ON ALMOST DIVISIBILITY PROPERTIES
OF SEQUENCES OF INTEGERS. I

P. ERDOS (Budapest), member of the Academy and A. SARKOZY (Budapest)

1. Throughout this paper we put e***=e(a). We write {x}=0—[«] and || =
=min ({}, | —{z}) (i.e., |l2] denotes the distance from « to the nearest integer).
¢, €. Csy ... denote positive absolute constants.

We may say that the positive real number b is almost divisible by the positive

real number a il

a

e

!'] | 2. " e
—' is “small”. More exactly, we may say that if £=0,
a

then b is e-divisible by a and a is an e-divisor of b: in this case, we write a|.b.
The aim of this series is to study the e-divisibility properties of sequences of inte-
gers. In particular, in this paper we study the e-divisibility by consecutive integers.
2. In Section 3. we show that if' 7 is not much greater than n, then there exists an
integer j such that
(1) |l =j=mn

and (n+/),¢. In fact, Theorem 2 in Section 3 contains this assertion in a sharper
form, namely the interval (1) is replaced there by a smaller interval of the form
2) | =j= Pnt)
(where P(n. 1) is much less than ).

Theorem 2 will be derived from Theorem | below: this section is devoted to the
proof of Theorem 1.

THeOREM |. There exists a positive absolute constant ¢, such that the following
assertion holds:

Let e=0,n a positive integer satisfying n=ny(c), t a real number such that

e (log n)"’“]
3) n-=1= exp[log logn )

Let us write

P log’]—3 i o= 108 .
logn log n
@ =10 log ¢ logr
[ log n 2] i Togn ok
o . togt
[#=5] 92 logn
(5 £ N I -
[[ 1 ] ] ¥ log n =
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. logt ; ;  [— e
(note that for l::é — =, le, (=0, we hm.-e?n--‘”‘*-’-\:Pan""““’ by (32) and
(33))and
(6) Nz, p) = _/S 1 (for 0=a=f=1).

1=j=P
.{HJ-J} - it
Then we hare
(7) IN(a. BY—(B—o)P| =eP for O=a=f=1.

Proor or THEOREM 1. The proof will be based mostly on Vinogradov’s ideas:
see [3] and [4]. We need three lemmas.

Lemma 1. Let «, i, A be real numbers satisfying
(8) 0=4<1/2, A=f—-a=1-4.

Then there exists a periodic function \y(x), with period 1, satisfying

“(i) ¥ (x)=1 in the interval a+%d§x§ﬁ-——;ﬂd,
(ii) Y (x)=0 in the interval ﬂ+—;—d5x§l+a—%d,
(iii) 0=y (x)=1 in the remainder of the interval a—% A‘é.\‘él-}-m—é- A,

(iv) W (x) has an expansion in Fourier series of the form

tea
iy (x) = (f—a)+ > (a,cos 2nmx+ b, sin 2nmx)
m=1

where

|an| =2(B—0), |bn| =2(B-
3

lam| < b < emid

m*m*4”’
This lemma is identical with the special case »r=1 of Lemma 12 in [4], p. 32.

LEMMA 2. Let r, M, M’ be positive integers, u, w real numbers such that

9) =
(10) 0=w=1,
r+3
(11 M?2 =yu=M*?
and

(12) M = M= 2M.
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Then we have

—1/ar-1_q/ar-1 ar-1
‘L’QM" 1/2 1/2 :r+|)utfz" tr+lr10g”

-

(13)

.‘i: [ ; ]
> e
wem \ni+w

where ¢, is an absolute constant (independent of r. M, M’, u, w).

This lemma can be proved by using Weyl’s method and it is identical with Theo-
rem | in [5], p. 22.

LeMMA 3. There exists an absolute constant ¢, such that if k, P are positive inte-
gers, O iy an integer, o, 8y, ..., %, are real numbers,

and
(15) 0=2(k+1Pla| =1,

then writing
f(x) = axk o X+ oy x o,
we have

(16) Qé; e(f(m)

= Zezsklagu Pl-lfekilagklogP+2Ea|—1;k.

This lemma can be derived from an estimate of Hua (see [1]), and it is identical
with Theorem 4.2 in [2], p. 286.
Now we are going to show that the assertion of Theorem 1 holds with

¢, = max [cs-l-—;-, 20]

(where ¢, is defined in Lemma 3).
In order to prove (7), we may assume that e<1 and let n, g be arbitrary real
numbers satisfying 0=n<g¢=1 and

E e .__i
(17 i o—n =1 7
Then writing

£ & _&
(IS} fl-"?‘E: ﬁ_g_'_'i"é_! A"'Ss

we have oa{s:‘;—JE and

& = . - s P i_ _,_i: o ..'l._i_:-:-".-
<=0 =P-u [Q+16] [r: 16] (e—m+5 =
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so that (8) holds and thus Lemma 1 can be applied with the numbers =, f5, 4 defined
by (18). We obtain that there exists a periodic function F(x) with period 1, satisfying

(19) F(xy=1for n=x=y,

(20) F(x) =0 for Q-I- g =x= I+11—?

(21) 0= Fx)=1 for all x,

and such that it has an expansion in Fourier series of the form
22) F(x) = [o—u +§]+mL{ (a,,cos 2rmx+b,, sin 2rmx) =

= (.Q—l}-i-{—(;]—i— Z' Re(a,, —ib,)e(inx) = ( —:;J— + Z Red,e(mx)
Q m=1

where
-

23) ] =2 — byl =Clalt+ B = X2 < L

am m
(24) ]dm] m ibmi = (|am|2+}bm|2)l£2 = zl'fi(ﬁ_
and

. sl 2)2 16y2 1 3
2 = 2 j2y1/2 — i
("‘ ‘) |d!r.l| | m tb | (|ﬂm| +Ibn!| J :EQHIQA Tf? 8”12 8”12 .
Let

Mmy= [—48 ] +1
o 5 .
P

Then by (19), (21), (22), (23) and (25). we have

(26) Ven= 3 1= 3 Fl-=))=

=j= n-+j
[}

1
!]"'é{n_'—j}—:g
P t P e 4o [ t
= Fl——— = ) — —_— 5 —_— =
Z’: [H—H] ;:[0 I}]r+8+Zle‘:d""e mn+j]]

j=

i1

[Q ’?+8]P+ZR€[H' Ze[m +J]] P m 4;:'“Jrlva:af,,,.e'[ir;u

)
n+j

mt
=(o-n+g) Pt B il | Ze(2)+ 3 T il =
=1 ”‘I‘} J=1m=my+1
1]k mt Te
[Q Nty ]P+ 21 m JZ: [n+']+P.,,=mo+1 em?

<(e-rtg)re Z

g’;[mr’]‘ —j—f’ g: 1

m=mg+1 (m = l)m -
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[Q 'H_ +Zlm ,‘—Ziue[ur:—rj] +%ng: [ml—l Hﬁ] -
-(errg) e E | 2ol -
=(e-nrg)er 2 2 e[|+ 2 P e -

(e e) e 2 2o o)
Now we are going to show that
@ Zwlze ) ~%r

We have to distinguish two cases.

Case 1. Assume first that < ¢, (i.e., t=n1). In this case, we are going to

log ¢
logn
apply Lemma 2 with k, n,n+P—1, mt and 1 in place of r, M M’, u and w respecti-
vely. In fact, for large #, (9), (10) and (12) hold trivially. (Note that k=0 follows

from (3).) Furthermore, we have
logt 1((, los? _ i
: 2[[. e 3)+3] - (k+3)

u=mt=tr=nle" =p
and for large n,

logt 1 logt 3 3
. 49 Iog" 49 ?(21 gn —3)+7 49 k+o ke
H:f?lfgf?ltlf{?fze—gnog :?n 08 “‘-";1-8—2}1 = e

so that also (11) holds. Thus we may apply Lemma 2. We obtain for lage » that

my P mi Mo 1
S’ [ 2:6[ ] Z____ 1 1/2k-1—1/2k- 1(k+lj(nlr)1f2k 1{R+l)logrnt -
n—xl m |j=1 "+j n=1 M
m 1 [V EED
- '3‘ n"m"'l[—] mlog mt =
e ey m n £

logt J

—_— 12k -1 (k+1)
k-

< cympnt 12 Tpllogn

P logt a= l oo 4 b
g 1-VH- 1+[2( — 3]+2],»’J‘ 1k+1) 49

log myt <

= —n log —n% =
& £ £?
Cs 1—1;2*-1+[-__1T(k+n+%]fzk—l(k+1)
<—n 5 £ logn =
ﬂ1 1/2k - 14 1/2k 4 1/2K ‘“”log = :; nl—lfzk-l+1f2k+lfak+llogn e
&

¢ L £ £
__¥5 1-—1/2k+1 . ¥h _1—1/2k+2  —1/2k+2 1—1/2k+2] __
=—n logh = —n n~Y¥***logn = —|[n =—P
2 Bl =" gn<vgl 1= 16

which completes the proof of (27) in this case.
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Case 2. Assume that

logt _ [ 1 ]
(28) logr, ¢; = max ca+5, 201.
Let us write
) = 2 (—1) S

Then by the well-known inequality

|].—8(3’)| = 2TE|C€],

we have

"'e] [ ]_"’01[}, mt 1 B
29) =1 m ;;;e m n-j ‘_mzlm _,;; Tl ill™

+_.-.

n

my 1 P #
= Zn|Zelg v ,+1;]|
= 3L Se(no 3 ) =
- T d :=§ )| =

j']—e(fm (j))“ =

= 25l Fenol Sl 2 o))

i=

F [fm(j)+f=§+:z 1y r:::

= 3 L(|Ze0m0)

1A

= 3 U b e(fmu))' + 320 ({;]H] -

mg P k+3 my P k+3
=3 [ Fe(ru|r2e "—] - z z )|+ 2mmpt e <
3|z et > () + 20 22

Now we are going to estimate the parameters k, P. Firs we note that in this case,
(4) can be rewritten in the form

_logt 1
~ logn +§-{k+l’

(30)

ie.,
(31) ﬂk—lfﬂ == nl +lf2.
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Furthermore, with respect to (31) we have

pk+5/2\(k+2) 52\ k2 pk+ a2 k2
(32) P= = [ = (—k 7 = pd/k+D
w172

! 4
and
pk+52 1/(k+2) pkt+siz 1/(k+2)
(33) r=|( = |
{ !
[nk+é;2]l;‘u+2)_l _ n:,-'(k+;z)_l _ l Hg,f(k-}-gl
pk+1/2 2

(note that n®/**®— 4 = follows easily from (3) and (30)).
For large n, the last term in (29) can be estimated in the following way:

400 Pk‘i'ﬂ 400 [[ nk +5/2 ]1;"[’5"’2]]]\' +2 P
! — t

(34) 2 s T g 7 P
400 p*te2 p 400 1 £
=g =3 5 =_82‘FIEP<L§P‘

P
Finally, we estimate the sum }Ze(fm(j))\ by using Lemma 3 with 0 and
=1
Jw(x) in place of @ and f(x), respectively. In fact, by (28) and (30) we have

i logf __1_‘-5-(- _l_} [(' +l]__i._.
logn 2 - A" 72=\%7T3)7 2%

so that (14) holds. Furthermore, with respect to (30) we have

i t = ]]og:: =2
—_— = =
m k42 mn =

mt
nk+e

(35) o] = I(— 1y

logt 1] 3
t=|-G+n—5 49
e mnu[ logn 2 2 - = n—siz_

(3), (30), (32) and (35) yield for large n that

log ¢ 3] 49
logn =~ 2

ndl+2) 22 g
g2

0{2m+nmm<2[

5/4 °
1 (log n) 3 ] - %ﬁ‘ n=%2 = (log n)4n=12 < 1

= logn logloglogn = 2
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so that also (13) holds. Thus Lemma 2 can be applied, and we obtain that

P
2 e(f;"(j))l = DelSklonth p1-1/ktiogk | o0 P ||~k

i=

(36)

First we estimate the first term on the right hand side. By (3), (30), (32) and (33),
for large n we have

(3?) Zemklog'-‘k Pl—l,.-'ti.kslogk log P =
_ S log P ]
—ZPexp[ISI\ log J\—W-Hoglog}’ <
log l n2ik+2)
log t l] 2[lr:)g;f l] 2 st
= 2P€Xp ls(logn +E log m-‘ri ——W+]0g10g13 -
log t ‘_[logr] logn
-2 - — -
R [30 fogn %8 Ulogn) ~ Gki(k+2)logk T 08 108"

1 (logn)** 2[ 1 (logn)‘i“] logn . ]
=3 expl30 logn loglogn % logn loglogn) 18k3logk ' loglogn| <
2P exp[30 887~ 105 10g nyr— log +1log logn| <

=Rk SRp log log n 528 logr 133 logsr 1 B 08
18 =1 log =i
logn 2 logn 2
= 2Pexp |31 (log n)"*loglog n— I 10:; i l <
.100[ °g’] log "g’)
logn logn
; logn
= 2Pexp|31(logn)*loglogn— . =
ooz 808 [(logﬂ}l-"‘]3 (log n)t"
loglog n loglogn
— 2Pexp |31 (log )" loglog n— - ‘0)5’1' -
og n)*
{log log )7 loglogn

= 2Pexp [31 (logn)"*loglog n —-]!W (log n)"*(log log n]S] =

< 2Pexp ( - ﬁ (log n)'*(log log f?)'*] < Pexp (—(log n)').
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With respect to k=c¢; =20, (3), (28), (30). (31). (33) and (35), for large n the
second term on the right hand side of (36) can be estimated in the following way:

—k kray 1k ks axl/k
: mt n n
2|a| - =2 - = =
(38) 2 [n"”) 2( m.'] 2( [ ]

pe+aizy 1k pk+o/2 NV ET2) ¢ gy gya (k=110 +2)
= 2{ ] n~lE = 2[ ] ( ] nl* =
! f f

”k+ﬁ,-"2 2/k(k+2) pk+oie 2/kik+2)
4P[ " ] n- 4P( ] NN =

k—1/2

is 4P”8,-'kik +2)—1/2k _ 4pnt10—kuzk(k +2) =

= 4P”Ek;':—k!,f2!\-rk+‘.’l = 4PH —1/Mk4-2) -~ 4;3,!—-1.-121‘- =

1
W R LA I R (R .
12k logt 1
logn +3

i logn ) logn -
=4Pexp| — q[(log YR ] = Pexp [— (logn)”“] = Pexp(—(log n*’*).

“lloglogn =~ 2

(29). (34), (36). (37) and (38) yield for large n that

w ) |2 i me |, 400 Ptis
~E3[—¢7”" < "(fm“’\ Earan
G[Pexp (—(log n)'®)+Pexp(— (]0g;:}"4)]+_-P<
m=]

= 2m, Pexp(—(log .'J}'-""‘)—Fﬁ P=

B 48 Ny & p_ & p, & p_ &
EIIL._.]—H]Pexp{ (logn) )+32P 2 P+ 3 P = T P
which proves that (27) holds also in Case 2.

(Note that like Case 1, also Case 2 could be treated in a simpler way by replacing
Lemma 3 by Theorem 1 in [5], p. 47: in fact in this way we can show that the exponent
5/4 in the upper bound in (3) can be replaced by the greater on 3/2, but, on the other
hand, this methods yields the much worse estimate P~ p'~clogt/logn 2. pi—c/ks

for P: this is why we have preferred the more complicated way based on Lemma 3.)
We obtain from (26) and (27) that

3e
N, 0) = (Q—JI—F‘E]F-F P= [O—JH— 4] P
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provided that (17) holds:

£

i]1'3' for % =0—-n = I—I.

(39) NG, 0) = [9—n+ ”

Assume now that 0=p—ny=¢/4. Then (39) yields (with n+% in place of o)
that

(40) N(@Lo)=N [r;. g:+[-2~'—(g—ig)]] =N [r;, q+%] -

& & &, (& G
= [[n+z]—r;+E]P—3P;(g :,H—zlP for 0= g—n <= &/4
Finally, let l—%«:g—uz I. Then we have

1) N(po)=P= [[1—%J+—;~} = [g—:;—l—%}f’ for I—% —o—n=1.

(39), (40) and (41) yield that

£

2]P for all 0'__;@_;,!-_;:]‘

(42) N, @) = [9 =i+

On the other hand, by using (42) repeatedly, we obtain that

(43) N(x. ) = N(O. D—=N(0, ) = N(f, 1) = P=N(0. o) = N(f, 1) =
= P—(cx—{—%] P—[l —,G+~;-] P=(B-a—gP forall 0=x<f=1.

(42) and (43) yield (7) and this completes the proof of Theorem 1.
3. In this section, we prove the following consequence of Theorem 1:

THEOREM 2. Let =0, n a positive integer satisfying n=n,(&). t a real number
such that

5/4

n=1-=gexp [M)
loglogn

Let us define k by (4) (where ¢, denotes the constant defined in Theorem 1), and write

nifn<t=n

AR i R =t <= 0

P = ka2 k42
=2 e
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Then there exists a positive integer j such that

(44) =j=P

and

(45) (n+j)let.
Proor. We have to distinguish three cases.
Case 1. Let

(46) n=1=zgn.

If n<t<2n+2, then (45) holds with

1 for n=t=n+1
{[r—u] for n+1=t<=2n+1
i for 2n+1=t<=2n+2

(for large n). Thus we may assume that 2n+2=¢; hence

@7 [n-:-i]:jz

Let us write ¢ in the form

£ Vg =
(48) t= [TH-_1] (n+1)+r where 0 =r<=n+l1
and
(49) t= [%] 2n)+s where 0 =35 <2n,

respectively. (48) and (49) yield that

©0) “n-‘-l] [2n]] [:+1]{"‘”“’+5

By (47), (48) and (49). we have

(51) [H——T—T] m—D—r+s=2m—)—r=2n—1)—n+1)=n-3=0
for n=3. (50) and (51) yield (for n=3) that

el - sl

Thus there exists an integer j such that 1=j=n—1 (=P—1) and

(52) [nij]}[ﬂ'f-;*-l]'

We are going to show that this integer j satifies also (45).

319
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. t . £ t
Let us write q—[m]. Then by (52), we have ke q = AT

thus with respect to (46)

' . t t t r_.
- i = - — =
1 n+j n+j+1 (n+j)(n+j+1) n?

R B

which implies (45) and this completes the proof of the theorem in this case.
Case 2. Let
(53) en* =1 =n
For j=1,2,...,n—1, let
gt t _ t
on4j on+j+1 n+jyn+j+1"

Then obviously.
(54) O<=d, 1 <=d,_a=..=dy=d,.

By (53), for sufficiently large n we have

t 1
(n+1)(n+2) o (2n—[n/3]) 2n—[n/3]-+1) =

AN WS Y
[4 2 5\ 400 n*” S 2=
) (57)

(55} {{1 N "-':n ~[nfa] —

Let p denote number such that
0
5 —_—— P —
(56) =P -

(It is well-known that for x=2, there exists a prime number ¢ such that x=g-=2x.)
(56) yields that

I £
(57) F T

(55) and (57) imply that there exists an integer a such that

a a+1

(58} du—[n,-‘li] = _}; = = f“‘Il'
Then either
(59) (a. p) =1

or (a+1, p)=1 holds: we may assume that (59).
(54) and (58) imply that there exists an integer u such that
2n

(60) l=u=n—[n3]—1= 3
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and

a
(61) duﬂ‘—E—B—«:du.

By (583). for j=1,2.....n—2 we have

1 f
T mtit) it Dn+it2)

(62) 0=d;—d;,,

_ 2 2
T ()i (n+j+2) et

(61) and (62) yield that

‘:% ffor j=1,2,...,n—2).

hence

(63) ’d i

Obviously, there exists an integer b such that

! b 1
(64) P R
Define the integer / by
(65) al = b (mod p)
(such an / exists by (59)) and
(66) I=l=p.
Put ¢= » and j=wu+/. (56,) (60) and (66) yield for large n that
g 2n 2n 20 2n n _
{67) “ -_)_j'—ﬂ"f‘.’ MT-I-IJ{T-F'E—'{T*I*?—H.
For i=1,2,....n—1—u, we have

dlri— = dn+{dn +1 _du)—i—{dnﬂ- z_du-i-])'!_ e +(dﬂ+ £ dn-{ l""l}
thus by (62) and (63).

a
dn b
e

(68)

} a
= !du+i_'du]+!dr|_;l =

2 2 2 2(3i+1
2 ;2.2 (i+1)
n noon n

=i

= |dir-r]_du|+ idu+‘.‘__du+l|+"‘+|du+1_du+i-—I!+

(for 0 =1i=n—1—u).
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Furthermore. we have

t t t t ] [ t
n+j ntut+l  n+u [n-l—a n+u+l ntut+l n+tu+t?2

1 1 1
- - = —d,— —.—d - =
[H‘f‘[f'i—l—l P]-ﬁ-f{—}—f] n-+u u dl”‘l wutl=1

=52 Elaer) = (-2 e- lasg)
_[n+u_F] _.;; ol P n+u p T inzl; dusi 4

thus with respect to (56). (57), (64), (66) and (68)

-’ 1

t i al 1 12E2(i+1)
FT R | e ] — — =
‘n%—j q}“’ n+u od"“ p‘<2p+i‘;§'; no

1 27 1 2p? & 800 £ &
S me T e e T h S g

2p ' n 2p n 20 &n 20 2

which implies that

(69) l n+j “
(67) and (69) show that (44) and (45) hold also in Case 2
Case 3. Let
. (log ")5;1]
n=r1r= exp[m =

Then by using Theorem 1 with % in place of &. we obtain for large # that

1= ¥ 1= 2 1=N(0¢=
1=5=P 1=j=p =
(n+)] t

||"+J
= eP+(N(0,2)—&P) = eP—|N(0,8)—eP| > BP-—%P :—;—P -

which shows that there exists an integer / satifying (44) and (45), and this completes
the proof of Theorem 2.

4. In this section, we show that if ¢ is large (in terms of n) then it may occur that
there does not exist an integer j satisfying 1=j=n and (n+j)| ¢
I 3

THEOREM 3. Let Z—*-c =0, 0=0. Then for n=n,(e). there exists a real number

t such that

(70) n=t=-exp(2+0)n)
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and there does not exist an integer j satisfying 1=j=n and

(7n) (n+]) 1.

Proor. Let r=[1,2;..., 2n]+% (where [1. 2, .... 2n] denotes the least com-
mon multiple of the numbers 1, 2, ..., 2n); then n<t¢ holds trivially. For p=2n.
define the positive integer «, by

P =2n = potl.
Then by the prime number theorem, we have

log[l,2,...,2n] = log( Il p’p] = > logp ~2n

p=2n p=2n
so that for large a,
n 0
= [l. 2. T 2”]+—2'— - ef(p [[2 +E] n

+—= =exp((2+d)n)

R

n
3

which proves (70).
Furthermore, it 1=j=n then

{,, LJ} = {[]. = ‘.;;,+2_?1+n;2} = {[I‘ 2;1;;: = ® 2{1?—}-;')} - {20:—}4-}}}

Here we have

| n n n 1

= —_— = —
4  4n T 2m+j) 2n 2
hence

1 { .f} { noo| n L
—_——— 1 - — - —
4 — In+j 2(!1—!—}}_[ 2(n+j) 2
which implies that
-t
T n+j)

Thus (71) does not hold which completes the proof of Theorem 3.

5. Note that there is a considerable gap between Theorems 2 and 3. In fact. let
f(n. &) denote the infimum of the real numbers 7 such that n<=¢ and there does not
exist an integer j such that 1=j=n and (n+/)|,z. Then for n=mny(e), Theorem 2
shows that

(72) exp (EM] = f(n,¢e)

log logn

1

m—

7=

it
n-j

and on the other hand. Theorem 3 yields that
(73) f(n, &) = exp(2+d)m):

we guess that both the lower estimate (72) and the upper estimate (73) are far from the
best possible.
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