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The so-called extremal graph theory started with the well-known theorem of Turan
{121, [13]. He determined the smailest integer {(n; k) so that every graph G(n:e)of n
vertices and > f{n; k) edges contains a complete graph of x vertices. A general
problem in extremal graph theory can be formulated as follows: Let L be a fixed
graph and f(»1; L) the smallest integer so that every graph of n vertices having more
than f(n; L;edges contains a graph isomorphic to L as a subgraph. One of the zeneral
theorems in this theory is the Erpos-Simonovits [ 5], see also Erpas-Stone [ 7] theorem
which states as follows:

Let the chromatic number of L be (L) and y(L)=r=3. Then

2
f{n;L}=£l-ro(1])(1- : )"_,

r—=1/2

For the case r =2 the theorem only states f(n; L)=o(n?) but some sharper theorems
are also knowm [ 1), [4), [8], [9]. The exact value of f(n: L)is known only for very few
graphs [2]. [3], [10], [11] and if z(L)=2 even asymptotic formulas are rarely known.

Now we state Turan's theorem in the exact form:

We usz-—-as above—the notation f(n; k) instead of f(n: K,).

Theorem (T uran). Let n=(k—1)t+r; 08r<k—1. Then

1k-2 1 r
oY e o et
fin:k) 53" 2:-(1 k—l)

The only graph (up to isomorphism) of n vertices and f(n; k) edges w‘h_ffh does not
contain a K, is the complete (k — 1)-chromatic graph K, _(n,.. ... n-,) with n; vertices
in its i'th class where

a=n,+...+n and In;—n) L1 for 1Zi<jsn.

In this note we first of all prove a generalization of this theorem.
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We need the following definition and notations:
~Let G=(V E) be a graph with vertex set ¥ ={v,, ..., t,; an edge-set E. The star
8§5=¢V,, E;> of a vertex v; € V is the graph spanned by those vertices of G which are
joined by an edge to v;. (Le. E;={(v,,v,):(v,, v,)€E, v,,v,e V}.) Letd;=| V]|, g, =|E||
fori=1, o
The above described K, _(n,, ..., n,_,) will be denoted by T,_, ,.

Theorem. Let G=(V; E) be a graph with |V|=n and e=|E{> f(n; k). Then for at
least one vertex v;€ V we have
e;> fld; k—1).

The only graph G with |V|=n, |El=f(n; k) and ¢, = f(d;; k—1) fori=1, ..., nisthe
“Turan-graph” T,_, ,.

This theorem clearly implies Turan’s theorem. At first sight it seems to be deeper but
it turns out that the proof is very simple.

ProoL Let
d=rmodik—2); 0Sr<k-2.

Supposing

{h e, = fld;:k=1) for 1Zign
we shall show

2) eZ fin; k).

Since } ¢;=3T where T is the number of triangles in G and

3) 3Tz ¥ (di+d)-n =T d} —en,
1

{ru)eE

we have
L di~og § ag ) f@ik-)
(4) S

Al - Y fld:k—-1)Zen
=1

i=

Using 3 d,=2e as the first simple result we get

i=1

-1 &

(5) - d? - T g el r,-’ 1k—1
Z j(dk “ 2 7&.‘1%721(\ k2) n.

=1 ,=|. T Eqa [m] _-’k 2
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From (4) and (5) we get
(6) e
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This gives the desired result in the case k — I/n. To get (2) for the general case write

k=2, ¥ r
g e b e e
)] = 2(1 k-—l)

From (6) we know already that

o . )
=3, k=1
and we may suppose 4>0.
As one can see easily, under the condition

‘_i d;=2e

i=

the minimal value of )" d7 — Y f(d,;k—2)is taken for the system (d}) where

i=1 i=1
ld¥ —dfl=1; 1=si<jsn.
For this (df) system we get easily—for a suitable choice of the indices—
9) B n—(t+1)=k—-2p+r if 1Sign-24
: n—t=(k=r+r—1 if rt=24<iZn=(k—=1)t+r
(from 4 < %(l - ;Li) we have 24 <r), and consequently
r if 1<igrt-2
10 * = iy o
(10) fi {r—l. if rt—=24<rs(k—1)+r.
Hence, as an easy computation shows
k-
(DT df = F Sl k=22 fniK) + 3 M2n—1 =) +k=2)=2r+1).
From (4) and this
k—

k—_—%d{z{n—r— D+k=2=2r+ 1)< dn

follows which contradicts to 4> 0.
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From the above reasoning it also follows easily that
e= f(n;k) and
(12)
6= fldi;k=2) for i=1,...,n
holds if and only if G is the “Turan-graph™ Ty, ..

Namely (12) holds only if we have equality in (11), our system (d;) is the
system (d*) and we have equality in (3).

Problems and remarks

One can try to find other extremal problems for which an analogous method

applies.
{a) Consider the case of a pyramid. A pyramid P is a graph where V =
=X ¥ie oo W) and E={(x0 v (v yieg)e 1SSk with vy, =y, It is known [6]

5

that any ((V: E) with {V|=n and |E| 2 % - g contains a pyramid. By a similar

b
method we used one can show that a graph withe = :— + ff:omains a vertex where S§;
contains more than d, edges.

This phenomenon does not remain valid if we fix the size of the pyramid.

In the above examples the L graphs under consideration were such that they had a
vertex which is joined to all other vertices and in this case we had to consider only the
S'G star graphs; the existence of a proper subgraph in S5 assured the existence of a
subgraph in G isomorphic to L. Now an analogous phenomenon may occur for
complete bipartite graphs.

(b} Let us consider the case of a K, » . In Erdos and Simonovits [6] proved that

:
; oo -
S Kapod = — + en*? +0(n*?)

for a certain ¢ which value can be determined. A relatively simple computation proves

- a h 3,3 . +
that every G with |V|=n, [E| = 3* ¢*n>? contains two vertices for whose the

intersection of their stars contains enough edges to ensure a ¢,. But we have not proved
that c*=c.

Added in proof. The same result was also proved by Bovriosis and ELpripce and
recently a very simple prool was found by Bonny which will appear soon.
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