
on some of my conjectures in number theory and combinatorics

P . Erdős

During my very long life I have made many conjectures in
these subjects and have written several papers with similar
titles . To avoid repetition as much as possible I will mainly
mention problems where significant progress has been made in
the last year . I start with an old conjecture of mine on the
divisors of numbers .

1 .Denote by T(n) the number of divisors of n .

1 = d 1 < d 2 < . . . <dT (n) = n

i

n . I conjectured about 45 years ago that for almost all n

(i .e .,for all n, neglecting a sequence of density 1) ) we

have

(1)

	

min di+1/d
i

My first idea was to attack (1) as follows : Let m •e

primitive with respect to the property (1) i£ m satisfies

(1) but no proper divisor of m satisfies it . Let u I <u 2 < . .

be the sequence of primitive numbers . Clearly the integer^

satisfying (1) are the multiples of the u's . Thus to prove my

conjecture it would only be necessary to prove that the set of

multiples of the u's has a density and that this density is 1 .

This method was successful for the primitive abundant numbers,

but the sum of the reciprocals of the primitive abundant

numbers converges and the density of the abundant numbers

is <1 [1j . Here I could pro - .r e that L L - - and that the den-u .

city of the integers satisfying (1) exists [2) . R . R. HaLl and
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I conjectured [3] that for every e>0 and almost all

(2)

We proved that (2) (if true) is best possible ; i .e ., it fails if

in (2) -e

fying u<d<au .

d +11min

	

< 1 +

	

1di

	

(log
n) log3-1

.-E

is replaced by +e .

Hall, Tenenbaum and I proved several theorems on the

"propinquity of divisors", but (1) seemed elusive [4] .

In a recent paper which will soon appear in Inventiones

Mathematicae, Meier and Tenenbaum finally proved (1) ; in fact

they proved that for almost all n

(3)

	

min di+1

	

< 1 + flog n) 1 -log 3 exp(~(n) ~'i.ugl_og n)

where ~(n) - - as slowly as we please . (3) is a strengthening

of our conjecture (2) and in fact is fairly close

possible, since Hall and I proved that ~(n) can not tend

to -- as fast as -c (loglogloglog n) 1/2 [3] .

Hooley considered a related problem •[ 5] . Put

Aa (n) = sup card id : din u<d<aul
u

In other words Aa (n) is the largest integer for which :here

is an integer u so that n has Da (n) divisors

	

d sati

Hooley and later Tenenbaum, Hall and I obtained various

upper and lower bounds for Ga (n) and for the sum function
x
E Aa (n) ['1] . In a letter,Meier states very much stronger re-

n=t
sults

	

have been proved previously . Meier proved that for

4
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almost all n, ACX (n) behaves like a power of log.log n

I hope Meier will soon publish detailed proofs .

Hall and I (8) and others investigated

f(n) = max ~ u(d)
x din

d<x

Meier proved that for almost all n, f(n) behaves like rower

of loglog n .

Put

T(n) (di+,

	

l2
h(n) _ E

	

- 11
i=1 ( d i

	

1
here T(n) 3ei_níes t! :e numKF. r

	

J,iv ;, , of

I conjectured that there is an absolute constant c so that

for infinitely many n

(3)

	

h(n) < c

n .

This conjecture was proved by Vose, his paper will appear very

soon in the Journal of Number. Theory . I further conjectured

that (3) holds if n=k1 or if n is the product of conse,cut-lie

primes . This conjecture was proved by Tenenbaum .

I observed that (3) implies T(n) > clog n) 2 i .e . if

T(n) = o(log n) 2 then h(n)- - . Is this best possible? Vose

proved that (3) can hold if T(n) is comparatively small ; i .e .,

(3) can hold if T(n) < (log n) c but it is not clear if c can

be chosen to be arbitrarily close to 2 . Perhaps if T(nh )<

< C(log nh ) 2 then

	

h(n) - • -

I observed that every u<nl is the sum of at most n dis-

tinct divisors of nl . I conjectured that n can be replaced
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by (log n) c . This,i£ true,is easily seen to be best possible .

More generally denote by F(n) the smallest integer if it

exists for which every integer u<n is the sum of at most F(n)

distinct divisors of n . Srinivasan called these numbers prac-

tical numbers,and I proved that the density of practical numbers

is 0 . It is easy to see that F(n) > c loglog n . I conjec-

tured that for infinitely many n

(4)

	

F(n) < (loglog n) c .

It would be of some interest to decide about (4) and to

decide whether

(5) F(n)/
(loglog n)

I was led to these problems by the study of "E :;yptian

fractions" . As in C71, let

í
xk ,

	

0<a<b , 1<x 1 < . . . <h k .

Denote by G(a,b) the smallest value of k . An old conjecture

of Straus and myself states G(4,b) <- 3 . In memory of St~aus

I offer a reward of 500 dolllars for a proof or disproof of this

conjecture .

Schinzel and Sierpinski conjectured that for every

	

.here

is a bo (a) so that for every b > b o (a), G (a,b) = 3 . Put

max G (a,b) = G (b)
15a<-b

I proved G (b) < c log brloglog b 17,1, and (4)

6
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G(b) < (loglog b) c . Vose proved F(b) < (log n) c for every

E>0 which implies G(n) < (log n) E for every E>0 .

2 . Let 1=d1<d2< . . .<d T(n)=n be the consecutive divisors

of n . Montgomery conjectured at

that the density of integers for

for c • T(n) values of i is

this conjecture

the Durham meeting in 1979

which

positive

di+1/dd

	

i
is an integer

I was convinced that

is incorrect but Montgomery was right ; in fact,

Tenenbaum and I proved Montgomery's conjecture [4] .

Some more perhaps difficult and fruitful questions can be

asked here . It is easy to see that if di+1

	

is an integer
/d i

A prime number pfn is "bad"then it must be a prime number .

if it cannot be written in the form di+1/d . How many bad
i

n ? How often can the same primeprimes are there for almost all

pjn be written in the form dí+1

	

?

Also a prime pIn could be called "bad" if it does not

divide didi+1 where di <di+1 <2di , (di ,di+1 )=1 . Perhaps almost

all n have many bad prime factors, this may very well follow by

the method of Meier-Tenenbaum . I asked : denote by f(n) the

maximum number of pairs (didi+1 )=1 , d1<di+1<2di where every

prime factor p of n can occur in only one didi+l' Tenenbaum

informs me that for almost all n, f(n) is of the order of

magnitude logloglog r. . This also follows from Meier-Tenenbaum .

What can one say about the distribution function of

max di+1/

	

? It is not hard to see that log di+1/d • has a
d .

	

1i

7
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continuous distribution function . This is probably contained in

the old results of Tenenbaum . I do not see how to solve the same

problem for the largest p which is of the form di+1 d .i
Put

r(n) _

	

Y

	

di/di(di ai+1 )=,

	

+1

I conjectured that for almost all n, r(n) -> - . This follows

from the results of Meier and Tenenbaum . It would be of
x

to estimate

	

E r(n) and max r(n) = R(x) .
n=1

	

n<x

Denote

Hall,

f (n) _

	

1
(di` dí+1 )-1

Tenenbaum and I proved that [9]

x
(7)

	

~ f(n) > c x loglog x
n=1

but we could never prove that (7) holds for every c . Tenenbaum

and I proved that for infinitely many n

(8)

	

f(n) > expCc log n
/ (loglog n)

~ .2

We do not know the exact order of magnitude of

(8) is best possible, but we can not even prove that for

c < log 2 and n >n 0 (c)

f (n) < exp(c log n/loglog n) -

our proof of (8) will be published soon .

8
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3 . In a paper with Graham, Ruzsa and Szemerédi (12] we

conjectured that for n>4 ( 2ri) is never squarefree, and I

later conjectured that if n > n 0 (a) , then there is always

an odd prime p for which pa ;i(nn ) A . Sárközy proved our

conjecture for n > n 0 in a paper which will soon appear

in the Journal of Number Theory .

References

1 . P . Erdős, On the density of some sequences of integers,
Bull . Amer . Math . Soc . 54 (1948), 685-692 .

2 . P . Erdős, Un the density of abundant numbers, J . London
Math . Soc .

3 . P . Erdős and R . R . Hall, The propinquity of diviscrs,
London Math . Soc . 11 (1979), 309-307 .

4 . P . Erdős and G . Tenenbaum, Sur la structure de la suite des
diviseurs d'un entier, Ann . Inst . Fourier 31 (1981), 17-37
and Sur les diviseurs consécutifs d'un entier, Bull . Soc .
Math . de France, 111 falc . 2 (1983), to appear .

5 . C . Hooley, On a new technique and its applications to the
theory of numbers, Proc . London Math . Soc . (3) 38 (1979),
115-151 .

6 . R . R . Hall and G . Tenenbaum, On the average and normal order:,

of Hooley's o function, J . London Math . Soc . (2) 25 lí982,',
392-405 .

7 . P . Erdős, On the equation x-+ . . .x = b Mat . Lapok
1

	

k
1 (1950), 192-210, (in Hungarian), see also M . 11 . Bleicher

P . Erdős, Denominators of Egyptian fractions, J . Numbc-
Theory 8 (1975), 157-168 .

8 . P . Erdős and R. R . Hall, On the M6bius unction, J . refine

angew . Math . 315 (1980), 121-126 .

9

and



II

Now I discuss some problems in combinatorics . First I dis-

cuss the so called jumping constant conjecture .

1 . First of all I define the density of a sequence of r -

graphs . Let Gr(ni ;ei ) , i=1,2, . . ., ni

	

~, be a sequence of

r -graphs of ni vertices and ei edges . The density of this

sequence is a , 0<a<1 , i£ a is the largest real number for

which there is a subgraph G( r) (mi ; ei) of Gr(n i ; e i ) for

which mmi
} and lim e'i/ /mi`

l J
r

Slightly imprecisely we card say that the density of G (r)(n,e)

is a if n is large and a is

which G (r) (n ;e) has a subgraph

= a .

the largest real number for

G (r) (m ;e') with m large

,

and e' _ (1+0(1)) a (r) ,
An old theorem of Stone, Simonovits and myself (1) states

that for r=2 the only possible values of the density are 0

1 and 1-t

	

1<t<- ,

For r>2 I proved (2) that if the density is positive then it

is at least rr . In fact, I showed that if n>n0 (t e)

	

every

G (r) (n ; e nr ) contains r disjoint sets,{A i }, with JAi j = t and

all the tr r-tuples which meet each A i in exactly one point .
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The original jumping constant conjecture stated that there

is a constant cr so that if a sequence of r -graphs has den-

sity > rs + e then in fact its density is 2 rr + cr . This
r

	

r

attractive conjecture is still open . Then I went on to conjecture

that for every r the set of possible densities forms a well

ordered set . This conjecture was disproved a few weeks ago for

every r>2 by P . Frankl and V . Rödl . They did not at the moment

of this writing settle my original "jumping constant conjecture"

apd also did not determine the possible values of the densities

for r>2 .

I hope Frankl and Rödl will publish their result soon .

Let me explain to the (I hope) interested reader why I par-

tially reneged on a promise of mine . I stated in a previous

paper that I offer 1000 dollars for a proof or disproof of the

conjecture that the set of possible values of the densities is

well ordered . I was sure that the conjecture is true . Now that

the conjecture has been disproved the problem of the densities

is far from being completely settled . I repeat my offer of 1000

dollars for the complete clearing up of the problem : What are

the possible values of the densities of a sequence of r -graphs?

I offer 500 dollars for the original jumping constant conjecture .

I was so sure that the densities form a well ordered sequence

that I stated my offer carelessly . I should have said 1000 dollars

for determining the possible values of the densities .

Thus I only paid 500 dollars to Frankl and Rödl for their

beautiful result . I of course realize that if these offers were

legal documents I would be obligated to pay the full offer .
W. Brown, M. Simonovits and I have several papers where we study the possible
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values of the densities of digraphs and multigraphs (most of our results are not

yet published, but many unsolved problems remain which I do not discuss here) .

The problem of the possible values of the density can be

asked not only for the subgraphs of K(n) or more generally

for the subgraphs of K (r) (n) ; e .g .,it is easy to prove that for

the subgraphs of K(n,n), the only possible values of the density

are 0 and 1 . Denote by Kr(nl, . . .,n?_ )

	

(n,

	

-) the r -

graph whose vertices are disjoint sets lAi l=ni , 1<i_Z

	

and

whose edges are the r -tuples which have at most one vertex in

each Ai .

It is not hard to prove that there are only a finite number

of possible values for the densities

Kr (nl, . . .,nZ) and it would be easy

Perhaps the following problem is not

G (3) (n ;n) the three-graph whose1,2
JAj=jB!=n and whose edges are the

me .

vertices

of the subgraphs of

to determine all these values .

quite easy : Denote by

are the disjoint sets

n (2) triples which contain

one vertex from A and two vertices from B . What are the pos-

sible values of the densities of the subgraphs of G (3) (n ;n)?1,2
If I live I hope to return to these problems, but I hope that one

of the interested readers (if any) will clear matters up before

2 . At the Poznan meeting on random graphs (1983 Aug . 25-27)

Nesetril and I conjectured that for every e>0 there is a

G(n ;e) which contains no K(4) but every subgraph of it which

has more than (2+e)e edges contains a K(3) . This conjecture

was proved a few weeks ago by Frankl and Rödl using probabilistic
3

methods . Their graph has

	

n -E edges and we believe that

our conjecture fails if we also assume that e > c n2 .
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Many further problems and generalizations are possible, I

hope to discuss them (if I live) next year .

Observe that it is well known and easy to

graph of a edges contains a bipartite subgraph of more than
2 + c e1/2 edges . This explains the constant 2 in the problem .

3 . Bollobás, Simonovits, Szemerédi and I proved a few years

ago the following theorem [3] . For every c>0 there is an

Z(c) so that if G(n) does not contain an odd circuit c 2r+1 '

1Sr<k(c) then G(n) can be made bipartite by the omission of

Scn2 edges . We conjectured the following extension for r -

chromatic graphs : For every c>0 there is an Z and a set of

r -chromatic graphs G 1 , G2 , . . ., G,,, so that if G(n) does not

contain any of the graphs G 1 , . . .,Gt , then G(n) can be made

r-1 chromatic by omitting at most c n2 edges . This conjecture

was recently proved by Rödl .

Simonovits and I proved a few months ago that if H is

any graph of m vertices and G(n), n>n 0 (m ;t), is a graph for

which if we omit from it En 2 arbitrary edges the remaining

graph will always contain H as a subgraph,then the vertex set

of G contains m disjoint sets lAi j=t , 1Si-<m, so that if

Ai is joined to Aj in H, then in G(n) every vertex of Ai

is joined to every vertex of Aj

4 . Here is an old conjecture of Hanani

Let E be a set of n elements and Q<k<n be given

positive integers . M(k,2,n) is a minimal system of k -tuples

so that every t -tuple is contained in at least one k tuple

13
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of our system . Denote by M(k,t,n) the number of k -tuples in

our system . Hanani and I conjectured

-1
M(k,£,n) _ (1+0 (1)) (~) (,)

	

,

This conjecture was recently proved by (guess who) Rödl .

The exact determination of M(k,t,n) is a very beautiful

and difficult problem, unfortunately I have no contribution to

make to this question . The most striking question is : For which

values of n does

-1
I1)

	

M(k,t,n) _ ( t) T
hold? Hanani and Wilson made perhaps the most important progress

here [5] .

5 . Let H be a graph . Denote by f(n;H) the smallest

integer for which every graph G(n ; f(n;H)) contains H as a

subgraph ( G(n;e) denotes a graph of n vertices and a edges)
Recently an excellent book appeared on these extremal problems
by B . Bollobás (ExtremalGraphTheory, London Math . Soc .
'Monographs No . 17. Academic Press 1978) . Here we deal with a
special problem . Let H=C 4 i .e . a circuit of 4 vertices .

Brown, Rényi, V . T . Sós and I proved [6]

f (n ;C 4 ) (2 + o(1)) n 3/2

We further showed that if p is a power of a prime then

f(p2+p+1, C4)

	

2 p(P+1) 2 .

We conjectured that there is equality here and this conjecture

was recently proved by Z . Füredi [7] if

a few months aqo he proved our general conjecture .

There may not be a simple formula for f(n ; C4 ) . I once conjectured

14
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(1)

	

f (n ; C4 ) = 2
n3/2 +

4 + o (n)

We are very far from being able to prove (1) .

Kövári, V . T . Sós and P . Turán [8] and independently I

proved that (K(r,r) denotes the complete bipartite graph of r

black and r white vertices)
2- 1

f (n ; K(r,r)) < cr n r

Weall conjectured that this result is best possible apart from

the value of the constant cr . Brown [6] proved this for r=3 .

The general case is still open, but a few months ago P . Frankl
1

achieved a breakthrough; he proved, .f(n ;K(r ;2r)) < ó n 2 r .

6 . Gallai and I conjectured that the edges of every G(n)

can be covered by at most n-1 circuits and edges of G(n) .

We also conjectured that there is an absolute constant c so

that the edges can be covered by at most c n edge disjoint

circuits and edges of G(n) . An example of G(n) shows that

c >: 2 . Our first conjecture was proved a few months ago by

L.Pyber, using a result of Lovász [9] . The second conjecture

remains open and perhaps will need new ideas .

7 . V . T . Sós and I [101 investigated the following question

which V . T . Sós called Ramsey-Turán type theorems : Let Hr be

an r -uniform hypergraph . Let g = g(n ; Hr ) be the smallest

integer so that any r -uniform hypergraph on n vertices and

more than g edges contains a subgraph isomorphic to H r . Let e

= f(n ; Hr, En) denote the smallest integer such that every

r-uniform hypergraph on n vertices with more than a edges and

with no independent set of en vertices contains a subgraph

isomorphic to H r .
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then
We show that if r>2 and Hr is e .g . a complete graph

(2)

	

lim lim
e—O n-.-

while for some H (r)

-1

	

-1(r)

	

f (n; H r , en) = "m (r)

	

g (n ; H (r) )

with g(n ;Hr ) > c(r) for all n

-1
(3)

	

lim lim

	

(r)

	

f(n ; Hr , en) = 0 .
e-0 n--

This is in strong contrast with the situation in case r=2 [11] .

We could not find a graph Hr for which the limits in (2) are

different but the limit in (3) is not 0 . Rödl found such an

Hr for every r>2 . In [101 many other open problems are stated,

several of which were solved in the mean time by us and others,

e .g .,problems 4, 5 and 6 p . 299, but these results are not yet

in their final form and I postpone their discussion .
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Finally I discuss a geometric problem . I have many unsolved

geometric problems,and in the last few years significant progress

has been made by Beck, F . Chung, Spencer, Trotter and others .

I have written about this already, and here I only want to

discuss a problem of mine which was partially solved by G.ELEKES .

I conjectured (Some problems on elementary geometry,

Australian Math . Soc . Gazette 2 (9975), 2-3) that if f(n) is

the largest integer for which there are n points in the plane

so that there are f(n) distinct circles of radius 1 which pass

through at least three of the xi , then

f (n)

	

f (n) , 0
n

	

n2

Elekes gave a very nice proof of f(n) > c n 3/2 which proves

the first inequality . Here is his simple but ingenious proof :

Let z 1 , z2 , . . ., z n be n unit vectors all starting from the
n

origin . Assume that all the sums

	

e i zi

	

e i = 0 or 1 , are
i=1

distinct . The (2) points zi +z j clearly determine at least

(3) distinct unit circles of radius 1 at center z i+zj+zk .

At the moment we have no non-trivial upper bound for f(n)
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To end the paper,I just state a somewhat unconventional

problem in number theory which occurred to me recently . Put

f (n) _

Are there any integers n with f(n)=n ? Is the number of

solutions infinite?

Define n to be good if it can be written in the form

n =
p n

pa<n

p~n
pa<ncpa+l

a
p

pa

e .g . 30 and 42 are good integers 30=5 2+2+3, 42=2 5+3+7 . Are

there infinitely many good integers? Is the density of good

integers 0 ? I am sure that the answer to the second question is

affirmative .

Define n to be "not bad" if it can be written in the form

n = E ai where ai < n , (ai ,aj ) = 1

and all prime factors of the a 's divide n , e .g . 210 is not

bad, 210 =(5 2 .7)+2 3 +3 3 , but by trial and error it is easy to

see that 210 is not good .

Are there infinitely many integers which are not bad?

Is their density 0 ? Are there infinitely many integers which

are not bad and not good? What happens to n! or 2,3, . . . 2pk
My paper on these and related problems will appear in the

jubilee issue of the Calcutta Math . Soc .
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