AN ANALOGUE OF GRIMM'S PROBLEM OF FINDING
DISTINCT PRIME FACTORS OF CONSECUTIVE INTEGERS

Paul Erdds and Carl Pomerance®

1. Introduction.

In [5] Grimm made the conjecture that if p,p' are comsecutive
primes, then for each integer m, p < m < p', we can find a prime factor
9, of m such that the qm's are all different. More generally, if =n
is a natural number, let g(n) denote the largest number so that for each
m e {n+l,n+2,...,n+g(n)} there corresponds a prime factor 9. such that
the qm's are all different. Thus Grimm's conjecture is equivalent to the

assertion p+g(p) = p' when p,p' are consecutive primes.
It is known that
3 5
() (log n/loglog n)~ << g(n) << (n/log n)~.

The lower bound is due to Ramachandra, Shorey, and Tijdeman [9]; the upper
bound is due to Erdts and Selfridge [3]. From the lower bound, Grimm's

conjecture for large primes follows from Cramér's well known conjecture:
. 2
lim sup(p'-p)/(log p)~ = 1.

From the upper bound it follows that if Grimm's conjecture is true, it

must lie very deep. Indeed, Grimm's conjecture and (1) imply
4
(2) p' - p << (p/log p)".

While (2) is undoubtedly true, it is generally recognized as probably
hopeless at this time. Even if the Riemann hypothesis is assumed, the
best known upper bound result on gaps between consecutive primes is not

quite as strong as (2).

As noted in [3], using a result of Ramachandra [8] a better
upper bound can be proved for g(n). Indeed from the proof in [B] it

follows that there is an a > 0 such that for all large n a positive
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proportion of the integers in (n,n+n%_u] are divisible by a prime which

15/26 c

exceeds n Using this result with the method in [3] gives g(n) < n
for some fixed ¢ > 0 and all large n. It is possible that the methods
of Graham [4] will give a further reduction in the exponent, but we have

not pursued this issue.

In [7] one of us made the conjecture that there are positive
constants cl,cz such that

(3) exp {cl(log n loglog n)%} < g(n) < exp{cz(log n loglog n)%}

for all large n. It is known that each of the inequalities in (3)
separately holds for infinitely many n. (See [3], [7], and [101.)

This paper is addressed to the following question: how does
Grimm's problem change if the factors qm are no longer forced to be prime?
Specifically, let f(n) denote the largest integer such that for each
composite m € {n+l,n+2,...,n+f(n)} there is a divisor dm of m with
1< dm < m and such that the dm‘s are all different. We obviously have
f(n) 2 g(n) for all n. We prove below that for each € > 0 we have

) n® e By el lEHE

We strengthen the lower bound by showing that
(5) lim inf f£(n)/vn 2 &

and that there is a certain set A of integers of asymptotic demsity 1
such that
(6) f(n) > 4/2n for n € A, n large.

We show there are infinitely many twin primes if and only if equality
holds in (5). Also if a certain very strong generalization of the twin

prime conjecture is true then
(7N 1im sup £(n)/va = 4v2.

Thus combining our conjectures with our theorems we have 4Y2 as both the
maximal order and normal order of f(n)f/ﬂ, while 4 is the minimal order

of f(n)//n.

In Section & we consider the function f(n;c) for n a natural number
and ¢ > 1. This denotes the cardinality of the largest subset of [n,en]

for which we can assign mutually distinct proper divisors. We prove that



there is a positive constant &(c) such that
(8) f(n3e) ~ 8(e)n as n + = .

The function &(c) is continuous and strictly increasing. The fraction
8(e)/(c-1) is the asymptotic limit of the proportion of integers in

[n,en] that fall in the maximal subset counted by f(n;c). We have

9 li$ %é%; =1, lim~§£§% = %, %‘4 iﬁfﬁ <1 for all ¢ > 1.
c+l CcHeo

It is probable that &(c)/(c-1) is monotonic, but we have not been able to

prove this.

We take this opportunity to thank the referee, John L. Selfridge,
whose request for more details concerning (6) and (7) led to the discovery
of an error in the original version. We also wish to acknowledge a helpful

conversation with E. R. Canfield concerning Theorem 3.1.

2. The proof of (4).

The first inequality in (4) is easy. Indeed if we let dm be the
largest proper divisor of the composite number m, then vm < dm <m. If

d = d, where m < k, then
m k

k—mz(k,m)zdkz&.

Thus it is not the case that both m and k are in the interval
[n+1,n+¢§] for any n. We conclude that if m,k are composite and in the
interval [n+l,n+vnl, then dm + dk. Hence f(n) = [vnl.

Our proof of the second inequality in (4) relies on some work of
Warlimont [11] (also see Cook [1]) concerning the distribution of abnormally
large gaps between consecutive primes. First note that if
Py <P, <9; <49, <4y are primes with P;4; > n, then n + f(n) < Pyds-
Indeed the six integers piqj have collectively only five proper factors
larger than 1. Our strategy is thus to find such primes with Pydq as

small as possible,.

If x 1is a real number, let pi(x) denote the i-th prime greater
than x. Let € > 0 be arbitrarily small, but fixed. Let
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S = {x: %—/ﬁ < x = % /n o, p2(x)_x > % n }
T = {x: }2- /E[ < x = % Vo A p3(m‘x)—n{x > % n].,"'12+£:} .

Let Py denote the i-th prime and let d, = From the estimates of

i Pip7Pye
Huxley [6] applied to Warlimont [10], we have a 6§ > 0 such that for all

large x,
1-§
(10) Edi < X
isx
di>pilfﬁ+e12

We apply (10) with x = vYn. 1If yu denotes Lebesgue measure and if n is

large, then (10) implies

u(s) < 2n(l-6)f2, p(T) < Sn(l_a)fz.
We conclude that there is some x with % vn < % vn such that x ¢ S v T.
Thus
Pyx) - x = ; iae s Py (n/x) - nfx < % nl’;l2+£ .

Note that pztx) < pl(nfx) (since there are many primes between % 3 /o and

/E) and that pl(x)pl(nfx) > n. Thus for large n

1 l + 12+
n o+ EM) < p,(Wpy/x) < et d a1 sxa g a1
< ek % n1/12+€(X*f alx) 4= 1 1!6+2£
9
<n+ % n?(12+€ + % n1!6+25 S« T n-”12+E “

We thus have (4) for all large n.

We comment that on the assumption of the Riemann hypothesis, it is

known that the "1/6" in (10) can be dropped. Thus the Riemann hypothesis

implies f(n) < n1f2+E for all large n.




3. Bloeking configurations.

From the definition of f(n) there is a set S = S(n) of minimal
cardinality such that § < {n+l,n+2,...,n+f(n)+1}, every member of S is
composite, and whenever we choose fBr each s € 5 a factor d5 with
1 < ds < s, then necessarily d5 = ds' for some pair s,s' ¢ S with s # s'.

Such a set § is called a blocking configuration for n.

If A is a set, denote by #A the cardinality of A. If S is

a set of composite integers, let
D(S) = {d: for some s ¢ S, d|s, 1 < d < s},

d(s) = #D(s).

THEOREM 3.1. () n + f(n) + 1 € S(n);
(14) d(S(n)) = #5(n) - 1;
(1ii) For all large n, if s € S(n) then s is either the
square of a prime or the product of two distinet primes;

(iv) For each n, S(n) i1s unique.

Proof. (i) This statement is an obvious corollary of the definition of f(n).
(ii) Let S be a blecking configuration for n. If T = §, T # S,

by the minimality of S it follows that for each t ¢ T there is a divisor

dt with 1 < dt < t and the dt are distinct. Thus d(T) = #T. Consider the

bipartite graph from S to D{S) where s and d are connected by an

edge if d|s, 1 <d < s. Since by assumption this graph does not contain

a matching of S dinto D(S), it follows from the "Marriage Theorem" of P.

Hall that there is some T < S with #T > d(T). But we have just seen that

this inequality fails if T # S. Thus the guaranteed set T must be §

itself. Let m ¢ S. Then

#S = 1 = #(S-1{m}) £ d(S-{m}) = d(8) < #s,

so d(8) = #35 - 1.

(iii) Note that if n is large, then (4) implies f(n) < n
2/3

prime factors, them it has a factor dO with 502;3 < dO <8 - For each

2/3

Thus if s,s' € S(n), s # s', then (s,s') <n 1f s, € S{n) has three

s € S(n) - {so}, let d_ be a factor with 1 < d, <s and such that the d

are distinct. But do + ds for all s ¢ S(n) - {so} for otherwise




2}3. This contradicts the definition of S{n}. Thus there is

(s,so) > n
no s ¢ S{n) with three prime factors.
(iv) Let T ¢ {n+l,n+2,...,n+f(n)+1} be any set of composite

numbers. Then d(T) = #T - 1, for if not then n + f{n) + 1 =m ¢ T and
d(T-Im}) < d(T) < #(1-{m]),

contradicting the definition of f(n). Now suppose Sl, S2 are two different
subsets of {n+l,...,n+f(n)+1} such that every member of 8,» 8, is composite,
d(si) < #Si, but if T < 8., T # 8;» then d{T)} = #T. From the proof of

(ii) it follows that a blocking configuration has these properties. Thus

to prove (iv) it suffices to show that these properties force S1 = 82.

1* 32 is a subset of the other. Thus

d(S1 us

Note that neither of S

2) = d(Sl) + d(Sz) = d(Sl n 52)

<45 - 1+ 45, - 1 - #(5, n5,)

#(s1 vS§,) -2 <d(s; vs,),

a contradiction.

4. The normal eize of f(n).

If n is large we can represent the blocking configuration
S(n) of n as a graph whose vertices are the prime factors of the members
of S(n) and two primes are joined by an edge if and only if their product
is in S{n). If the square of a prime is in S(n), we represent this as a
loop. We call this graph G{n). Each vertex of G{n) has valence at least
2 and there is exactly one more edge in G(n) than vertices. We give

examples of a few G(n).




6(132): 13 19 29 31

1 7 5
G(133): 67 L 73
2
G(134): 13 17
N/
11

Note that (4) shows that if n is large, then the largest prime

in G(n) is at most n”12+E , so that the smallest prime in G(n) is at

least 115”'2-E i

We now show (5). Let Py denote the largest prime in G(n). Say
it is connected to Py and pj where Py > pj .  (Note that we allow the
possibility Py = pi.) Now pj is connected to some Py # Py - Since we

may assume all of these primes are odd, we have
£(n) = pypy - PPy = Pl(Pj+2) = (pl-?-)Pj

=2 +2p, > 4fplpj > &'n.

Note that if f£(m) < (é+E)JB, then the above argument shows that
P, = pj + 2. On the other hand if p,p+2 are both prime, then the
configuration pz,p(p+2), (p+2)2 shows that f(pzﬂl) < 4p+4. Thus equality

in (5) is equivalent to the existence of infinitely many twin primes.

For most integers n, the interval [n+1,n+10/i] is free of
squares of primes. If A denotes the set of such =n, them A has
asymptotic density 1. In fact, the number of n = x with n ¢ A is
0(x/log x). We now show (6) for the set A.
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THEOREM 4.1. For all sufficiently large n e A we have f(n) > 4¥2n.

Proof. Suppose n € A and that f(n) £ 4/2n. Also suppose n 1is large
enough so that (iii) of Theorem 3.1 holds. Thus every member of S(n)}

is of the form pq where p, q are primes. Since the smallest prime in

G(n) is at least n5/12-5’ we may assume all of the primes in G(n) exceed 5.

We first note that no prime p > ¥n in G(n) is connected to two
primes differing by 6 or more for otherwise
f(n) = 6p > 6/n > &'2n.

Since there are no squares of primes in n+l,n+10/ﬁ , we conclude that
no two primes exceeding Y1 are connected in G(n). Denote the primes
exceeding v¥n in G(n) by Py S Py<.es <Py and the remaining primes by
9 <9y <eee <Q. Each p is connected to exactly two q's (which are
necessarily consecutive primes differing by 2 or 4) and each q is

connected to at least two p's.

If k = 2, then £ 2 3 and G(n) must contain the subgraph

Py Py Py

A2l

and so this subgraph must in fact be G(n). But Py 2 P+ 6, so that
£(n) 2 paa, - B3y > (B +6)(a;+2) - pya;
> 291 + 6q1 > 2p1 + 6n/p1 > 4/3n > 4v2n,

a contradiction. We conclude that k = 3.

Say for some i, j we have q, - q, = 4 and that g, is connected
3 i ]
to % and 9 is connected to Py - Then we must have P, < P For if not,

then
f(n) 2 Py = Ppdy z (pb+2)(qi+4) - P9y

> 4pb + Zqi > épb + 2n/pb > &/n > &2n,
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a contradiction.

We conclude that 9 =49 T 2. For if q, - q1 =4, ql is
< -
connected to P, “Pg and Py is connected to qj > 99 then qj 9 z 4

and we are in the situation just covered. Similarly we have

LS
Putting together what we have learned about ql,...,qk with the

fact that the q's are coprime to 30, we have
{ql:-"sqk} nch {q1,q1+2’ql+6nql+8}-

We conclude that G(m) must contain the subgraph

Ps P, Py Py P,

94y ql+2 ql+6 q1+8

and so this must be G(n).

Now note that Pe =Py S 2. For if Pg ~ P, z 4, then

£(n) = pglq; +2) - p,qy 2 (p,+4)(q; +2) - pyq
> 2p, + 4q; > 2p, + 4n/p, > &/'2n.
Similarly we have Py - pl = 2.
We have Py < /E;, for if not, then
f(n) = p3(q1-+6) - p3(q14-2) = 4p3 > &Y 2n.

Thus 9 + 2 >¥nf2. But then Ps = P < 6, for if not,

3
£(n) 2 pglq; +2) - pyla; +2) 2 8(q; +2) > 4+2n.

Similarly Py - pl < 6. We conclude that P, = Py =Py~ Py~ 4, so that
one of these primes is divisible by 3, a contradiction. Thus the

theorem is established.

We now give a heuristie argument for (7). However, the first
part of the argument is rigorous. Let 1 > g > 0 be arbitrary, but
fixed. Let h(x) denote the function 2x + % - 9. For each large integer

n we can find an integer Xy with the following properties:




1/4

»

vYn/2 < ®y < n/2 + 9n

2 1
(11) 1- 3 £ < h(xb) - [h(xo)] < 1= 3 €

[h(xo}] £ 39 (mod 210) .

To see that X exists, note that for 0 < o < 9

h(/a72 + anl’®) = ¥Fn - 9 + 2% o + o(a MYy,

Clearly there is a real number ag 1 < ay < 9, such that
2 def
2Tn -9 +W2a = m = 40 (mod 210).

Thus there are. positive quantities 1 > 62 > 61 > 0 such that if X is
any integer in the interval
o\ 1/4 1/4
njfz + (uo 52)11 ;g Yn/2 + (ao—ﬁl)n 5
then
-1
3 €

2
mo -3 £ < h(xo) < W,

This number X satisfies the conditions in (11).

Now let Wy = 27 - 9, so that
[h(xo)] = 2x0 + Wy = 39 (mod 210).

Thus there are infinitely many integers vy such that the nine numbers

%y +y Vo T 2y
X, i ) wo -2y + 2
a2 +y+6 w, -2y +6
*o 0
%, + v+ 8 Vo 2y + 12
v = 2y + 14

are simultaneously coprime to 210. Indeed, if y = 11 - % (mod 210), then
the first column module 210 is 11, 13, 17, 19. Since

wg T 2y = vy

the second column module 210 is 17, 19, 23, 29, 31.

+ 2%, - 222 17 (mod 210),




Thus from the prime k-tuples conjecture there are infinitely
many values of y for which the integers in (12) are all prime. We now
make an even stronger conjecture. Namely, we assert that for all
sufficiently large n there is a value of y with |y| < nlfs and such

that each number in (12) is prime.
With such a value of vy, let 9, = %, o S5 g Py =Wy - 2y and

consider the graph

p, 14 py+12  p+6 P12 Py

+8

q q1+2 q1+6 9

1

The three largest integers represented by edges in this graph are

(q,+8)(py+ 2) = xguy + y(uy=2xy) + 8wy + 2x; + (y+8) (~2y+ 2),

i

0

(q1+2)(pl+14) = %% + y(w0—2x0) + 2W0 + léxU + (y+2) (-2y+14),

(13) | (@, %6)(py+ 6) = xqwy + Y(wg=2xg) + bug + 6x) + (y46) (=2y+ 6),

while the three smallest integers represented by edges in the graph are

q,(p;+12) N y(w0—2x0) + 12x + y(-2y+12),

0

(q1+2)(p1+6) = X% + y(wO—ZxO} + 2w0 + 6x0 + (y+2) (-2y+6),

(a+6)py = xgug + y(Wy=2x)) + 6wy + (y+6)(-2y).

Since

% = V372 + ot/ = /@ + o™y, y? = 0?3,

s “h
it follows that the least of the 3 smallest numbers is the middle one for

all large n. Moreover, since ¥g an = 0(n1;4], it follows that

(q1+2)(pl+5) = EgWy + 0(n9x20) + 2w, + 6xO + 0(n2!5)

x, (W,+10) + o(n?/20)
9/20

xO([%ZH-l) + o(n’ %Y

=0+ x - xo(% - [;:1—0]) +0@’% .




Thus from (11),

1 9/20

2
n+gex) + on”" 7)) < (ql+2)(p1+6) < n+gex; + O(HQKZO).

We conclude that for all large n, we have

n < (ql+2)(pl+6) <n+e/n.

Since each of the numbers in (13) is (4/2+ o(1)Wn more than
(q1+2}(131+6), it follows that

f(n) < (&2 +e+o(L))VWn
for all large n. Since £ > Q0 is arbitrary, we have
lim sup £(n)/Vn < &/2.

This inequality (which depends on a strong form of the prime k-tuples

conjecture) with Theorem 4.1 implies (7).

5. A related problem.

We say that a set of natural numbers S has the distinct divisor
property if for each s € S we can find a divisor dgs W ds < s, such that
the dS are all distinct. If ¢ > 1, let f(nj;c) denote the cardinality of the
largest subset of [n,cn] which has the distinct divisor property.

Put another way, we can let G(n;c) denote the bipartite graph
from the integers in [n,cn] to the set of their proper divisors, where edges
connect numbers in [n,cn] to their proper divisors. Then f(njc) is the

cardinality of the largest matching in G(njec).

THEOREM 5.1. For each ¢ > 1 there is a constant 6(c) such that

f(nie) ~8(c)nas n + = .

Proof. To prove the theorem we break the graph G(njc) into little pieces
and then put them back together. Perhaps there is a more direct proof,

but we have not been able to find it.

Let B > 0 be a fixed but arbitrarily large integer. Let G(n;c,B)
denote the subgraph of G(njc) where each of the edges m, d (where
me n,end, dm, 1 €£d <m) satisfies m/d < B. Let f(n;c,B) denote the
cardinality of the largest matching in G(n;c,B). We shall show below that

there is a constant 6(c,B) such that




(14) f(n;c,B) ~ 6(c,B)n as n += .

This result implies the theorem. Indeed, if Bl < 32’ then clearly

f(n;c,Bl) = f(n;c,Bz) so that G(C,Bl) < 5(c,82). Thus

def
§(c) = lim &(c,B)

Beo
exists. HNow the number of d such that dm for some m € [n,cn] and
m/d > B is at most cn/B. Thus

f(n;c,B) < £f(n;c) = f(n;c,B) + en/B,

and so
§(e,B) £ lim

=N

f(n3c) < Tim % f(n;c) < &(c,B) + c/B.
Letting B + @, we have 6(c) = lim %—f(n;c), which was to be proved.

Let B' > B be arbitrarily large but fixed. If m 1s any positive
integer, we can factor m = a(m)b(m) where a(m) is the largest divisor of m
that is coprime to B! . Let G(n;c,B,B') denote the subgraph of G(n;c,B)
where we take only those m ¢ [n,cn] with b(m) < B'. We shall show below
that there is a constant 6(c¢,B,B') such that if f(n;c,B,B"') is the

cardinality of the largest matching in G(n;e¢,B,B'), then
(15) f(n;c,B,B') ~ 8§(¢,B,B")nas n += .

In the same way as the theorem follows from (14), we can show (14) follows
from (15). Indeed, if Bi < Bé, then f(n;c,B,Bi) < f(n;c,B,B;). Thus
6(C,B,Bi) = G(C,B,Bi) so that

def
6(c,B) = 1im &8(c,B,B")

B'ow
exists. Now the number of m € [n,cn] with b(m) > B' is at most
v
E: en/b
b>B'
where ' denotes the sum over those b free of primes exceeding B. Since
L' 1/b < e, it folleows that

1im 3 1/b = 0.
B'ww b>B'



But

L]
£(njc,B,B') < f(n;c,B) S £(njc,B,B') + 2. cn/b,
b>B?

so that

=

f(njc,B) < 8(c,B,B') + 3 ooy

6(c,B,B") < lim ;-f(n;c,B) < lim
o i b>B"'

Letting B' + =, we have (14).

If a is an integer coprime to B!, let G(n;c,B,B',a) denote the
subgraph of G(n:;c¢,B,B') where we take only those m € [n,en] with a(m) = a.
Note that if m, d is an edge in G{n;c,B,B',a), then ald. Indeed, m/d < B
and (a,B!) = 1, so ald. A corollary is that if a; # a,, then any connected
component of G(n;jc,B,B') does not intersect both G(n;c,B,B‘,al) and
G(n,c,B,B',az). Indeed, if m, d and m', d are two edges in G(n;c,B,B"),

then a(m)ld|lm' and a(m")| d|lm, so that a(m) = a(m').

It thus feollows that a maximal matching in G(n;c,B,B') corresponds
to a union of maximal matchings in the G(n;c,B,B',a)'s. If f(n;¢,B,B",a)

is the cardinality of the largest matching in G(n:c,B,B',a), then

(16) f(n;c,B,B") =Zf(n;c,B,B',a).
a

Although there are many terms in this sum, we note that up to isomorphism
there are really only a bounded number of different graphs G{n;c,B,B',a).
Indeed, we can list the numbers b £ B' composed solely of the primes up to

B in increasing order:

b1 < b2 <ien% bk.

Then for each a for which G{(n;c,B,B',a) # @ there is an i, j with
1<1i%3j <k and such that the vertices in [n,cn] that are in
G(n;c,B,B"',a) are bia’bi+la""’bja‘ In addition, the edges in
G(nj;c,B,B',a) connect a number ba to a divisor da where 1 <b/d < B. For

each pair i, jwith 1 =1 £ j £ k, let Gi denote the bipartite graph

Byyyreeraby
1 <b/d £ B. Thus we have seen that each G(njc,B,B',a) # ¢ is

-3

from {bi } to factors where b, d is an edge if dlb and

canonically isomorphic to a Gi j; and so if fi 3 is the cardinality of
» ¥

the largest matching in G , then

ilj

fi,j = f(n;c,B,B',a).
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Let g, j(n;c,B,B') denote the number of values of a with
’
G(n;c,B,B',a) canonically isomorphic to Gi o Then from (16), we have
k]

f(n;c,B,B') = (n;c,B,B").

f. .8
1T I _
Thus to prove (15) and ultimately the theorem it is sufficient to show

there are constants 61 j(c,B,B‘) with
3
;¢,B,B') ~ &, .(c,B,B' + o
gi,j(n,c, ,B") i,:l(c’ ,B")n as n

(17)
or gi’j(n;c,B,B') =0(1) as n*+= ,

For G(n;c,B,B',a) to be canonically isomorphic to Gi j it is

necessary and sufficient that

(a,B!) =1, b, ,a <n Sbia, and bja <en <b,, .a

1 j+1
(vhere we let by =0, by, = =). Let
1 c 1 c
o = max {7, , B =min ]—-—-—,—} :
;bi P41 haey™ By

Then the difference between g j(n;c,B,B‘) and the number of a ¢ [an,Bn]
3
with (a,B!) = 1 is at most 2. This possible error is caused by the

ambiguity of the 2 possible extreme values for a. Thus if a < B,

gy j(n;c,B,B') ~ (B—u)?—ggi—}n as n> @

while if a = B, then
g, .(n;c,B,B') = 0(1) as n > .
i,3

This proves (17) and thus the theorem.

We now collect together some results about the function §(c).

THEOREM 5.2. (1) The function 8(c) is continuous and strictly inereasing,

(ii) 1/2 < 8(c)/(e-1) < 1, &(e) < cf2,

(i) lim  8(c)/(c-1) = 1, lim 8(c)/(e-1) = 1/2.

et cr=

Proof. Let S be a subset of [n,cn] with the distinct divisor property
and let € > 0 be arbitrary. If §' denotes the set of even numbers in
(ecn,(c+e)n], then S U S' has the distinct divisor property. Indeed, the
members of S' can be mapped to their halves; this does not interfere

with the divisors of members of 5. We thus have




f(nje) + enf2 ~ 1 < f(njc+e) £ f(n3c) + en,

so that

6(c) + /2 < 8(e+e) < 6(c) + €.

This proves (7).

The even numbers in [n,en] have the distinct divisor property.
A proper divisor d of any number in [n,en] satisfies d € ecn/2. These

two observations immediately give
(18) (c=-1)/2 < 8(e) < ¢/2 for all ¢ > 1.

Therefore 11m §(e)/(c-1) = 1/2, which is part of (247Z). To see that we
can make the first inequality in (18) strict, note that the small odd

multiples of 3 in [n,cn] can be mapped to 1/3 of themselves and this will
not interfere with mapping evens in [n,en] to their halves. Specifically

we hawve

2(e-1)/3, 1 <c< 3/2
$(c) =
(e-1)/2 +1/12, ¢ = 3/2,

so that §(e)/(c-1) > 1/2 for all ¢ > 1, proving part of (Zi).

To see that the second inequality in (18) is striet, suppose not,
so 8(c) = ¢/2 for some c. If c¢' > ¢, the argument that gives (Z) shows
that

§(c'y = 8(c) + (c'=-e) /2 =c"/2

so that 8(c') = ¢'/2. Thus we may assume the value of ¢ with §(c) = ¢/2
also satisfies ¢ =z 2. If Sn c [n;cn] ie a maximal set with the distinct
divisor property, then #Sn = cn/2 + o(n). But each proper divisor of a
member of Sn does not exceed cn/2. Therefore, but for o(n) exceptions,

we can map the integers in [1,cn/2] to distinct multiples in [n,en].

Since ¢/2 =z 1, we thus have a subset Tn c [1,n] with #Tn = n + o(n) such
that the members of Tn can be mapped to distinct multiples in [n,en].

Let t denote an arbitrarily large, but fixed integer.

Consider all of the integers

K, 2k, ...tk




’ 5 n
where k runs over the integers in (?%T 2 ?]. These integers are all

different, for if ik = jk' with k < k', then
t i _k'  t+l
t-1°3 k St ¢
a contradiction. Then for some k ¢ (-E-ET,-:-] and for each n bigger than

some no(t), the set Tn contains all of k,2k,...,tk. For if not, then

1

t 2+t

#Tns(l— Jn+1,

contradicting #Tn =n + o(n). Thus if n = no(t), there is some

k e (Ef%’%] such that k,2k,...,tk all have distinct multiples in [n,cn].
It then follows from Theorem 2 in [2] that

e B (%e + o(1)) /log t/loglog t

where the "o(l)" tends to 0 as t + ». But this inequality fails for
large t. This contradiction shows that &(ec) < c¢/2, proving another part
of (i7).

The second inequality in (18) shows that &(ec)/(c-1)< 1 for ¢ > 2.
Suppose now 1 < ¢ < 2. Let T denote the set of integers in [n,en] not

divisible by any prime up te e¢/(c-1). Then
#T ~ {(c-l}]]l (1-1/p)In as n »+ =

where 1'[l denotes the product over primes p < ¢/(e-1). If dlt, d <t,
t € T, then d < l:nfpo where Py is the first prime exceeding c/(c-1).
Moreover, d 1is not divisible by any prime p £ ¢/(c-1). Thus the number

of proper divisors of members of T is
< (1 + o(l)){(cfpo)ﬂl (1-1/p)In as n + =,

Since cfpo <¢ -1, it follows that
(19) gfe}) £ ¢ - 1.~ {(c—l)Hl (1-1/p) - (c,"po)Hl (1-1/p)} <ec-1.

This completes the proof of (Z7).

It remains to show lim, 6(c)/(c-1) =1. Let Py <Py denote the
C
first two primes with pzz‘pl < e¢. Let U denote the set of m ¢ [n,cn]

divisible by some prime below Py Then
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tu~{(c~ 1)(1-112(1—1;*;:))}:1 as n +®

where HZ denotes the product over the primes p < Py- If m ¢ U, let p(m)
denote the least prime factor of m. Then the mapping m + m/p(m) is

one~-to-one on U. For if mlfp(ml) = mzfp(mz) where p(ml) < p(mz}, then

1< p(mz)/P(ml) = m2/m1 < e.

Since p(mz) < Py, we have p(mz) = p(ml) so that m, = my . Thus the

mapping is one-to-one as claimed. We conclude that f(n;c) = #U, so that
8§(c) = (c-1)(1- n2(1 -1/p)).

By the prime number theorem pyre @ co 1+. Thus Hz(l— 1/p) diverges

to 0 as c¢ —+ 1+. We conclude that

lim inf &(c)/(c-1) = 1.
et

Combined with (19), we have lim+ §(c)/(c-1) = 1.
e+l

6. Further comments.

In section 3 we proved that if =n is large, then every member of
n's blocking configuration is a product of two primes. We have computed
the blocking configurations for all m € 436 and we found that in each case
every member is the product of two primes. We thus conjecture that there
are no exceptions, that for every n, S(n) consists solely of integers the

product of two primes.

Is ## S(n) bounded? In particular, can this be seen to follow

from our other conjectures?

Let fl(n) be the corresponding function to f(n), but now we allow
the divisor 1 to be used (but only once, of course). The function fl(n)
behaves very much like f(n). The only change is that the numbers in (5),
(6), (7) are different.

Suppose in the definition of f(n), instead of asking that
me [n+1, n+f(n)] be composite, let us ask that m has at least three
(or r), not necessarily distinct prime factors. The blocking sets get
much more complicated (in fact, how large is the smallest blocking set for

r prime factors?) and it seems that instead of f(n):::n%, the corresponding
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function fr(n) will have an exponent that increases with r. Finally
suppose we only want that for almost all m in [n+1, n+F(n)] there
should be proper factors dm of m, distinct for different values of m.
Then from the inequality 8(c)/(c-1) < 1 of Theorem 5.2 it follows that
F(n) = o{n). Put another way, if F(n) is any functionm such that for each
n, [n+1, n+F(n)] contains a subset of size (1+0(1l)) F(n) with the
distinct divisor property, then Theorem 5.2 implies F(n) = o(n).

From the proof of Theorem 5.2, it follows that the functiom
¢/2 - 8(c) is positive and non-increasing. It therefore tends to a limit.

Is this limit 0?7 That is, do we have &(c) = ¢/2 + 0(1) as ¢ + «?

Is the function §(c)/(c-1) monotone? Is it strictly monotone?
If the latter is so, the following corollary holds. For each number
@, 1/2 < @< 1, let F(nja) denote the largest integer so that in
[n,n+F(nja)] there is a subset of cardinality at least aF(nja) with the
distinct divisor property. Then there is a number y > 0 such that
F(n;a) ~yn as n + . In fact, if y exists, then clearly 6(y+1)/y = a-
If we knew that §(c¢)/(c-1) were strictly monotone and if B denotes
the inverse function, then vy = B(a) - 1. Can y be proven to exist without

using 6(e¢)/(c- 1) strictly monotone?

In [2] we consider a problem that is in a sense "dual" to the
considerations with f(n). With f(n) we map all composite numbers just
above n to distinet divisors. 1In [2] we map the first n integers to
distinct multiples just above m. Specifically, we let f(n,m) denote the
least integer so that in [mtl,m+f(n,m)] we can find ayse-esdy with
ﬂai for 1 = 1,...,n. We establish some results on the average order and
maximal order of f(n,m) (considered as a function of m) and we also

obtain estimates for f(n,n).
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