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Abstract

A family F of sets has property B(s) if there exists
a set S whose intersection with each set in F is non-empty
but contains fewer than s elements .

P . Erdős has asked whether there exists an absolute
constant c such that every projective plane has property
B(c) .

In this paper, the authors, as a partial answer to
this question, obtain the result that for n sufficiently
large, every projective plane of order n has property
B(c log n) . The result is a corollary of a theorem
applicable to somewhat more general families of finite
sets .

A family F of sets has property B if there is a set S whose

intersection with each set in the family is a proper subset of that

set . Many algebraic and combinatorial problems may be restated in

terms of property B .

P . Erdős [1] proposed property B(s) as a stronger form of

property B . A family F has property B(s) if there is a set S

whose intersection with each set in the family is a proper subset

of that set containing fewer than s elements . Property B(s)

has been studied by, among others, Silverman, Levinson, Stein, Abbott

and Erdos .

Property B is an important combinatorial property, and the

related literature includes, for example, a recent paper by

D . Kleitman on Sperner families [4] .

In this paper we consider 2 questions :

1) P . Erdős has asked whether there exists an absolute constant c

such that every projective plane has property B(c) .

2) Further, can any analogous result be obtained for families

of sets more general than projective planes?
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Using probabilistic methods, we obtain a partial result for

projective planes, and a somewhat more general result for finite sets .

The results obtained show that there is some constant c such that,

for n large enough, every projective plane of order n has property

B(c log n) . This is done in Section I .

We also obtain the result that a projective plane of order n

has property B(n - cam) . Although this is a weaker result than the

one above, the proof is of interest because it is constructive . This

is done in Section II .

Section I: Our main result is the following .

THEOREM 1 . et 0 < a1

	

a2, 0 < b . Suppose 0 < 6 <- 1, s ? 1

if & = 0, s < 0 if 8 = 1 . Then for any fixed c 1 , there is some

c2 such that if F is a family of sets satisfying the foZZowing

conditions :

i) aIn

	

IFI ~ a2n for every F E F

ü) IFI < nb

then there is some set S such that if F E F then

(1)

	

c1n5Zogsn -- IS n FI

	

0 2nF Zogsn .

It wiZZ further be shown that if F~ > 0, s > 1 or c 1 > eb(a2/a1 )

and we restrict ourselves to large n, then c 2 can be chosen

arbitrarily close to c 1 , while otherwise (again for large n) c 2
a

can be chosen arbitrarily close to 2 eb .
a1

The proof requires certain lemmas, used for bounding tails of the

multínomial and binomial distributions, which are of independent

interest .

The first lemma relates the tail of a binomial distribution to

the largest term of the tail .
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EMMA 1 . et 0<p<1, q=1 -p .

E

	

(

z x z-x

x?x0 x)p q

E

	

(
z )pxqz-x

0x<x x

	

Zf x0 zp .

(2) et

	

t(x0)

()

Proof .

Then

	

t(x)

Proof. If xp < zp, then the bound is trivial . Thus we shall

concentrate on the case where x. > zp . We use the following well-

known identity .

x -1

	

z-x
(3)

	

t(x0) = z(xz-1)fppt 0 (1-t)

	

0dt .
0

A simple differentiation shows that the integrand attains its maximum

at t = p . The result follows immediately .

The next lemma relates the size of a binomial coefficient (N M)

to the fraction N/M .

EMMA 2 . There exists an absoZute constant p such that, if

0 < N < M, then

By Sterling's formula, there is some constant

Thus

and (4) follows .

(M) <	r
N (N ) N (1 - N ) M-N

M

	

M

x (z)
x0

z-x0 .0 x p q0

M-1P
	 M	

N

	

'N (M-N)M-N
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if x0 > Pp

e N

	

e/ M-N

2 \(M-N)M-N+2

R' such that



Proof . et

($)

Sínce

and

and

We also need to bound the terms of a multinomíal distribution

using terms of a binomial distribution .

EMMA 3 . et y< 1, A+B=C, x+y= z < yC, p=A/C,
q = B/C = 1 - p, h(x) _ (x)(B)/(z), b(x) _ ( 2)pxgy . Then h(x) = 0 (b(x)) .Y

	

Y

(7)

	

Q =
h(X) _ (1

- 1) . . .(1 - XA1)(1 - 1)

	

(1 - B1 )

b (x)

Now consider

(9)

	

log Q

	

-

	

E

	

log (1 - Y+j ) .

0~j<C-A

Since

(1 - 1) . . .(1 - ZCl )

Without loss of generality, we may assume A < C/2 . Since B -1 C,

1 - j/B -1 1 - j/C, so

(1 - Á) . . .(1 - XA1 )

	

1
Q <	

(1
y+l)

	

(1

	

Y+x-1)C

	

y

1-I< 1- Y+j if

	

>y
A

	

C

	

C-A '

Q <	1

lI

	

(1 - YCl )
0< J<C-A

Y + j < z <- YC , y+I < y

-log(, - y+j )

	

3-2y y+j .C

	

2-2y

	

C
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Hence

or

or

Then

log Q ` 3-2y

	

y+J
2-2y

	

C
05j<C-A

3-2y

0

Y -

of a multinomial distribution .

EMMA 4 . et a > 0, a > 1, A = an, B - na, C = A + B,

z = kBn5 logsn/n (where s and 6 are restricted as in the statement

of the theorem), x0 = en~Zog8n . et p,q,h(x),b(x) be defined as

in emma 3 . et

E

	

h(x) if

(10)

	

T (x0

	

x 0

- 2-2y

	

c

	

2

log Q < 3-2y	y	 (2 (C-A) + 1) (y + C - A)2-2

	

2(C-A) 2 .C

log Q < 3-2y	yC		2C . (l+y)C = 0 (1) .2-2y

	

2(C/2) 2 •C

We now use these first three lemmas to obtain a bound on the tail

E

	

h(x) ifx<x

y +
	 y

+C-A

	

C-A 1

x 0 > zp

x0 < zp .

(11)

	

T(x0)«exp{n5 Zogsn{c(1 + log e

	

+ o(1))- ak + o(1)}

&

	

s
Proof . Since z < kn log n _, 0 as n

	

we may use emma 3 toc

	

n
obtain T(x0 ) « t(x0 ) . We now use the bound on t(x0 ) from emma 1

to obtain
z x0 z-x0

(12)

	

T(x0) « x0(x )p q
0

2 5 1

+ 5 Zog n + s Zog Zog n} .



Using the bound on the binomial coefficient obtained in emma 2 as

well as our definition of p and q, we find

(13)

	

T(x0) «

and thus

(15)

	

T(x0 ) « en5logsn

(16)

(17)

	 1	
x0

	

X X

	

X Z-X

	

C
( 0 ) 0 (1- 0 )

	

0
Z

	

Z

Segregating by exponent,

/z(1 - z0)A\
x0

1

	

B
(14)

	

T(x0 ) « x0

	

x B

Since B ? na with a > 1,

en 5 log sn
(1 - kB)

kBn6logsn

(1 + an )

	

n
B

exp

ck(l	 - kB)	

cn5 logsn

F,
kBn logsn

n

- exp

and

	

kBn5logsn

(18)

	

(1 - R)

	

n

	

- exp { -cn logsn(1 + o(1))} .

Combining (15)-(18) yields (11) .

c2n1+5
logsn

kB

a

2 52

z-x0

z

(1 + o(1)) `

nblogsn(1 + o(l»

n

We now use this estimate to show that the tail can be made smaller

than any negative power of n .

EMMA 5 .. ( et everything not specificaZZy defined below be defined

as in emma 4 .) Suppose a is bounded away from both 0 and

b fixed and c 1 arbitrary. Then there exist k, c 2 such that,



i

o

defining xi = 0in5 Zogsn and T(x1 ) and T(x2 ) as the lower and

upper tails of the muZtinomiaZ distribution as in emma 4,

(19)

	

nbT(xi) = o(Z), i = 1, 2 .

Proof. We must show that k, c 2 can be chosen so that

(20)

	

b log n + n 5logsn{c i (1 + log
ak + 0(1))-¢k + 0(1)}
i

+ 5 log n + s log log n -> --

First choose k large enough to make the coefficient of

n6logsn less that -(b + 5) for i = 1 . Then choose c 2 so that

the same condition holds with i = 2 .

We are now prepared to prove a preliminary version of the theorem .

EMMA 6 . et a > 0 . If the hypotheses of the theorem hold then the

conclusion also holds if F also satisfies the additional condition

I U FI - max(na,nb ) .
FEF

Proof . et F* = U F . Choose k so that z = kIF*In 6 logsn/n is
FrF

an integer . et EF be the event that a set S C F* of size z

(21) iii .

satisfies

Is n FI < cln()logsn or is n FI > c2n5logsn .

as n

We will prove the lemma by showing that k and

chosen so that P(E) < 1 .

etting R1 represent < and R 2 represent >,

P(IS n FIRic in 6log n) =

	

E 8

	

h(x),
xRic in log n
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where

(22)

	

h(x) _

Thus

and hence

( IFI )( IF*I-IFI )z-x

(23)

	

P(IS n FIRícin5log n) = TF(xi ), i = 1,2

(24)

	

P(EF) '- T

	

TF (

Now let E be the event that a set S c F* of size z satisfies

IS n FI < cln6logsn or IS n FI > c2n5logsn for at least one set

F E F . Then

(25)

	

P(E)

	

E P(EF) < E [TF(x1 ) + TF (x2)]
FEF

	

FEF

IFlmax TF (xl) + IFImax TF (x2 )

~ 2nbmax TF (xí ) = o(1)

by emma 5 . This proves emma 6 .

We now observe that condition i ii . i s unnecessary . If

	

FI is

not large enough, we may augment F by including sets disjoint from

the original sets . The conclusion will hold for this augmented family

and thus must also hold for the original family F as well . This

proves the theorem .

Note that our proof has actually shown that almost all subsets of

F* of size kJF*In5logsn/n wí11 be "blocking sets" .

We may observe that if 5 > 0 or s > 1, then, in the proof of

emma 5, it is only necessary to make logC . < -1 . Thus k can bec
chosen arbitrarily close to c1/eat and c2 arbitrarily close to

ea2k . Thus if 5 > 0 or s > 1 then c 2 can be taken arbitrarily

close too cl .
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i

and

If ő = 0 and s = 1, then it suffices to make

(26)

	

1+log ak < 0, ak>b
cc i

for al < a < a, 2 , i = 1,2 .

This is equivalent to making

(27)

	

b/al < k <
c l

ea2
a2

This can be done if cl > eb( a ) . In this case c 2 can be made
1

	

a2
arbitrarily close to cl . If cl I eb(a), then k must be chosen

large forcing c 2 to be chosen larger as well in (20) . However,

in this case we can certainly choose c 2 close to eb(a 2 /a1 ) . We

thus see that if

i) ő > 0, s > 1 or c2 > eb(a2/a1 )

ií) e
2

> cl ,

then, if n is large enough, there is some set S such that

clnőlogsn < IS n FI

	

c2nőlogsn for every F E F .

Another way of looking at the above is that, thinking of

as a function of n,

(28)

	

limninf
e 2

= cl if 5 > 0, s >
a

eb(2) otherwíseo
C l
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c 2

1 or cl ? eb(a2 /a 1 ),

Applying the above to the case of projective planes, we immediately

have the following corollary .

CORO ARY . et c > 2e . If n is Zarge enough, then the projective

plane of order n has property B(c Zog n) .



Section II .

We now demonstrate construction of a "blocking set" and show that

a projectíve plane P of order n has property B(n

p(n) is of order Vn- .

We first indicate the method of proof . Consider an arbitrary

point x in P, and the lines 81' "

	

n+1 through x . The lines

have the properties that : a) i ~ j - 8 i n 8 . _ {x} ; b) U8, = P .i i

To pick the points for the "blocking" set S, we : 1) pick Yl , **"Yk'
yi on line 8 i , in general position, i .e ., no line in P containing

more than 2 of them (we can do this as long as (k 21 ) < n) .

2) repeat 1), k lines at a time . No line contains more than

of {y i }, where k' _ [k] + 1, and the set intersects every line

through x .

Now, consider a line 8, not containing x . et f = ix1, . . .,xj,
xj+1~

	

~xn+l}

	

Every other line of P contains exactly one point

of 8 . We pick the remaining points for S as follows : 3) repeat

2), for i = 1, . . .,j where j `- 2kn+1' 4) augment the set

obtained from 1), 2) and 3) by xj+l . . . . Ixn+1

The aggregate set S obtained from steps 1) through 4) has the

required properties of intersecting each line in P in a non-empty

set whose cardinality is less than n + 2 - j, so P has property

B(n + 2 - j) . We further note that j ^-

	

so P has property

B(n-p(n)), where p(n)

	

Vn- . This is the desired result .

EMMA 7 . et x

lines through x,

(k-1)(k-2) < 2n .

such that no Zine

Proof. Choose

containing both y l

so there are points

y 3 E 83 - <yl 'Y2>.

be a point in P, and 81 , . . .,8k be k distinct

where

Then we can choose points

in P contains more than

yl E 81 ' Y2 E 8 2 *
and y 2 . 83

other than x

There is a line in P, <y l ,y2>

intersects that line in one point,

in 8 3 not on <y l ,y2> . et

Inductively, select y i E fi , i = 1,2, . . .,k-1,

k is a positive integer solution of

in such a way that no line of P contains more than two of the collection .
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- p(n)), where

2k'

yi E 8 i ,

	

i = 1, 2, . . . , k,

2 of the y2. .



That this is possible, can be seen as follows . When k-1 points

have been selected, there are exactly (k21 ) lines in P containing

two of them . fk intersects each such line in one point . Since fk

contains n+l points, there is a point on fk which is not x, and

not on any of those (k21 ) lines, as long as n+1 > (k21 ) + 1 . But

this condition is assured by the hypothesis that (k-1)(k-2) < 2n .

EMMA 8 . As in emma 7, Zet x be a point ín P, and f 1 , . . .,f k

be k distinct lines through x, where k is a positive integer

solution of (k-1)(k-2) < 2n. Furthermore, Zet k' be the smaZZest

inteaer such that k' > k . Then we can choose points y í E f í ,

i

	

such that no Zine in P contains more than 2k' of

the yí .

Proof . Choose yl E fl , Y2 E f 2 , . . .,yk E fk as in emma 7 . Similarly

choose Yk+l E fk+l' Yk+2 E fk+2'" "y2k E 92k and then continue, in

groups of k points, ultimately reaching Y (k'-2)k+l E f(k'-2)k+l' " *'

Y(k'-1)k

	

E4(k'-1)k . Finally, again using emma 7, choose

i

Y (k'-1)k+l E f (k -1)k+l, . . .,yn E fn . We have partitioned y1 , . . nyn
into k' subsets such that no line in P contains more than 2

points from any subset . Thus no line in P contains more than 2k'

of the yi .

EMMA 9 . Select integers k and k' as in emma 8 . et f be

a Zíne in P and x(1),x(2), . . .,x(`1) be distinct points on f . We

can choose a set S ( `1) of points in P such that

a) If f' is a Zine in P, then no more than 2,jk' elements zn

S (j) are on f ', and

b) If f'

	

f is a Zinc in P containing one of the points

then S ( `1) contains at least one point . of f' .

Proof . For each x (1) , let ú1), . . .'7n1) be the lines in P,

other than f, containing x (1) . For each x (1) , choose yli) E fl i) ,

. . .,y (1) E f (1) as in emma 8 . et S (j) be the set of y(i) so
n

	

n

	

m
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so chosen . Condition b) is clearly satisfied . So is condition a), as

we can partition S (j) into j components and no line Z' J $ contains more

than 2k' points from each component . Note that S (j) is also disjoint

from ,, since it contains no x (1) , and further each point in S (j) is

chosen from a line other than D which contains some x (1) and thus no

other points of 2 .

We are now ready to prove the main result .

THEOREM 2 . SeZeet k, k' as in emma 8, and an integer ,j -- n/(2k'+1) .
Then P has property B(n+2-,j) .

Proof . Choose S (j) as in emma 9 and let S' _ {x E Z :

	

is not
one of the x(1) } . et S = S (j) U S' .

Since each line disjoint with S' is not 2 and contains one
of { (1)x

	

}

	

and each such line contains one element of S (j)

	

S

contains at least one point on each line . Since S' contains

n+1-j points of 2 and S (j) is disjoint with 2, S contains

exactly n+l-j points of 9 .

On the other hand, if 2' # $, then Z' contains at most 2jk'

points of S (j) and one point of S' . Thus Q' contains at most

2k' + I points of S .

But j -1 n/(2k'+1), so 2jk'+1 -1 n+l-j . Thus no line in P

contains more than n+l-j points of S . We further note that

k

	

2n and k' - 1/n/2, thus j - Vn/2 .

	

Q .E .D .
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suggestions and Joel Spencer, who has pointed out that the necessity

for using the multinomial distribution in Section T can be obviated

by choosing S in the following manner : For each x E F*, let x

belong to S with probability kn 5 logsn/n .
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