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1 . Let G(n) denote an undirected graph, with n vertices and V(G) denote

the vertex set, E(G) denote the edge set . Let e(G) denote the number of

edges of G . It wí11 be assumed that G(n) has no loops or multiple

edges . A graph G(n) is chordal (triangulated, rigid circuit) if every

cycle of length > 3 has a chord : namely an edge joining two nonconsecu-

tive vertices on the cycle .

The class of chordal graph include trees, k-trees, complete graphs

and interval graphs . Chordal graphs have application in facility loca-

tion [2], scheduling problems [8], and in the solution of sparse systems

of linear equation 110] . Such graphs are also known to be perfect .

Certain problems that are known to be NP-hard for general graphs can be

solved in polynomial time for chordal graphs [6] . As a result, chordal

graphs have been studied by many, e .g . [1], (5] .

If a graph is not chordal, the following questions are quite appro-

priate to ask :

1) What is the minimal set of new edges to be added to the graph to

make it chordal?

2) What is the minimal set of edges to be deleted from the graph such

that the resulting graph is a maximum chordal subgraph?

Rose, Tarjan and Lueker have answered 1) algorithmically [9] . In

answer to 2) recently Dearing, Shier, and Warner [3] have developed a

polynomial algorithm to generate a maximal chordal subgraph . It may be

pointed out that their algorithm does not generate a maximum chordal

subgraph .

In answer to 1) Erdos [4] showed that for some positive e > 0

t

f(n) > z
2

- n2-c
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Perhaps the method will give that for every e > U

f(n) > p2 - n3/2+e
2

There is no non-trivial upper bound for f(n) and not even

n
2

f(n) < Z - en .

seems to be known, where f(n) is the smallest integer so that for every

graph with n vertices one can add <_ f(n) new edges so that the resulting

graph would be chordal .

This note determines asymptotically the minimum number of edges to

be deleted from the graph such that the resulting graph is a maximum

chordal subgraph .

2 . Denote by f(n) the smallest integer such that every graph G(n) with

n vertices can be made chordal be deleting <- f(n) edges of G(n) .

2
Theorem 1 . f(n) <- 2 - ( 1+o(l»V2 n 31 ~, where o(1) ' o as n

Proof : Let T(n,t) be the Turan graph [111, i .e . a complete t-partite

graph with n vertices with approximately n vertices in each color
t

class . Let v l , y 2 , . . , v t denote the color classes . The number of

edges of T(n,t)

e(T,(n,t))

n
CZ) - t

2

Z
2

(1 - 1)

Let G 1 be a spanning chordal subgraph of T(n,t) having maximum number of

edges . Clearly G 1 cannot contain any cycle whose vertices are in t o

different color classes . Thus, the induced subgraph of any two color

classes of G1 must be a tree . Hence,
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Let H be a spanning subgraph of T(n,t) descríbrd as 1)elow :

Consider
kt : {x 1' x 2' . . ' x t ),

xí e l' í ,

	

n .

	

join each

xx to all vertices of V ., i 4 j, j=1, 2, . . ,

Clearly H is chordal being a split graph 17) . Also e(H) - ( Z)(2 - 1) .

Thus by (2) H is a spanning chordal subgraph of T(n,t) of maximum size .

The number of edges to be deleted from T(n,t) to obtain H is

Theorem 2 .

for every e > 0 if n > n0 (e) .

2
Proof : We can assume that G(n) has at least 2 - (1 - e)d_^ n3/2 edges .

Suppose G(n) has (2) - e l edges and that the largest chordal subgraph of

G(n) has e 2 edges . It suffices to prove

2
2 (1-t) - (2)(tn

	

1)

2

	

2n

	

n
2 2t _

nt+n+

2
Now take t = 2. Then (3) becomes 2 - ( 1+o(1))V2 n~~` where o(1) - 0 as

n ~ - . Thus,

2
f(n) , 2 - ( l+o(1)i

	

n
3/2

2

	

/2
f(n) < 2 - (1 - e)

	

n 3

t2

	

t
2

	

2

e

	

3/2(1 - e)

	

n

	

(4)

Let rj > 0 be small, much smaller than e . he construct a subgraph G(m)

consisting of m vertices each of which has degree > n(1-q) . The con

structíon is as follows : delete from G(n) a vertex x l (if any) of

degree 5 n(1-n) and continue this process as long as possible . Suppose

after k such steps we obtain G(m) = G(x l`+1 , xK+ , . . , x n ) each vertex

of which has degree > n(1-n) . Claim

k c C

	

(5)
t .n
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s.,here CE n depends on E and n and not on n . To prove the claim observe

that if k = [C

	

Jn]

e(G(n)) < ( m) + kn(l

•

	

(n-k)2
+ kn(1 - f)

•

	

n2 + k2
2

	

2 - rlkn

3/22•

	

(2 - 2n

if CE
n

is sufficiently large . Thus by (4) we have nothing to prove,

Consider G(m) . Assume that t is the largest positive integer such

that G(m) contains a K t . Then by Turan's theorem G(m) has at most

2M (1 - t) edges

Let Kt =
(y l , y 2' " ' yt) . Now degG(m)yi > n(1-n), for each i, i=1, 2,

. . , t . Adjoin all the edges joining to each y
i
to vertices outside of

Kt . This produces a chordal subgraph with at least

•

	

t(n(l-n) - (t-1)) edges

•

	

tn(1-n) - (8)

Now if t = [4vn], then (8) becomes

411
3/2 (l-n) - 16n

	

which is

3/2
•

	

2n

/Thus, wewe get a chordal subgraph k,hose number of edges > 2n

	

(9)

This proves (4) . Thus

t < 4tin

	

'1Q1
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Now from (7) and (8)

(n-k)
•

	

2t + tn(1-n) - 16n

2

	

2

•

	

2t t + 2t + tn(1-q) 16n

2

	

C

	

n3/2

•

	

2t
	 e,n	

+ tn(1-n) - 16n

•

	

(1-E),/-2
n3/2

2
since to + nt is minimum if t = 2n and other terms can be absorbed into

en
3/2

Thus combining theorems 1 and 2 we can state

2
Theorem 3 . f(n) = 2 - (1 + 0(1))n n3/2 .

Perhaps the following problem is of some interest and deserves some

study . Let f(n ;t) be the smallest integer for which every G(n ;f(n ;t))

contains a chordal subgraph of t edges . At the moment we only know that

2
f(n,n) _ [4] + 1

	

(11)

We do not give the details of the proof of (11) but only indicate some

of the necessary steps . We hope to return to this problem in the

future .
n

	

n+1
Observe that the complete bipartite graph of 2 white and 2 black

2
vertices immediately shot: that f(n,n) ? 4 . To prove the upper 2 bound in

n
(11) we only remark that this immediately follows if our G(n,[, ]+1) is

assumed to be connected . For then by Turan's theorem our graph contains

a triangle and by a simple argument this triangle can be extended to a

chordal graph of n edges . If the graph is not connected somewhat more
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el

+
e2

> m2t

	

tn(1-n)

	

t 2

2
> 2t

	

tn(1-n)

	

16n



complicated methods are needed, which as we stated we hope to discuss at

another occasion . Just one more remark . It is well known that every
z

graph of G(n ;[4]+1) contains an edge (x,,x2 ) and on further vertices x i

joined to both xl and x2 . This implies in fact that f(n,n(l + t)) _

[4 ] + 1 for sufficiently small E > 0 .
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