On a generalization of Turán's graph-theorem

by

P. ERDŐS and V. T. SÓS (Budapest)

The so-called extremal graph theory started with the well-known theorem of Turan [12], [13]. He determined the smallest integer f(n; k) so that every graph G(n; e) of n vertices and e > f(n; k) edges contains a complete graph of k vertices. A general problem in extremal graph theory can be formulated as follows: Let L be a fixed graph and f(n; L) the smallest integer so that every graph of n vertices having more than f(n; L) edges contains a graph isomorphic to L as a subgraph. One of the general theorems in this theory is the Erdős-Simonovits [5], see also Erdős-Stone [7] theorem which states as follows:

Let the chromatic number of L be $\chi(L)$ and $\chi(L) = r \ge 3$. Then

$$f(n; L) = (1 + o(1)) \left(1 - \frac{1}{r-1}\right) \frac{n^2}{2}$$

For the case r=2 the theorem only states $f(n;L)=o(n^2)$ but some sharper theorems are also known [1], [4], [8], [9]. The exact value of f(n;L) is known only for very few graphs [2], [3], [10], [11] and if $\chi(L)=2$ even asymptotic formulas are rarely known.

Now we state Turán's theorem in the exact form:

We use—as above—the notation f(n; k) instead of $f(n; K_k)$.

Theorem (Turán). Let n = (k-1)t + r; $0 \le r < k-1$. Then

$$f(n;k) = \frac{1}{2} \frac{k-2}{k-2} n^2 - \frac{1}{2} r \left(1 - \frac{r}{k-1} \right).$$

The only graph (up to isomorphism) of n vertices and f(n;k) edges which does not contain a K_k is the complete (k-1)-chromatic graph $K_{k-1}(n_1,\ldots,n_{k-1})$ with n_i vertices in its i'th class where

$$n = n_1 + \ldots + n_k$$
 and $|n_i - n_j| \le 1$ for $1 \le i < j \le n$.

In this note we first of all prove a generalization of this theorem.

We need the following definition and notations:

Let $G = \langle V; E \rangle$ be a graph with vertex set $V = \{v_1, \ldots, v_n\}$ an edge-set E. The star $S_G^i = \langle V_i; E_i \rangle$ of a vertex $v_i \in V$ is the graph spanned by those vertices of G which are joined by an edge to v_i . (I.e. $E_i = \{(v_v, v_\mu) : (v_v, v_\mu) \in E, v_v, v_\mu \in V_i\}$.) Let $d_i = |V_i|, e_i = |E_i|$ for $i = 1, \ldots, n$.

The above described $K_{k-1}(n_1, \ldots, n_{k-1})$ will be denoted by $T_{k-1,n}$.

Theorem. Let $G = \langle V; E \rangle$ be a graph with |V| = n and e = |E| > f(n; k). Then for at least one vertex $v_i \in V$ we have

$$e_i > f(d_i; k-1)$$
.

The only graph G with |V| = n, |E| = f(n; k) and $e_i \le f(d_i; k-1)$ for i = 1, ..., n is the "Turán-graph" $T_{k-1,n}$.

This theorem clearly implies Turán's theorem. At first sight it seems to be deeper but it turns out that the proof is very simple.

Proof. Let

$$d_i \equiv r_i \mod (k-2)$$
; $0 \leq r_i < k-2$.

Supposing

(1)
$$e \leq f(d_i; k-1)$$
 for $1 \leq i \leq n$

we shall show

$$(2) e \leq f(n;k).$$

Since $\sum_{i=1}^{n} e_i = 3T$ where T is the number of triangles in G and

(3)
$$3T \ge \sum_{(v_i, v_i) \in E} ((d_i + d_j) - n) = \sum_{i=1}^{n} d_i^2 - en,$$

we have

(4)
$$\sum_{i=1}^{n} d_{i}^{2} - en \leq \sum_{i=1}^{n} e_{i} \leq \sum_{i=1}^{n} f(d_{i}; k-1)$$
$$\sum_{i=1}^{n} d_{i}^{2} - \sum_{i=1}^{n} f(d_{i}; k-1) \leq en$$

Using $\sum_{i=1}^{n} d_i = 2e$ as the first simple result we get

$$(5) \sum_{i=1}^{n} d_i^2 - \sum_{i=1}^{n} f(d_i; k-1) = \frac{1}{2} \frac{k-1}{k-2} \sum_{i=1}^{n} d_i^2 + \sum_{i=1}^{n} \frac{r_i}{2} \left(1 - \frac{r_i}{k-2} \right) \ge \frac{1}{2} \frac{k-1}{k-2} \left(\frac{2e}{n} \right)^2 n.$$

From (4) and (5) we get

(6)
$$e \le \frac{1}{2} \frac{k-2}{k-1} n^2.$$

This gives the desired result in the case k-1/n. To get (2) for the general case write

(7)
$$e = \frac{1}{2} \frac{k-2}{k-1} n^2 - \frac{r}{2} \left(1 - \frac{r}{k-1} \right) + \Delta.$$

From (6) we know already that

$$\Delta \leq \frac{r}{2} \left(1 - \frac{r}{k-1} \right)$$

and we may suppose $\Delta > 0$.

As one can see easily, under the condition

$$\sum_{i=1}^{n} d_i = 2e$$

the minimal value of $\sum_{i=1}^{n} d_i^2 - \sum_{i=1}^{n} f(d_i; k-2)$ is taken for the system (d_i^*) where

$$|d_i^* - d_j^*| \le 1$$
; $1 \le i < j \le n$.

For this (di) system we get easily—for a suitable choice of the indices—

(9)
$$d_i^* = \begin{cases} n - (t+1) = (k-2)t + r & \text{if } 1 \le i \le rt - 2\Delta \\ n - t = (k-2)t + r - 1 & \text{if } rt - 2\Delta < i \le n = (k-1)t + r \end{cases}$$

(from $\Delta \le \frac{r}{2} \left(1 - \frac{r}{k-2} \right)$ we have $2\Delta \le r$), and consequently

(10)
$$r_i^* = \begin{cases} r, & \text{if } 1 \le i \le rt - 2 \\ r - 1, & \text{if } rt - 2\Delta < r \le (k - 1)t + r. \end{cases}$$

Hence, as an easy computation shows

$$(11) \sum d_i^2 - \sum f(d_i, k-2) \ge f(n; k) + \frac{k-1}{k-2} \Delta(2(n-t-1) + (k-2) - 2r + 1).$$

From (4) and this

$$\frac{k-1}{k-2} \Delta(2(n-t-1)+k-2-2r+1) \le \Delta n$$

follows which contradicts to $\Delta > 0$.

From the above reasoning it also follows easily that

(12)
$$e = f(n; k) \text{ and}$$
$$e_i \le f(d_i; k-2) \text{ for } i = 1, \dots, n$$

holds if and only if G is the "Turán-graph" $T_{k-1,n}$.

Namely (12) holds only if we have equality in (11), our system (d_i) is the system (d_i^*) and we have equality in (3).

Problems and remarks

One can try to find other extremal problems for which an analogous method applies.

(a) Consider the case of a pyramid. A pyramid P is a graph where $V = \{x, y_1, \ldots, y_k\}$ and $E = \{(x, y_i), (y_i, y_{i+1}); 1 \le i \le k\}$ with $y_{k+1} = y_k$. It is known [6] that any G(V; E) with |V| = n and $|E| \ge \frac{n^2}{4} + \frac{n}{2}$ contains a pyramid. By a similar method we used one can show that a graph with $e \ge \frac{n^2}{4} + \frac{n}{2}$ contains a vertex where S_G^i contains more than d_i edges.

This phenomenon does not remain valid if we fix the size of the pyramid.

In the above examples the L graphs under consideration were such that they had a vertex which is joined to all other vertices and in this case we had to consider only the S_G^i star graphs; the existence of a proper subgraph in S_G^i assured the existence of a subgraph in G isomorphic to L. Now an analogous phenomenon may occur for complete bipartite graphs.

(b) Let us consider the case of a $K_{2,2,2}$. In Erdős and Simonovits [6] proved that

$$f(n; K_{2,2,2}) = \frac{n^2}{4} + cn^{3/2} + O(n^{3/2})$$

for a certain c which value can be determined. A relatively simple computation proves that every G with |V| = n, $|E| = \frac{n^2}{4} + c * n^{3/2}$ contains two vertices for whose the intersection of their stars contains enough edges to ensure a c_4 . But we have not proved that $c^* = c$.

Added in proof. The same result was also proved by Bollobás and Eldridge and recently a very simple proof was found by Bondy which will appear soon.

References

- [1] W. J. Brown, On graphs that do not contain a Thomson graph, Canad. Math. Bull., 9 (1966), 281-285.
- [2] P. Erdos, Extremal problems in Graph Theory, Theory of graphs and its applications, 29-36, Publ. House Czechoslovak Acad. Sci., Prague, 1964.
- [3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung., 10 (1959), 337-356.
- [4] P. Erdős, A. Rényi and V. T. Sós, On a problem of graph theory, Studia Sci. Math. Hung., 1 (1966), 215-235.
- [5] P. Erdos and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hung., 1 (1966), 51-57.
- [6] P. Erdős and M. Simonovits, On extremal graph-problem, Acta Math. Acad. Sci. Hung., 22 (1971), 275–282.
- [7] P. Erdos and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc., 52 (1946), 1087–1091.
- [8] C. HYLTEN and CAVALLIUS, On a combinatorial problem, Coll. Math., 6 (1958), 59-65.
- [9] T. KOVÁRI, V. T. Sos and P. Turán, On a problem of K. Zarankiewicz, Coll. Math., 3 (1954), 50-57.
- [10] M. Simonovits, Extremal graph problems with simmetrical extremal graphs, Discrete Math., 7 (1974), 349–376.
- [11] M. Simonovits, A method for solving extremal problems in graph theory; stability problems, Theory of Graphs, Proc. Coll. Tihany, Hungary (1966), 279–319.
- [12] P. Turan, On an extremal problem in graph theory, (in Hungarian), Mat. Fiz. Lapok, 48 (1941), 436-452.
- [13] P. Turan, On the theory of graphs, Coll. Math., 3 (1954), 19-30.

MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
H-1053 BUDAPEST, REALTANODA U. 13—15.
HUNGARY

EÖTVÖS LORÁND UNIVERSITY H-1088 BUDAPEST, MÚZEUM KRT. 6–8. HUNGARY