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Abgtract

A family F of sets han property B{a) 1f there exlats
a set 8§ whose intersection with each set Iin F {8 non-empty
but contains fewer than s elements.

F. Erdts has asked whether there exists an absolute
gconstant © such that every projective plane has property
Ble).

In this paper, the authors, as a partial answer to
this guestion, obtain the result that for n sufficlently
large, every projective plane of order n has property
Blc log n). The result is a corocllary of a thearem
applicable to somewhat more pgenerzl families of finirte
sels.

A family F af sets has property B if there is a set 5 whose
intersection with each wet in the family is & proper subset of that
set. Many algebraic and combinatorisl problems may be restated in
cerms of property B.

P. Erdds [1] proposed property Bis) as a stronger form of
property B. A family F haa property B(s) if there is a set 3
Me intersection with each set in the family is a proper subset
of that set containing fewer than = elements. Property Bla)
has bheen studied By, among others, Silverman, lLevinson, Steln, Abhott
and Erdos.

Property B 1m an Important combinatorial property, and the
telated literature 1inoludos, for example, a recent paper by
D. Kleitman on Sperner families [4].

In this paper wa conalder 2 questions:
1) P. Erdds has asked whether there exists an absolute constant c
such that every projective plane has property B(c).
2) Further, can any analogous result be obtalned for families
of sets more general than projective plenes?
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Using probabilistic methods, we obtain a partial result for
projective planes, and a somewhat more general result for finite sets:
The results obtained show that there is some constant ¢ such that,
for n large enough, every projective plane of order o has property
B{c log n), This is done in Sectiom 1.

We also obtain the result that a projective plans of order n
has property B(n - cVn). Although this i & weaker result than Che
one above, the proof is of interest because Lt is constructive. This
is done in Seetion II.

Seation I: Our main result ia the follouing.

THEOREM 1, let O <oy =uy UO<b. Suppose 0=8=1, a =1
if =0, <0 if B=1. Then for oy fized 21 thare 18 oome
g euch that if F <a a family of sete smatisfying the following
conditiona:

]

i) am s IFi‘Euzn for avery F €F
i) |F| =

]

"

then there {0 some get § pueh that €f F € P than
1) dlnﬂlog“n =|&nF| = agvtﬁl-ag‘n.

It will further be shoam that if 6 >0, a > 1 or cI:rdbh:?/uIJ
and we reatriot curselves to large n, them o, oan be chosen
arbitrarily elose to 8y while othemioe (again foy Iarge n) oy

aan be ohosen arbiirerily oloeas ta ;‘3 ab.
1
The proof requires certain lesmss, used for bounding talls of the
mitinomial sand binomial disteibutions, which are of independent

interest.

The first lemma relates the tail of 4 binomial distribution to
the largest term of the tail.




LEMMA 1. Iet Pep<l, g=1-p.

E B
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a2, (2 W =y Ep
(2} Let tf.raJ =
4 By X B=X =
] i':Jp 7 = o= WP
T, =-x
Then  tlz) = J.'a(‘:a.lp L

Proof. If jru_ = 2p, then the bound is trivial. Thus we shall
eoncentrate on the case where X 7 Zps We uge the follewlng well-
known ddentity.

S g
(3) tixy) = “:ﬂ-l”gr' (1-t) dt.

‘A simple differentiation ahows that the integrand attaine its mawimes
gt t = p. The result follows {mmedisrely.

The oext leams relates the size of a binomial coefficient {:}
to the fraction W/M.

LOMA 2, There exiots an absolute comotawt B awch that, if
e W= M, ‘then

4‘:} = i T P
rEJ”r: ! ﬁ:”'”

f. By Starling's formula, there is some comstant B' such that
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We algo need rto hound the terms of a multinemial distribution
using terms of a binomial distribution.

LEMMA 3. Let yv=1, 4+ B=0; o+y=a5=y p= A0
. . S B, ) 3
g=Bft=21-p, ¥y = rmJ fyﬁ',ffz}, bifm) = fm}p-qy. Thew hizl = ﬂvfﬁf:

Froof. Let

1, P y-l
(-Dial -0 -9 -1

hix] B 5
n e-ER- -

(1 ——16)...(1 -2

Without less of generality, we may assume A = Cf2. Since B =@,
l1-3i/B=1-3jfCc, so

x=1

3
{1"'_)|-||{l—_'_}
(8] Q= il & o e :
_ ¥, o el 4
Since
1-dsg. 2 g s
and
1-:1-51,
1
Q=
fi (1 - £y
C
osi<gly
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Since
y j =g =0, C L
and




Hence

T 22y c
0=} C=A
I s
.32 _1|l_'+'¥+E-A o i
=3-2% | € T 3
ar
log Q= 3555 . —Yo (2(e-A) + Dy + € = &)
LR ¢ TS G
or
3-=2¥ ¥C
log @ ==L . 20 . (IHIC = 0 (1),
SR T ¥

We now use these first three lemmas to obtsin & bound on the tail
ef a multinomial distribution.

LEMMA &, Let a>0, a>1, A=m, B2’ CmA+ 8,
i = kﬁ‘ﬂﬁiaggnﬁ; {where 8 ond 5 are restricied as in the slatement
af’ the theorem), T, = cn'qlagﬂn. Let pyashie),biz) be defined as
th Lawmg &, lLet
E  hiz) if T, AP
(10) Tz =4 T
E W) if wy = e

Thean
(11} Tt‘::ar'me:npinﬁlagaﬂ[nr’f + Log % + afll)—ak ¥ afl1l]
+ & log u + 8 log Tog nl.
.. &
z kn log™n
PFrogf. Sinee = = =

obtain T(x,) << tlxz). We now use the bound on t(x,) from Lemma 1
to obtain

+ 0 as n ==, we mady use Lemma 3 to

i, Ny A
(12) T{xy) <= %x,( "JIp g
(1]
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Using the bound on the binomial coefficient cbtained in Lemma 2 &8
well as our definition of p and g, we find

1 Koy T
{13) T[xﬂ) =" Xy Ky Xg TEg {E} {E‘} 4
a0 € e

Segregating by exponent,

3(1 - “'}.A.
{16) T{xﬂj << x,
gi1-= —}

and thus

Since B = n® with a > 1,

tnﬁlugan 2 1+ El g
(16) (1-£0 - exp —J'— (1 + a(1)) :
Iﬂlnalnggn
o, n LS = 1
{7 {1+37 = BXP tnkn log n{l + n(l}}‘j
and I:Bnﬁln sﬁ
(18) (=32 -~ expl-on log"n(l + of1))].

Combining (15)=(18} yields (11).

We now use this estimate to show that the tail can be made smaller

than any negative power of n.

LEMMA 5, {Let everything not apecifically defined below be def'ined
ag in Lemmz 4.} BSuppose o is boundsd awey from Both O and %,

b fized and 2 arbitrary. Then there exiat X, 2y gueh that,
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defining =z, = n{nﬁlag'.n and Tlz,) and Tlz,) as the lover and
uppar tatls of the multinemial distrilution as in Lema 4,

(19 wPrte,) = of1), 1= 1,2
Proof. We must show that k, ¢, can be chosen so that

(200 b log n + nlog"nle, (1 + log 2= 4 o(1))-uk + o(1)]
i

+ 8 logn+aloglogn=—=
as n~-=, |=1.,2,
Iirst choose k large enough to make the copfficient of

nﬂlu;.n less that =(b + &) for 1 = 1. Then chocss ©, 8o that
the same condition holds with 1 = 2.

We are now prepared to prove a preliminary version of the theores.

6. Eet a = 0. If the hypotkzses of the theores hold then the
ponaluaion alss holde if F aleso sxiiafies the additfonal conditiom

(81) fdd. | UF = meefa® Pl
FEF

Proof. Let Fk = U F, Choose k s5o that =z = 'll‘F*lnﬁlnslnfn is
PeF
integer. let g, be the event that a set 5 ¢ F* of size =z

lsiies

Isn el < nlnﬂln;'u or |[SNEF|=> clnhlu;'n.

We will prove the lemma by showing that &k and €q can be
chosen so that P(E) < 1.

Letting !I.l represent < and ilsl represent =,

PCIS N FlRenlogm) = I,  hx),
xR,e.n log n
s o= &



where | | |
Fly . |F*|-|F|
(T Al =l

223 hi{x) = 74|
Fx
£
Thus
{23) P{ls A ‘F|E_leirlﬁlug n} =T (), 1=1,2
and hence

(26) PR = T lxp) + 1050

Nowr let E be the event that a set 5§ © Fx of size =z satisfies
[s 0 F| = clnﬁlugﬂn or |81 'F'| = :Enﬁingg‘n for at least one set
F £ F. ‘Then
(23) P(E} = ¥ P(E) = ¥ [T (x) + T (x)]

FeF T WeF

i

| F |max TF{;ll'j + |F|max TF{xE)

- Tfo_i‘Jl = o{l)

1A

by Lemma 5. This proves Lemma 6.

We now observe that condition {ii. is unnecessary. If |F| is
not large enough, we may augment F by including sets disjoint from
the original sets. The conclusfon will hold for this augmented Family:
and thus must also hold for the original family F a&s well. This
proves the theorem.

Woté that our proof has asctually shown that almost all subsets of
F¥ of aiza kiF*|uﬁ'1ugan’n will be "blocking sets"™.

We may cbgerve that if & =0 eor s =1, then, in the proof of
Lemma 5, It is only necessary to make Ing? = =1l. Thus k rvan be
chosen arbitrarily close to cleth and ::';L_ arbitrarily close to
Ertzk. Thus if S >0 or > 1 then €, tan be taken arbitrarily

closa to. €y



1f 6 =0 and 8 =1, then it guffices to make

(26) 1+ 1.:3%{ 0, ak = b
L

;'._f_i;r:l: £ el Tys £=1,2,

This is équivalent to making

I “l
{2?} b.lru-l <k o< ';&'; .

@
This can be dope if g = eh{i}. In thia case e, can be made

[a}
arbitrarily close to c,. 1f ¢ =Ry s T e e chagiaa
large forcing g, to be chosen larger ; well in (20). However,

din this case we can certainly choose Cy close to eb {uz,f'ml}. We
thus ses that if

1 6>0,85>=1 or ¢, > a‘n{.u;z.n.'ull

L ey > o

then, 1f m 18 large ‘encugh, there is some set S such that
.nlnﬁlngsn =1sn F| = cznﬁlugsu for wevery TEF.

Another way of looking at the above 1s that, thinking of s
s a function of mn,

= =¢; $E =0, &>1 or c = eblo;fal,
(28)  lm inf e gy > i
= E.b(q} otherwise.

Applying the above to the case of projective planes, we immediately
‘have the following corollary.

COROLLARY. Let o = o, IF n i8 large enough, then the projective
lane of owdar n  has property Bie leg wil.




Beation IT,

We now demonstrate construction of a "blocklng set" and show that
& projective plané P of order n has property B(n - p(n)), where
plo) is of order Va.

We first indicate the method of proof. Consider an arbltrary
point x in P, and the lines ‘1"”":*1 through . The lines

have the properties that: a) i # 3= L n !j = {xl; h) U&i = P,
i
To plek the points for the "blocking" set 8, wat 1) pick Yyre-ma¥ye

¥, om line d'l." in gederal positicn, L.@., bo 11“:_{\1 P containing
more than 2 of them (we can do thia as long an ( 2 )} = n).

2) repeat 1), k lines at = time. No line contains more than 2ik'
of {yi}. where k' = [%] + 1, and the set intersects every line
through =x.

How, couslder a line £, not cootaining x. Let £ = llxl.....:r",
z}"l,...,:ﬂll. Every other line of P contalns exactly one point
of [. We pick the remnining points for 5 as follows: 3) repeat
2), for 1 =1,...,] where }§ s—z-i-'?rl; 4) augment the set

obtained from 1), 2) and 3) by =3, ..., 2T,

The aggregate met S obtained from steps 1) chrough 4) haa the
required propert{es of Intersecting each line in P In a non-empty
set whose cardinality im less than n+ 2 - 3, so P has properiy
B{n + 2 - ). We further mote that § --Vn, so P has property
28({n—pin)), where pln) -~ Vn. This is the desired resulr.

By 7. Let = be apointin P, aond t}*“"!k be ¥ diatinst
lines through o, whare k {2 o posiiive integer eolution of
(k-2)(k=2) < 8n, Them we oan choope pointa iy €0, €= ks
aguch that mo line in P oontaing more than & of the Wee

Procf, Chacse yy f &), ¥, € £+ There is a Mne dn Py <ya¥,>
contalning both Y1 and ¥ar -!3 intersects that line in one point,
g0 there are points other than x iImn *3 not on »:rl.ri.'-. Let

¥y € I3 = <ypavy>.  Inductively, select y, Ele 1= L k1,
in such a way that no line of P contains more than two of the collectio



That this is possible, con be féen as followva, When k-1 points
have been aelected, there are exactly t";l‘.l lines in F containing
two of them. -&k intersecta each such line In one point. Since !'h'
containe o+l points, there in & point on #Ir, which Is nor x, and
not on sny of those (h;'l.'ll lines, as long as pél > tk;]'} + 1. But

this condition i= s=ssured by the hypothesis that (k=1)(k-2} < 2n.

LEMMA 8. As i% Lemmg 7, let & DBe g point dn P, and #1‘“"5.':
be & digtinet linse through &, where k {0 g popitive integor

- ealutdon of (k=-1)M=3) < M. Purtheroore, lot k' be the amalleo:
integer suck that 7:"%:;—. Then ve can choowe pointa u, € 1,
t=1,8...y% ouch that no lime én 2 oonteine more than 2&k" of
the By

Froaf, Choose ¥y € hye ¥y 4 '.I!z,...,yk - !k as In Lemma 7. Similarly
chooae Yes1 € tH-l" Va2 L JH-Z'“"’ER £ ‘Ik and then continue, in

groupa of k polnts, ultisately resching ’{k'-—!}kﬂ. € z(k‘-!}lﬂ-l""'
,(k"-ljt £ ‘fl:'-—l]k . Finally, again using Lesma 7, choose

Fcr-0ib1 & faociyenrae ¥y € &. e have pagtizioead . yiyeeaay,
into k' wubsets such that no line in P contains more than 2
points From any subset, Thuw #o line in P contains more than 2k’
of the ¥y

LEMMA 9. Select integera k aond k' ao inLewa 8, Let ¢ be
a line im F and 3”1,:‘(”,...,:”] be distinot pointe on [. Wa
ean choose a eat gldl of points in F suoh that

al If &' {9a line in P, then no more than A&fk' elementa in
SM-J are on £Y, and

B) 27 40 s e tine in D aonlatiuing ome of the points 2%,
then SHI oontaing at least one point. of 1'.

Pooof. Por each =, ler e, .40 o the ltnes 1 7,

‘other than &, contalning :U'J. For each x{”. chaoae :,ri” £ z{”,

...,y:” 4 lf‘u as in Lenma 8. Let 597 ba the set of yé”' o




s0 chosen. Condltion b) Is clearly satisfied, So is condition &), as
we can partition gt into j components and no line &' # £ contains more
than 2k' points from each component. HNote that E{’ﬂ is also disjolint
from £, since 1t contalns mno x{”, and further each point in 5{'”' is
chosen from a line-other than ¢ which contains zome x{” and thus mo
othet polnte of £,

We are now ready to prove the main result,

THEOREM 2. Seleet k, k' ag in Lemma 8, and an integer J§ < n/l2k'+1)e)
Thert P haa property Bintd-i). q
Froaf. Chooge 5“:r ag In Lemma 9 and let 8' = {x € &1 =x 18 not
one of the x{i}}. Let: 8= 5{‘” i

Since ‘each line disjeint with 5' iz not ¢ and contalns one
of {x{i}}, and esch such line contains ope element of E{j}. 5
contains at least -one polnt on each line. ‘Since 5' econtaing
n+l-i points af § and S{j} is d"Is_jn:f.nt with- £, 8 contains
exactly wntl-j points of &,

On the other hand, 1f &' #°2, then #' contslns at moar 2k
points of 5{-” and one polnt of 5'. Thus £' contains at most
2k" + 1 polnts-of 5.

Bat J = nf(2k'+l), “so 2jk'+l = pil-j. Thus ne Iine fn P
containg more than oHl-] points of S. We Further note that
k- Vin and k' ~VHJI, thus § ~VayZ. Q.E.D.

ACKNOWLEDGEMERT: The authors wish to thank the editor for his helpful
suggestions &nd Joel Spencer, who has pointed out that the necessity
for wsing the multinomial distribution in Section I ecan be obviated
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