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1. In what follows we are dealing with some statistical properties of partitions resp.
unequal partitions of positive integers. We introduce the notation

(L) o= f:.1+;i.;+...-'t—/:._=ﬂ
Ay ZhZ e Bz

for a generic partition [T of n where
(1.2} m=m(lT) and the A4,'s are integers.

Let pin} denote the number of partitions of n. According to the classical resuit of
G. H. Harpy and 5. Ramanusan (see [17),

(1.3) pin)=(1+oll)) l ex ‘—~——2H o
i 1= E S e o ni.
. 4n £ R ( ré ¥ )

v v
(The o-sign and later the U-sign refer to n—x.)

2 J. Denes raised the foliowing interesting problem. What is the number of pairs
(IT,, ITy) of partitions of n which do not have equal subsums? This problem has not been
solved yet but its investigation led P. TuraN to some unexpected phenomena. The pairs
with the Dénes property* are obviously contained in the set of pairs of partitions not
having common summands. P. Turan proved (see [6]) that the number of pairs of
partitions (of nj having no common summands is

{2.1) expi(1 +ol))ry, 2n)

* Apart from the commen complete subsums of course, we exclude the pair (i, =n, 4, =n) here.
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at most. This estimation shows that the number of pairs with the Dénes property is
“small” (in comparison with the total number p{n)® of the pairs). This smallness
suggested that “almost all” pairsfi.c., with the exception of o(p(n)?) pairs at most) have
“many” common summands. Indeed. P. Turi~ proved (see [6]) that almost all pairs of
partitions of n contain

’6 \ ~
(2.2) (:_R - 0{1)) \;""ﬂ ]Og n

common summands at least (with multiplicity). Afterwards P. Turin proved an
analogue of the above result for k-tuples of partitions with fixed integer k=2 (see [7]).

This result was generalized for k=0, n) by C. Pomerance [2].

Thinking of the fact (which is easy to prove) that “almost all” partitions of n (i.e., with
ine exception of o(p(n)) partitions at most) contain 1 as summand [, n(cxn))” ']-times
at least (w(n) # x arbitrarily slowly) one can imagine that the phenomenon (2.2] is
perhaps caused by certain summands of grear multiplicity.- That this is not the “real”
reason turned out in [8]. Namely, in his paper [8] P. Tura~ proved the existence of

oy

. -
1.5} (1 - dl))#v'ﬂ

common summands in “almost all” k-tuples of unequal partitions of the form

(2.4) n* = Ay +Ay+ ...+ X, =0

1, >%> ... >, 21
where
(2.5) m=m({I*) and the =z,'s are integers.

We remind the reader that G. H. Harpy and S. Ramanuian's formula (see [1]) asserts
the relation

1+0o(1) x
(2.6} gin) = FREETTI exp (—§ - n)
\.' r

for the number g(n) of unequal partitions (2.4442.5) of n.

3. Another approach to the original problem would be, as P. Turan proposed, the
investigation of the integers which can be represented by subsums. This investigation
led us to other surprising phenomena we are dealing with in this paper. Qur Theorem |
yields that (not in the strongest form) almost all partitions of n represent all integers k of
[1. n] as subsums, i.e.. in the form

(3.0 k=% }'.,-__ (i,=i, for j=10.
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The analogue of this assertion does not hold for unequal partitions (e.g., it is easy to
see that k= | cannot be represented in a positive percentage of the unequal partitions of
n) but our Theorem II yields a weaker result of similar type.

4. Let M(n) denote the number of such partitions T of n for which it is not true that
every integer k of the interval [ 1, n] is representable by a subsum of [T. Then we assert

Theorem L
30
@.1) M(n) = (1 +0 (k’g,_ "))—”:p(m.

/ F
n v bn

Corollary. The number of partitions of n which represent all integers k of the interral
[1, n] as subsums is

3o
4.2) (1 - o(logn ")\un).

\..l 6n £

consequently, almost all partitions of n represent all integers k of [1, n] as subsums.

For the proof of Theorem [, we need a number of lemmata. We use the results of
P. Turan and M. Szatay on the distribution of summands in the partitions of n (see

(31, [4). [5D.
5. Using the notation (1.1), we define
(5.1) Sin. 01, A) = y 1.

AWzA
4y € T {with multrphicity)

Lemma 1 (M. Szaiay—P. Turan [3], Corollary of Theorem I1). If A is restricred by

7 _
(5.2) Illogn=sAS< ;—n V”; logn — 3, /nloglogn

then the relation

(5.3) Syn 11, A) = (1 + o(

/6 - 1
logn)) x V"8 ( m)
1—exp
holds uniformly in (5.2) apart from
(5.4) cplnyn=**logn
exceptional IT's at most.

Throughout this paper c¢'s stand for explicitly calculable positive constants not
necessarily the same in different occurrences.
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Lemma 2 (M. Szatay-P. Turan [5], Corollary 1). With the restriction

J6
(5.5) lognspus Y o \,nlogn Svnloglogn
the relation
1 03 1
(5.6) i =(1 +0 (—)) Y_ /nlog -
logn n nu
1 —exp ( —:)
\én/

holds uniformly with the exception of cp(n)n™**log n partitions of n at most,

Lemma 3 (M. Szarav-P. Turan [5], Lemma 4). The inequalities

(5.7 i = i—\;u log n
and
;"6_
(5.8) m< 512’~ Jnlogn
£

hold with the exception of cpin) n~2 IT's ar most.

Lemma 4. Using the abbreviation

(5.9) b=t
(- %)
l1—exp| — —
6n
we have, for
NP
(5.10) log’ngkg2—\/nlogn—9TV'n]og]ogn.
¥4

the uniform estimation
Uik)

: LY 6 x
5 .' = el _7d
(5.11) P (‘ +O(logn)) ’"I exp()—1"

1]
apart from cpinyn~>* log n IT's at most,

Proof. Owing to Lemma 2 and Lemma 3. we have

Y A, =Y i, +0(m)Oflog” n)

u=k nel
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where

{5 = 6 ~
I = [k.iz;r—\,«’n]og n—-7 VTV nloglogn |,
1.,

Z i, = Z ).,‘+0(.vf":_:loga n) =

u=k uel

1 / 1
T (1 + ol — )-‘/—6\/’;103 + 0(/nlog® n)=
A logn n Tt
m‘:!l‘cw 1 —exp| - —
V'fﬁﬂ

.—_(l +O( : )){jﬁvx’;log__——l——dx-i-(){ﬁlogn]}+
logn .4 l—exp( r:x)

I

!

Jen

+0 l\/; loghn) =

;. ) (1 o (lo’g n))

-
. 1 .

2 V—ﬁ nlog—————dx + 0(y/nlog" n)p + O(vr"r_l log®n).
T Y

Ltky

1 6 y
- Pk —2 g
(] +0(losn))x2n,[ exp)—17

]

(With y = log _-.—1.—) ;
1—exp (— i—i)

v bn
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Lemma 5. There exists a positive constant ¢ such that dropping cp(n)n~** log n
suitable partitions of n at most, the remaining ones have the property that

(5.12) iyzlog'®n>0
implies
(5.13) A SA At iy,

Proof. After dropping cp{n) n™*"* log n IT's at most all the previous lemmata will be
applicable. Owing to Lemma 2,

iz 2 9.1 10
’[g\slm—w‘—“,iwmlﬁfIog n<log'’n

for n> ny. Therefore, for sufficiently large n,

A2 log'%n

implies
o Vo ~ N
(5.14) lsu=s -‘;E\,snlogn—E‘ = nloglogn—1.
For

6 ~
(5.15) n>n, and Igug[Lan]— I,

T

Lemma 4 and Lemma 3 yield that

usr Fhyezt ... HinZAE G b2

]
1
u!-npl-il

; ‘6 -~
— = _dx>5Y_ /nlognzi, i
Py x>5 zn\nogn_z]_/,,

1"

3
—n
P
[+]

thus the inequality (5.13) holds in the case (5.15), Next let

v 6 - 6 -
(5.16) n>n,, I:.?an g,ué"z_nvfn]ogn—9\'r7v’nloglogn—l.

Then, owing to Lemma 4 resp. Lemma 2, we get

[ o+
“1’{ i g
A

; ; P B X
AurtFhuert . A, 250 ——dx =
n expix)—1 -

0
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\, bn

3 ( 1 -1 1
== I ——dx> —nex ( mu__])>ﬁnexp(— -?i)
n , e—1 L 6n 1 v 6n
resp.
. = SR 7T 1 -
sy ScC V"nexp(—- ,'u_) < En exp(— ———-f_)
v on v on

These estimations imply (5.13) in the case (5.16). Thus. Lemma 5 is proved for
sufficiently large n and the increase of the constant ¢ completes the proof for all a.

6. We shall use Harby—Ramanusan's stronger formula (see [1]) in the form

’

2n 1
e (j " 5) /6 2 / 2z =
A -v-O(exp(O.Sl-——_\_,.-n]}_

LN s - [ 6
4(”_ Ea)\'} 21{\/?1—2—4 ¥

One can get easily from (6.1) that

1 6 \ "
62  pim=—— {1—(”—+ - _)Jz +0(5)}exp(31_ \.-'n).
4n /3 2T 246 n. NG

V“H 4

{6.1)pin) =

Let p,(n) denote the number of partitions of n not containing 1 as summand. We
have obviously

(6.3) pini=p{nj—pn—1) for n>1
and using (6.2) we get

;

nn__i) l)) g 2]"[ l L
2 SRR 1-{1+0|=- - Em )=
pi{n)=pin) (1 pn) ) P[”l( ( * (" = ( V6 /n+n— l))

=pin) (—n.: +0(9)

\;"6!1 L
Thus we have proved
Lemma 6.
{ “1Y\ =«
(6.4) pin)=pln)j—pln—1)= (H—O( _))T_p(nl
\, n// . 6n
Jor n>1.




194

P. Erpds and M. Szaray

(6.5)

1gi<j.
Now we assert

Lemma 7. Under the restrictions
(6.6)

1<i<j<glog'®n, n>c
the relations

pin. i jy=pin)—pln—i)—pin—j)+pln—i—j)=
(6.7)

1 20 l 20
=0(°g : p(m)=o ( LM pl(n))
n
hold.

VI

Proof. The relation

x k4 I
1+ Y pniy= [T

n=1

v=1 l_yv

v

holds obviously for 0 <y < 1. From this we get

1+ ¥ pin i )y"=(1=3)(1-y)

(1+ i p{niy")‘
LB . " .'
(6.8) pin.i.j)=pin) = pin—i) — p{n —j) +pin —i~j}
for n>i+j.

Using (6.8), (6.6) and (6.2) we get

; 4 pln—i) _pn—j) [ Pm—‘f—j])}
i) = s a2 = =
pm D ’w{ e e
( ( (i [ 2n i
_p(njil— I+O{\;))exp(‘ —— | -

\{.6\'.'!1"?-\_. n—is

To the representations of the “small” integers we shall need the number pin. i. j) of
partitions of » containing neither the summand i nor the summand j where i, j are
integers and
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: 4 :
x(l—(l+0(i))exp(—:-1 N ))}:
nj; wObyn—j+ n—i—j
Noe2® n
—pn{1- (1- ZLivo(RE0))
6 no

el
I 20 i A0 .
~(1- Zivo(PE)) (Lo (R
LY v 6” n P \V-'- 6” X n £
lo 20 lo 0
=p{n)0( g ")-—-O( gfp.m))-
n n

% ;
7. Now we turn to the proof of Theorem I. Owing to Lemma 6, we have obviously
I W =
[7“ M["l%Pl(ﬂl=P(ﬂl-p(ﬂ—1l=(14-0(-—_))—_9(&}
S bn
for n>c and we have to prove only the estimation

log?®n
72 Mm—pimsc—2 2 p, (n)
Vn

for n>c, ie., we have to prove that the p(n— 1} partitions of n (> ¢) containing 1 as
summand represent all integers k of the interval [1, n] by subsums apart from
log?%n
(7.3) c —— p,ini
N n

partitions in question at most.
The partitions of n containing 1 as summand represent | and we investigate the
representations of 2, 3 and 4 for n>c.
The number of partitions of n ( > ¢) containing 1 as summand but not representing 2
is obviously
20
(7.4) sRi-LL e E )
v n

owing to Lemma 7.
The number of partitions of n { > ¢) containing 1 as summand but not representing
3 resp. 4 is obviously
log*%n
{(7.5) <pin. 2.3 s¢ - pylm
AN

resp.

13#
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10
(7.6) <pin 3, 92287 b

AR

owing to Lemma 7.
(7.4), (7.5) and (7.6) yield that the partitions of n (>c¢) containing 1 as summand
represent 1. 2, 3 and 4 by subsums apart from

log? n
(7.7) ¢ —g—-_,_— pyin)
W
partitions in question at most.
Next let
{7.8) n>c, 5<k=<log'®n.

Taking into consideration Lemma 7 and (7.7) too,
k=tk—1)+1 or k=k-2)+2 or k=(k-2)+1+1

is a representation of k by a subsum apart from

1 20 1 20
(7.9) = L o +pin k=2 k-1)Sc——Z p,(n)
Vi \.e’n

partitions in question at most.
These estimations show that the partitions of n (>¢) containing 1 as summand
represent all integers k of [1, log'® n] by subsums apart from

1 20
(7.10) (log'® n) ¢ Og,-” pi(n)

Wn

partitions in question at most. Increasing the constant ¢ we can apply also Lemma 5
for the remaining partitions owing to
o

10
cpinin~**logn<c———p,(n).
s

After dropping

log*®n
c = pilm

Na

exceptional partitions in question at most let I7 be an arbitrary partition of n( > ¢) from
the remaining ones and k an integer with

(7.11) 1<k<n.
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We prove by induction that & is representable by a subsum of IT. This assertion has
been proved for 1 £k <log!'® n (and is trivial for k= ni. We assume that

(7.12) log!®n<k<n
and that
(7.13) all the positive integers less than k are representable
' by subsums of II.
Let
(7.18) iy
and define the index u=0 by
(7.15) $ORY -

which makes sense owing to i, >kand 1 =4, <k Now. ,,>k>log'°nand Lemma 5
preclude the possibility of

(7.16) M>KZdy g tigert ... = i
because (7.16) would imply u#0 and

Ayt At Ty
in contradiction with (5.13). Therefore, we can define an index v by
(7.17) byt FhAyeat  F A F A DK A At A,
This gives that
(7.18) OSk—Aygey—Ayez—...—hy<i, . Sry. 1 Zk.

Ifk=i, i +4,.,+...+4, then (7.13) and (7.18) make it sure that

5
k=i, —...—A,= Z A< gy
i=1
where
(7.19) v+l<ip<ir<. .. <i,.
Then,
k=ipa . FA+a, +... =4y

is a representation of k by a subsum owing to {7.19) and Theorem I is completely
proved.
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8 For the proof of Theorem II we shall use, for

(8.1) Re z>0,
the function

(82) %

v=1

1 x
————— :1 T —HZ
1—exp(—vz) + = PRYEXEH = 2)

and the well-known formula

2 -
(8.3) f{:):exp(\% + %IOgi:i +o{l]) for z—0
in all angles
(8.4) farczjs K< ;

{log means the principal logarithm).
These give that

()

€ 2 1
(8.5) H(1+exp(—vz}}=i-—=exp(f———1032+0¢1}) for z—0

S fl2z) 12z 2
under the restriction (8.4).

9. We use the notation

9.1) H‘,:{al+a2+_'_+a_=“}

1 >A> .. A, 2]
for a generic unequal partition IT* of n where
9.2) m=m(IT*) and the x,'s are integers.

According to Harpy-Ramanuian's formula (see [1]), the relation

14+al) T~
W

holds for the number g(n) of unequal partitions of n.
Then, as it was indicated in 3, we assert

Theorem IL Ler ko be an integer with

(9.4) 1

1A

ko

A
(ST




Partitions, subsums 199

Then, the unequal partitions of n represent all integers k of the interval [k,, n—ky] as
subsums apart from
9.5) (20(2//3)*o+en™! Ogm

unequal partitions of n at most.
10. The proof of Theorem Il requires some lemmata.
Lemma 8. Ler ky be an integer with

(10.1) 1Skosnt?®

Then, for n>c, the unequal partitions of n represent all integers k of the interral
[ko, n''%] as subsums of two terms apart from

(10.2) 20(2/y, 3)~*gtn)
unequal partitions of n at most.

Proof. For arbitrary positive integers n and k with k = 3. let g{n. k) denote the number
of unequal partitions of n containing only one of s and kK —s at most (as summand) for

every integer s of the interval [1,t] where t =[(k — 1):2] (i.e. not having subsums of the
form (k—s)+s with k—s5>s=1). We are going to prove that the inequality

(10.3) qln, k)Y <2(2/,3) qtm)
holds for
(10.4) n>c, 3<k<n'?

Let us observe that the relation

L 4+ws-wk™s

1 & ;
.= r)j n“+w]

T +w)l+w Nt

(10.5) 1+ Y qink)w" = {]‘[ ;
a=1 -

holds for jwi< 1. Cauchy's formula gives the representation

1 i .wl a
e ol a1 — LV 5
(106) qin. k)= 5— J w {]] (1 —--—_-—m-._“_,))} [T (14w dw

emt v (L+wNHI Sl

wi=g

for 0<p< 1. Let us define g,(z) by

—kz
(10.7) gy(= a_Jﬂ( Rl T )}nll+exp|—\ )

(I +expl—sz)) (1 +exp(—ik—s)2))
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for
(10.8) x=Rez>0.
Then we have
t [
(10.9) gin, k)— — Jgk(w-:};exp(ntrﬂ};)d»
for x>0. o

Let C, be a sufficiently large constant and ¢ fixed with 0<e< 1072 We choose

(10.10) x=ggm =t T e Gy
2.3

and investigate (10.9) as

i ® =¥ —-¥ n ¥1 ®

1
qln, k)= = J‘gt(xo+iy}exp{nxo+fnyjdy= —-{j + i- + j - J + J‘}
2r n J
B i, —¥; =¥ ¥ Y2

{We use some ideas of G. A. Freiman's p(n)-estimation.)
For

{10.11) n>c, 3Z2k=n' and [y|Zy,,
we can apply (8.4)48.5) and get
2

1
slog2+ o{l}) (for n—x),

n (1 +exp(—vixy+iy)))=exp (1':7 —
i 12(xq+iy) 2

further,

& Z o exp(—k(xg+iy) ))_
¥ g T Tt expl—stxo+ iy (+exp(—k—s o T 7/,

._-exp(i Iog(l-— }1 +O(kn“"2l))=

s=1
4 3 - 3 ,
= xp(rlogi-k()(rkn 12) | =exp rlogZ+O|n iy

under the restriction (10.11). Consequently, the relation

2
T

: ,
S AR . W P )
T G

{10.12) gilxq +iv)=exp (r iogg +

holds under the restriction (10.11).
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First,
37 ] gdxo Tiv)expinxg+inyv)dy =
1 ¢ J 3 n? v yi2 vi\?
=-— | exp<rlog- + - === ol
2r J‘ pl g4 12-‘0( [-’fo (?‘a) *O((-‘fo) ))+
+nx0+mv——]og2+dll}
J‘~| e
| S g - 2\3

—

1+0(1) (3Y -\ [n ft
= — Py —_— .__3"14 -3’4 J—— R e
iz (4) exp( -"3‘“>\f2 n { ‘ exp (—u)du-+ ol

v

L -

1+o{1) /3Y T B 3
= anda3ie (E) exp(:—é HJ “-1-011}]( )q(ﬂ],

Next,

5

1 ‘. . 3 Py \
|52 3 = dy <
: J + j I == exp(r lc:g4 + B+ +nxo+0n)) ys

A
=
P e
F-g )
—
4]
*.
o
e N -~ ™~
iy
| A
[~] [ ¥
+|&
bl
@
R
|

201
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Finally, we have to estimate the expression

|
]

For

(10.13) n>c. 3<k=n'?® and y,<ly=m,

we get {with z=x4+iy)

exp(— vy:lJ =

cxp(Re y Iog(l+exp(—v:n) exp(Re Y ¥ i

v=1 v=1 p=1

x _qu— L 5 x ]
:exp(Re Z —‘-%)‘éexp(“z ;|explﬂ-’-]"’”_l)=

=1 mexp““"} =1

N= L2
( ((expmxo}—l) +4 exp (uxo) sin? zy) )é

soof(zuntf) s £ i) sonli 510 5)

¢ exp(—kz)
1-
,l]l' (1+exp(—S-))(l+exp(—tk‘s)z})

and

a3

1 1 N
1 S|l —
= ,1:11 s kS {1 —exp(—sxg)(l —exm—fk—S)xo))) - ( (1 —exp (—xo)f

S(cn) Zexp (klog(cn) Sexp (n''*)=exp (d ))

Xp

Therefore,

= | ;!(1.[ (l(ﬂzl " +all dy<
Z:rr! +i::=n EKP;\G +2-—C—0.0(]+nx0 y<

a -~ 203 ~f =? T 3y
= ST PR ) i ]—— - — = ) = 2
‘“p( V- SEvali- 5o "“'), "‘”(4)"‘"’

owing to (10.10) and (10.13).
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Thus we have proved the estimation

3 1 2 N Tk
(10.14) q(n.k]:il-v-o[l)](—)qlnldE(—_.) qtn)
4 "3
for
(10.15) n>c, 3sksals

The assertion of Lemma 8 is trivial for ko=1, 2 owing to 202'\,3)"*> 1. For
3<ky=n'?, the total number of the exceptional unequal partitions is

n' 9 x 2 Tk 2 —ke
<Y gnk<qn ¥ (—_) <:0( _) atn)
k=ko Kmky Ny 3 i 3

and Lemma 8 is completely proved.
11. Now we assert

Lemma 9. The unequal partitions of n{> c) represent all integers k of the interral

N3 =
(111 |:ﬂI s.(l + g)VT\f"Iﬂlogﬂ]

as subsums of four terms at most apart from

-4
(11.2) cqln)n
unequal partitions of n at most.

Proof. For arbitrary positive integers n and k with k=10 and the notations

k k—1
(11.3) I1=[Z}+1. :;=[-—2—]. t=t,—t,+1,

let g,(n, k) denote the number of unequal partitions of n containing only one of s and
k—s at most (as summand) for every integer s of the interval [z,, ;] (i.e.. not having
subsums of the form (k —s)+s with k—s>s>k/4).

Let us observe that the relation

x

I+ ¥ gqyn krexp(—nx)=

n=

(114)

o l4expl—sx)+exp(—(k—six) | *
! 1 —vx)
{}1{1+exp(—sxutl+exp(—{k —s}xnr 1—1 H-expt =l

J ovmi
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holds for x>0. (11.4) yields that

gitn kyexp(—nx) <

Iy —k> =
é{n(l— vl e )}n{l+expt-—\-xi]§

(1+exp(—sx))(1+exp(—(k—s)x) /|

x

= {ﬁ (’ = %exp(—k:d)} [T (1 +exp(—vx)),

s=t, w=1

e,
1
qn, k) = {n (l+exp(—vt]}}exp (nx+rlog(l — -exp(—kx)))
v=1
for x>0.
Choosing
{11.5) X=Xg= K___n""'z

and using (8.4}18.5), we get

gn k)= { [_[ (1 +exp(—w0]]}exp nxg— Ze}q;:(‘ﬁc;u:g))

v=1

TEZ
gcexp( 2% +nxy— lﬁexp[—kxoj)
n — k
=c exp (_..'—'v’”‘ —exp(— k‘fo])
V3
ie.
3 k nk \
1L.6 k)= cqin) -1 - — (— _.,) .
(11.6) giim k) =cqin exp(4 ogn 16exp 2/ )
For
0
(11.7) n>e¢, ntiskgs Y /n,
n
we get
3 1
(11.8) RN k}gaqimexp( logn— -‘-g;n‘ 5){cq{nln
For

3.8 = /1 Y/3
(11.9) n>c, \‘3\.-"'n§k§(l—~ )\ \,nlogn

m
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{11.6) gives the estimation

- 4

3 2.3 L Yo e
g,im, k) < cqln) exp \_Zlogn— Ton exp ‘- 37500 ogn))_

(11.10)

1:’: 2 n! 3°°) <cqinn™%.
7

2

=cq(n) exp G logn—

(11.7(11.10) show that the unequal partitions of n( >c) represent all integers & of
the interval

; 1 3 =
(11.11) = [""5-(1- m)“’?\;n]og n]

b} £

as subsums of the form

(11.12) k=(k—35)+s with k—s>s>k 4
apart from

Y gin ky<cgmn™*

kel,

k integer

unequal partitions of n at most. After dropping these exceptional unequal partitions let

e x,-—xl+.“+xm=n],
L,>1:>...>1,21)

be an arbitrary unequal partition of n( > ¢) from the remaining ones and k an arbitrary
integer with

1 4— _ . :“ .
(11.13) (l—ﬁ)‘—;v’n!ogngkg (l-‘ré)‘“—'\,nlogn,
P \ T

1 3
ky= I:(l— ﬁ)\-'—rg\ nlogn—n' 5], ka=k—k,.

Then we can use the property (11.11+411.12) of [T* owing to k,. k; €,. Thus,

Let

ky

k=2, ~%,., %, >% >—,
1 1 4
ks

k2=123*1,.:, 1“=>:‘:> 1
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ana o

k::_“( (g + E)Tv-ﬂlogn{ —4—-
Therefore,
(11.14) k=2, +2 +a,+a,

is a representation of k by a subsum of IT* owing to
ky
o, >, > 3 >ky>a,>q,.
{11.11)H11.14) prove Lemma 9.

In order to show that the upper value in (11.1) “usually” exceeds the maximal
summand, using the notation (9.1) we assert

Lemma 10. [f 8= B(n) is restricted by

(11.15) Oufe-" " 1
4.3 logn 2
then the inequality
(11.16) 2, (14202 /nlogn
b/

holds with the exception of cq{nn~? IT1*'s at most. In particular, the inequality

(11.17) x,§(1+é)%3v"r_:iogn
holds for all but

(11.18) eqlnyn =110

IT*'s at most.

Proof. In order to estimate the number of the exceptional IT*’s, let

F":“[{1+23}ﬁ Jnlog n} +1.
14

The number of IT*'s with %, =j, F<j<n—11is £q(n—j). Hence, the number of the
exceptional IT*'s is
A=1 n—F
s Y gn-p+i=1+ ¥ 4b.

jmF =1
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Using (9.3) we get

1+ Z gihse+c Z - "exp(

=1 =1

\.__/
I

a-F+1
~

Sc+c J X exp( ‘%Vx)dt<c+c(n—~F+1] ”exp( Sv"'_F"'I

N v
!

Owing to (11.15), we have

n—F+12z

ST -1

Consequently,

c+cen—F+1)7! ‘exp(

;

e b4 e R ——
,_\,n—F+l><Cq(nln”exp{ :._(\(.-'n—\,.-n—F-rl]l
3 3

v J

[{1+2,6’]L:V;Iog n]

=cq{nn' exp < — i,,, = —— <cglnin ",
/3 ity n—F+1

Qed.

12 Continuing the representation by induction. we can see that Lemma 9 and
(11.1711.18) preclude the possibility of an inequality analogous to (7.16) (since now
t+1 would be 1). Another difficulty is, however, caused by the lack of the “small”
integers representable. In order to avoid this difficulty we assert

Lemma 11. Dropping
(12.1) cqgin)exp(—10"3n' 13)

exceptional unequal partitions of n at most, each IT* of n( >c) from the remaining ones
has a summand in the intercal

T 21
(12.2) (-2— s -37]

Jor every integer t restricted by

_ / 3 -
(12.3) IO':\_n§r§(1+%)l—\nlogn,
n

Proof. For arbitrary positive integers n and r with 126, let ¢,(n. ) denote the
number of unequal partitions of n not having summands from the interval (r 2. 27 3].
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Then, the relation
1+ Z. qa(n, T)exp(—nx)=
n=1
fr2] .
= {[-[ (l+exp(—rx_i)} [T (1+exp{—px)

el p= 203741

holds for x>0. (12.4) vields that

x 03]
galn. 1exp(—nx) < { [Ta +exp[—-vxj)} [T (+exp(=p) '

w=1 p=[t2]+1

= 20\ -3+ln2]
- {l_[ (1 +expl~vx))} (1 -l-exp(— ?x))
¥=1
ie.,

g:n. i = {U: (l1+exp(— vxi)} exp (nx — (I:i—r] - BD log (I +exp (— E;- \:))

for x>0
Choosing
n E
(12.5) X=Xy= Fn_l"z
24/3

and using (8.4)18.5), we get

3

2
(12.6) giln ) Sc exp(lzt +nxg— glog(l +exp(— Trto)))
]

7/

Taking into consideration (12.3). the estimation (12.6) gives that, for n>¢,

/ e 5 ‘
qi(n. t)=cexp \—% N %0 v nlog (1 +exp (— o log n))) <
i .

o S 1 A
écexp(__; = —-n"‘“> écqin)cxp(— —a'*¥ .
3 800 )

s

This yields that the number of the exceptional IT*'s is

= Z ga(n, 1) <cg(n)exp(—10"3n'"13).

. IUE
10 2\.N§t§(!.&- i)l‘;_v,,]ogﬂ
\;ml:sgl Q,E
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13. Finally, we assert
Lemma 12 The unequal partitions of n( > c) represent all integers k of the interral

(13.1) [nl's.%n:l

as subsums apart from

(13.2) cginyn~— 110
unequal partitions of n ar most.

Proof. After dropping
Cq"” n- 1.10

exceptional unequal partitions of m{ >¢) at most Lemma 9, Lemma 11 and (11.17) from
Lemma 10 will be applicable. Let

¥ a %+, +2.=n]
T - - |

be an arbitrary unequal partition of n from the remaining ones and k an integer with

(13.3) n'*=k

lIA

We prove by induction that & is representable by a subsum of I7*. This assertion has
been proved for

_ N3 =
nS<k< (1 + E)LV nlogn
_ T

by Lemma 9. We assume that

(13.4) (l+%)3}r— V"’nlognﬁk‘g%n

and that

(13.5) all integersof [n''*, k — 1] are representable
; by subsums of [1*.

Owing to (11.17) and (13.4), we have

m=n.

1
{13.6) 1,{k§5n<31+12+.,.+1

14
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Therefore, we can define an index v by
(13.7) A +xy . e, Shk<aFa+ . FaF AL

This gives that

(138) (T ¥ L R NS e

For
nS< A<k),

{13.5) and (13.8) make it sure that

5
k—2,— ... —a,= Y % <%.y
i=1 i
where
{13.9) v l<iy<is<i. . <dg.
Then,

k=ai+2+ .o Fa, 42 + .+

is a representation of k by a subsum owing to (13.9). The case A =0 is trivial. The only
problematic case we have (o investigate is

{13.10) lsA<n!®.

We have obviously

(13.10 m< 2n

I 1
[ fromn=x~+.  +~2,Zm+. .. +1> ;m: ] (13.4) and [13.7) give that

/

Loy F oo+ Xg=n—{g - +2)Zn—kZ

I =

consequently,

=

it S M, < oy

!
A
i3
1

owing to (13.11). Thus we have

- ! - 5 =
113.12) 1‘,>x,.-|>:— =y n>107° n.
= -
Choosing

{13.13) =%+ 1
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we get

y. 1 i
(13.14) lO"Vn<xv<r<al+n‘-’<(!+H)\‘ nlogn

?IV

for n>c from (13.12), (13.10) and (11.17). (13.14) shows that (12.3) is satisfied with
the choice (13.13). Applying Lemma 11, we get an index u with

(13.15)

Then.

2x, 1 ) 1 — )
<3 +n"’=a,-(31,-—n' 5)-(:!.,—(6 .,;\,-'n—nl's)qx‘,

for n>c owing to (13.15), (13.10) and (13.12). Consequently,

(13.16) vy,
Let
(13.17) M=1—1,.
Then we get
{13.18) k=ay+a,+... .+, +2,+4,

from (13.8), 113.13) and (13.17). Further,

S . e
(13.19) ;1,=r—x,,<2:#—:x“=zp<:1§(lag)l;v'n]ogn
and
d,=1 x>lr> ; n>n's
=T 300 Y

for n>c from (13.17), (13.15), (11.17) and (13.14). Now, we can apply Lemma 9 for 1,.
This yields that

(13.20) A=Y 2,
i=1

with

(13.21) U<r <ra<...<r,

owing to {13.19). Consequently,
k= +ay+. .. +2,_ ta,+2 + .+,

14*
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is a representation of k by a subsum owing to (13.18), (13.20), (13.16) and {13.21). This
settles the case (13.10) and Lemma 12 1s completely proved.
Now. Lemma 8 and Lemma 12 prove Theorem II for koSk= 3 and for

R

1
§n<k Z=n—ky too by means of the complementary subsams.
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On sums and products of integers

by
P. ERDOS and E. SZEMEREDI (Budapest)

Let 1<a,<...<a, be a sequence of integers Consider the integers of the form
(1) a;+a;, aa;, 1SiZjsn.

It is tempting to conjecture that for every ¢ > 0 there is an n, so that for every n >n,
there are more than n? ~* distinct integers of the form (1). We are very far from being
able to prove this. but we prove the following weaker

Theorem 1. Denote by f(n) the largest integer so that for every {a,, a,. .. ..a,) there
are at least f(n) distinet integers of the form (1). Then

(2) n'*a<f(ny<n®exp(—c,lognloglogn).

We expect that the upper bound in (2) may be close to the “truth™.
More generally we conjecture that for every k and n > ny(k) there are more than e

distinct integers of the form

3

At the moment we do not see how to attack this plausible conjecture.

Denote now by gin) the largest integer so that for every |a,, . ...d,, there are at least
g{n) distinct integers of the form
L]

(3) S ea;, []af (e,=0o0r1)
i=1

We conjecture that for n > nglk), gin)>n*. Unfortunately we have not been able to
prove this and perhaps we overlook a simple idea. We prove




