be a sufficiently large constant and E fixed with O< E -c lo-‘. We choose 

(10.10) 
x 

x=-xo= Gn 

-112 , y, =n-3J4+a’3, y2 =CoXo 

and investigate (10.9) as * -y> -v, 

qh k) = & I g~xo+iy)exp(nxo+iny)dv= &{J + j + / + / + j}. 

-x -II -?, -?‘t “, ?2 

(We use some ideas of G. A. Freiman’s p(n)-estimation.) 
For 

(10.11) n>c, 3SkSn’j’ and lylSy2, 

we can apply (8.4H8.5) and get 

fIl (l+expi-v(xo+~yi))=exp(l?(=~i~) - ;10g2+dl)) 
(for n-cc), 

0 

further, 

l- 
exp ( -k (x0 + in)) 

= (1 +exp(-s(xo+i?;)))(l+exp(-(k-s)(x,+i.~))) 

=exp i log 
( ( 

1 - f +O(kn-‘!Z) = 
S=l >> 

=exp 
( 

Ilog: +O(&n-‘!2) 
> ( 

=exp [lOgi +O(n-lilo) 
> 

under the restriction (10.11). Consequently, the relation 

(10.12) g,(x,+iy)=exp 
( 

tlogi + 
HZ 

12(x0 + iy) 
- ;log?+c@) 

1 

holds under the restriction (10.11). 
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First, 

201 

1 

z s 
g,(x,ti)‘)exp(nx,+in~)dv= 

- P, 
Yl 

1 
=- 

277 s { 
exp flog-+ : &(1-i;- (.$3(p)‘))+ 

-Y, 

+nx,+iny- 

Next. 
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Finally, we have to estimate the expression 

--I ?2 

For 

(10.13) n>c, 35kInli5 and yzs;(ylsn, - - 

we get (with :=x0 +iy) 

exp Re i log(l+exp(-vz)) Re i f F exp ( - ~j.f:) = 
“=I v=, p=l 

=exp 

2 w =exp t 1 (exp(~0)-l)L+4exp(~x,)sin T 
( i 

\ - L!I 

1 > 

_ 
p=l P 

sexp 
cc > 

2sinE -’ 
2 + ~2&)sexP(~~-l+g--) 

and 

exp (- kr) < 
(l+exp(-s:))(l+exp(-(k-s).@) = 

1 

(I-expI-sx,))(l-exp(-(k-s)%)) 

Therefore, 

owing to (10.10) and (10.13). 
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Thus we have proved the estimation 

(10.14) 

for 

(10.15) n>c, 31kI~i”~. - - 

The assertion of Lemma 8 is trivial for k0 = 1, 2 owing to 20(2;, ‘J)-’ > 1. For 
3 I kosn’ ‘, the total number of the exceptional unequal partitions is - 

and Lemma 8 is completely,proved. 

11. Now we assert 

Lemma 9. The unequal partitions of n’( >c) represent all integers k of the interral 

(11.1: [n’“.(l+ f)+,;nlogn] 

as subsums gfour terms at most apart from 

(11.2) cq(n)n-’ 

unequal partitions of‘ n at most. 

Proof. For arbitrary positive integers n and k with k 2_ 10 and the notattons 

(11.3) tl= [;I +l, t*= r+], f=C,-t,+l, 

let ql(n, k) denote the number of unequal partitions of n containing only one of s and 
k-s at most (as summand) for every integer s of the interval [tl, t-J (i.e.. not having 
subsums of the form (k --s) -e s with k-s > s > k/4). 

Let us observe that the relation 

(11.4) 

I- f q,(n.k)exp(-n.r)= 
“I=1 

1 +expt-sx)+exp( -(k-s)x) 

$=,, (1 +expt-Wtl i-expt-tk-s)x)) 
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holds for x>O. ( 11.4) yields that 

41(n, k) exp ( - nx)s 

5 fi I- { ( 
exp(-kx) 

s=t, (l-i-exp(-sx))(l+exp(-(k-s).%)) I 
“0, (1 +exp(-W)$ 

i.e, 

5 fi l- aexp(-kx))} fi (l+exp(--vx)). 
i ( P==I, v= 1 

fi (l+exp(-vxj) 
“=I 

for x>U. 
Choosing 

111.5) 
II 

.x=x()= -7n -I,2 

2,i3 

and using (8.4H8.Q we get 

41(n, k)$ fi (1 +exp( -VXC,)) 
Y= 1 

nxo- f exp( -kx,) 

d 
sc exp 12~ fnx,- kexp(-kx,) = 

0 > 

=c exp <J- 
,‘3 

k exp ( - kr,) 
> 

i.e, 

(11.6) 

(11.7) 

we get 

(11.8) q,(n. k)Sc-q(n)exp ilogn- &n1,5 <cq(n)ne5 
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(11.6) gives the estimation 

2,'G 
-exp(-(i - &Jlogn))= 

167T 

(11.10) 

= cq(n) exp 
( 

3 
4 log n - 

13 
+&- nl~zoo) ccq(n)nb5 

(11.7)-(11.10) show that the unequal partitions of n( > c) represent all integers k of 
the interval 

(11.11) I,= [d 5,il- &)$y;;logn] 

as subsums of the form 

(11.12) k=(k-s).-ts with k-s>s>k 4 

apart from 
1 ql(n. k)<cq(n)n-’ 

kE I, 
k inrcger 

unequal partitions ofn at most. After dropping these exceptional unequal partitions let 

be an arbitrary unequal partition of nt >c) from the remaining ones and k an arbitrary 
integer with 

(11.13) 

Let 

j 
-L1;;_\;logn-ni5 , 1 k,=k-kl. 

Then wecan use the property (11.11~11.12) of ll* owing to k,, k,EI,. Thus. 
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arm 

Therefore, 

(11.14) 

is a representation of k by a subsum of n* owing to 

kl 
z,~>z,,> - >k27a,,>a,2. 

4 

(11.11)-(11.14) prove Lemma 9. 
In order to show that the upper value in (11.1) “usually” exceeds the maximal 

summa&, using the notation (9.1) we assert 

Lenrap 10. If /I = B(n) is restricted by 

(11.15) 

then the inquakty 

(11.16) 

o<fl<&-.- - _ /Ft 1 
4,/J logn 2 

holds with the exception of cq(n)n-p fl*‘s at most. In particular, the inequality 

(11’.17) 

holds for all but 

(11.18) 

m at most. 

. , 

cq(n)tI-“‘0 

Roof. In order to estimate the number of the exceptional n*‘s. let 

The number of P’s with 1, =j, Fgjsn-1 is s&--j). Hence, the number of the 
exceptional n**s is 

n-l 0-F 

5 1 y(n-j)+l=l+ C q(f). 
,=F I=, 



Partitions. subsums 

Using (9.3) we get 

207 

II-F n-f 
‘II 

l+ 1 q([)$c+c 1 1-3i4exp - 
( > 

-J 5 
I=1 I=1 143 

/l-f+1 
P 

jC+C 

J 

dxSc+dn-F+l)-“‘exp 
~ %. 

I. 
I 

Owing to (11.15), we have 

Consequently, 

n-F+ld;. 

c+c(n--F+l)-‘4exp -Z( ‘i-,X-F-c 
v/J v 

= 

d,: - 

-- c4(n)n”2 exp 
lt 

(l+zS)xJnlogn 1 - _ . ,I’7 y/;I+V’n-F+l 
scq(n)n-n, 

Q.e.d. 

12 Continuing the representation by induction. we can see that Lemma 9 and 
(11.17H11.18) preclude the possibility of an inequality analogous to (7.16) (since now 
p+ 1 would be 1). Another difliculty is, however, caused by the lack of the “smail” 
integers representable. In order to avoid this difiiculty we assert 

Lemma 11. Dropping 

(12.1) es(n) exp( - lo-‘nl 12) 

exceptional unequal partitions of n at most: each II* of n( >c) from the remaining ones 
has a swnmand in rhe intercal 

(12.2) 
5 2r i 1 y37 

for ecery integer T restricted by 

(12.3) 10-Z .;<s< ‘I+- t- 1 
i > 

5 - 
\ =- 4 n t nlogn. 

Roof. For arbitrary positive integers n and T with 726, let q2(n. 5) denote the 
number of unequal partitions of n not having summands from the mterval (T 2.2s 33. 
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Then, the relation 

l+ i q,(n,$exp(-nx)= 
“=l 

(12.4) 

I 

Cr*21 
= vIJIIl+exp(-d) fi (l+exp(-p)) 

p=[27.3]+1 

holds for IS >O, (12.4) yields that 

42W. 5)exp(-nx)s 
i 

fi (1 +exp(-VX)) 

1 

[2r 31 

fl (l+exp(-px))-‘s 
t-1 /l=[r2]+l 

5 
1 

*I, ( 1 + exp ( - vx)) 
} ( 

1 + 
exp (_ ; x))-II:;31t[r;a 

i.e., 

{ 

I: 

4thr)S fl (l+exp(-vx)) exp nx- 
“=, 

} ( (rf] - [~])log(liexp(- G-x)) 

for x>O. 
Choosmg 

(12.5) 

and using (8.4H8.53, we get 

( 
1 

(12.6) q2(n, 7) 2 c exp $& +nxo- ilog 1 +exp 
0 

( (- ;xo))). 

Taking into consideration (12.31, the estimation (12.6) gives that, for n > c, 

q2(n. 5)s c exp /-r; r. \ jJn-& 
‘V 

Llog(l+exp(- $Iogn)))( 

i 
* scexp A, n- 700n 

V,3 
112) sc4(n)exp(- An’ 12). 

ThiS yields that the number of the exceptional I?*% is 

Q.e 
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13. Finally, we assert 

Lemma 12 The unequal partitions of n( > c) represent all integers k of the inrenal 

(13.1) 

as subsums apart from 

1 [ 1 n1,5 

‘2” 

(13.2) q(n) n-‘!1o 

unequal partitions of n at most. 

Proof. After dropping 
cq(n) n-“‘O 

exceptional unequal partitions of FI( > c) at most Lemma 9. Lemma 11 and (11.17) from 
Lemma 10 will be applicable. Let 

p= 
al+zL+.,.+s,=nj 

i r,>ar>...>za,~l _ I 

be an arbitrary unequal partition of n from the remaining ones and k an integer with 

(13.3) 
1 

n’ ‘Sk5 --n. 
2 

We prove by induction that k is representable by a subsum of I7*. This assertion has 
been moved for 

by Lemma 9. We assume that 

(13.4) 

and that 

(13.5) 
all integers of [n ‘I5 k - 11 are representable , 

by subsums of ll*. 

Owing to (11.17) and (13.4), we have 

(13.6) 
1 

rl<k~-n<z,+r*,+...+1,=n. 
2 

14 
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Therefore, we can define an index v by 

(13.7) ~,+a~+ . . . +a,5k<r,+c++. . . +a,+a,,, 

This gives that 

(13.8) Osd d=dk-r,-r,-. . -z,<x,,, <q<k. 

For 

(13.5) and (13.8) make it sure that 

where 

k-q-... -a,,= 1 I,,<1,,1 
,=1 

(13 9) 

Then, 

k=z,tx,+.. . +z,+z,,+.. +n,, 

1s a representation of k by a subsum owing to (13.9). The case d =0 is trivial. The only 
problematic case we have to Investigate is 

(13.10) l=<Ll<d5 

We have obviously 
-_ 

\13.11) m-c, ?n 

,’ 

\\ 
from n=2, T-. 

1 
Lx,zrnt. . . tl > -m2 

2 ) 
. (13.4) and (13.7) give that 

/ 

owing to (13.1 li. Thus we have 

(13.12) 

Choosing 
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we get 

(13.14) 

for n>c from (13.12), (13.10) and (11.17). (13.14) shows that (12.3) is satisfied with 
the choice (13.13). Applying Lemma 11, we get an index /I with 

(13.15) 

Then 

for n>c owing to (13.15), (13.10) and (13.12). Consequently, 

(13.16) Y<P: 

Let 

(13.17) 

Then we get 

(13.18) 

A, =7--2,. 

k=a,+cx,+...4Ir,-,+z,+d, 

from (13.8), 113.13) and (13.17). Further, 

(13.19) 

and 

forn~cfrom(13.17),(13.15),(1l.17)and(13.14).Now,wecanapplyLemma9for1,. 
This yields that 

(13.20) 

with 

(13.21) p<r,<rze...<r, 

owing to ( 13.19). Consequently, 

k=r,+z,+. . AZ ,<-, +xz,+z,,+. tr,. 
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is a representation of k by a subsum owing to (13.18), (13.20). (13.16) and (13.21). This 
settles the case (13.10) and Lemma 12 is completely proved. 

Now. Lemma 8 and Lemma 12 prove Theorem II for k. 2 k 2 i n and for 

1 

2 
n < k 2 n-k, too by means of the complementary subsnms. 
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On sums and products of integers 

P. ERD& and E. SZEMERkDI (Budapest) 

Let 1 s:ni < . <a, be. a sequence of integers Consider the integers of the form 

(1) 

It is tempting to conjecture that for every E > 0 there is an n, so that for every n > n, 
there are more than n2-r distinct integers of the form (1). We are very far from being 
able to prove this, but we prove the following weaker 

Theorem 1. Denore byf(n) the largest inreger so thatfor ecery [u,. a2 * . . . u,: there 

are ut leasr f(n) disrincr integms of rhe form (1). Then 

n ’ -1 if(n) < n’ exp ( -c. log n:log log n) . 

We expect that the upper bound in (2) may be close to the “truth”. 
More generally we conjecture that for every k and n > no(k) there are more than !I’-~ 

distinct integers of the form 
k 

At the moment we do not see how to attack this plausible conlecture. 
Denote now by g(n) the largest integer so that for every la,, . a,; t&re are at least 

g(n) distinct integers of the form 

(3) t eiai, fi n: (q=O or 1) 
L i=* 

We conjecture that for n > ndk), gin)> nk. Unfortunately we have not been able to 
prove this and perhaps we overlook a simple idea. We prove 


