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During my very long mathematical life, which has now extended for 50 -years, i

made conjectures in different subjects . My conjectures in set theory most of

which are joint work with Hajnal, Rado, Milner and others I shall practically

ignore since several survey papers appeared on this subject - a new one would

clearly be needed but I am certainly not competent to write it alone . Thus I will

concentrate mainly on number theory, geometry and various branches of analysis
1

and also just for completeness I mention some of my few conjectures in topology .

I will almost entirely discuss only solved or at least partially solved conjec-

tures and in order not, to make the paper too long I do not attempt completeness,

also since I have to finish the paper in somewhat of a hurry, I shall have to

rely greatly on my memory which despite my enormous age, is still quite good but

is not (and in-fact never was) infallible and so I apologise for the omissions .

First of all I state some of my oldest conjectures all from the early thirties

(1930's not 1S30's) .

1 . Let l < a I < . . . <ak < n be a sequence of integers . Let cI = 0 or 1 and assume

that all the 2k sums Ek_lEiai are all distinct . Is it true that

(1.)

	

max k = lo g n + 0(1) ?
lo 2

and is it true that for some n

(2)

	

max k > lo g 2 I + 1 ?
g

This conjecture was published only in the late fifties and was before this date

rediscovered by L . Moser . (1) is still open, the best upper bound known for (1),

due to Moser and myself, is

Max k < log2 +
log

llog2n + 0(1) .
g

	

g
(2) was proved by Conway and Guy and it has been conjectured by some that in fact

max k
< Clog2Z

+ 2, It has not yet been proved that (2) holds for all suffi-

-------------------------------------------------------------------------------
1 5ince I wrote several survey papers on number theory and combinatorics, I will

mention mainly relatively recently settled conjectures .
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ciently large n .

P . Erdüs, Problems and results in additive number theory, Coll . sur la théorie

des nembres, Bruxelles, George Thone, Liége ; Masson et Lie, Paris, 1955 127-137 .

J . H . Conway and R. K. Guy, Solution of a problem of P . Erdos, Colloq . Math .

20 (1969), 307 .

2 . Let f(n) _ '_1 be an arbitrary function defined on the integers . Is it true

that to every C there is a d and an m so that
m

(1)

	

I

	

E

	

f(kd) I > C ?
k=1

This conjecture which was made of course under the influence of the ;then new)

theorem of van der Waerden on arithmetic progressions has never been seriously

attacked .

A weaker form of (1) states : if f(n) _ ±1 is completely multiplicative, then

I En k-= ] f(k) l is unbounded ..

3 . Finally here is my old conjecture with rurar. which was also made under the

influence of van der L9aerden's conjecture : it true that every sequence of

positive density contains arbitrarily lof:g arithmetic progressions ?

This conjecture was proved nearly 10 years ago by Szemerédi in a most ingenious

way . Later a quite novel ;roof using ergodic theory was found by Fürstenberg .

I discussed this problem in several survey papers thus here I restrict myself to
stating a stronger conjecture of mine . Is it true that if 1 < a l < . . . is an

infinite sequence of integers for which E-- . _- then the a's contain arbitrarily

long arithmetic progressions " I offer 3000 U .S . dollars for a proof (or dis-

proof) of this conjecture, if true, this would of course, imply that there are

arbitrari'y long arithmetic progressions among the primes .

E. Szemerédi, On sets of integers coistair;in, no k elements in arithmetic progres-

sion, Acta. Arith . 27 (1975) . 199-'45 . Th?s paper contains extensive references

to the older literature .

H . Fürstenberg, EE^godic`behavicur of diagonal measures and a theorem o,f Szemerédi,

J . d'Analyse Math . 31 (1977) 209 - 256 . !'
H . Fürstenberg and Y . Katznelson, An ergodic Szemerédi theorem for commuting

transformations, J . Analyse Math . 34 (1978), 275-291 .

For many further problems and results on combinatorial number theory see my book-

let with R . L. Graham, Old and new problems and results in combinatorial number

theory, Monographic No . 28 de L'Enseiguement Math ., 1981 .

I

In this chapter I discuss conjectures in geometry .
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§i . I have to start with a prehistoric conjecture, the so called Erdüs-Mordell

inequality : In 1932 I conjectured that if ABC is a triangle and 0 a point in the

interior, then OA + ÓB + ŐC ? 2( OX + OY + OZ ) where X is a point on BC and
OX -L BC etc . In 1934 this inequality was proved by L . J . Mordell . As far as is

known at present I was lucky enough to find a genuinely new inequality .

Several proofs have been found and many extensions and generalisations . Hero I

give only a small sample of the relevant literature :
L . J . Mordell, Kozépisholai Mat . Lapok 11 (1935), 146-148, see also American Math .
Monthly, 44 (1937) 252 .
L. Fejes-Téth, Laserungen im der Ebene auf der Kugel and im Raum, Springer Verlag
1953 pages 12 and 28 .

§2 . In 1932 . E . Klein (Mrs . Szekeres) asked : Let f(n) be the smallest integer

for which any set of f(n) points xl, . . .,xf(n) in the plane, no three on a line,
always contain a subset

xii
., x • which are the vertices of a convex polygon .

She proved f(4) =5 and conjectured that f(n) is finite for every n . Szekeres con-
jectured f(n) =2n-2 +1 and this was proved by Makai and Turán for n = S . Szekcres
and I proved

2n-2 + 1 < f(n) < ( 2n-4
n-2

) .

A few years ago I asked : Is there an n k so that if x l , . . .,x nk are nk points in
the plane, no three on a line then one can always find k of them xi 1

	

•
, . , ,

which form the vertices of a convex polygon which contains none of the x i in its

interior . Trivially n4 =5 and Ehrenfeucht and Harborth proved that r. 5 exists and
in fact Harborth proved n 5 =10 . It is not yet known if n 6 exists and in fact it
is very doubtful if nk exists for every k .

H . Harborth, Konvexe Fünfecke in Punktmengen, Elemente der Math . 33 (1978), 116-

118 .

P. Erd6s and G . Szekeres, A combinatorial problem in geometry, Composí.ti.o Math . 2
(1935), 463 - 470 and On some extremum problems in geometry, Annales Univ . Sci .
Budapest, Sect . Math . 3-4 (1961), 313-320 .

See also

P . Brdös, The art of counting, selected writings, M .I .T . Press, 1973 .

§3 . Let f(n) be the largest integer for which there are n distinct points x l , . . ,
xn in the plane for which there are f(n) pairs x i , xj with d(x i ,xj ) =1, d(x i ,x ;)
is the distance between x

r. and x j . I proved that for some positive constants c l
and c .,

(

	

1+c,/log log n
1) n 1

	

< f(n) < c,n 3/2

and conjectured that the lower bound gives probably the right order of magnitude .
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Szemeredi and Azsa proved	 f(n2 i 0 . I offer 300 U .S . dollars for the proof

(or disproof) of my conjecture and would pay already for f(n) <n
l+s

for every f >0

and n >n 0(F) .

Let g(n) be the largest integer for which there always are at least g(n) distinct

numbers among the d(x i,x
1
.), 1 < i < j <n . I proved

- - -

(2)

	

(n-1) -` - 1 < g(n) < c n (log n) -~

and conjectured that in (2) the upper bound gives the correct order of magnitude .

The lower bound in (2) was improved by L . Moser to c
n2/3

which is the best result

at present .

I conjectured that if the points x l , . . .,x n are the vertices of a convex polygon

then g(n) > [Z] . This conjecture was proved by Altman . Szemerédi conjectured

that the same result holds if we only assume that no three of the x i are on a

line, but he could prove this only with [3] instead of [2 ] .
P . Erdős, On some problems of elementary and combinatorial geometry, Annali di

Math . Ser . IV, V 103 (1975), 99-108 . This paper contains extensive references to

all the problems discussed here . See also, Some combinatorial problems in geome-

try, Geometry and differential geometry, Proc . Haifa, Israel 1979, Lecture notes

in Math . 792, 46-53, Springer Verlag .

G . Purdy and I plan to write a book on these and related problems .

II .

Here 1 discuss conjectures in number theory . Not to, make the paper too long here

I will only discuss conjectures which have been settled recently .

§1 . Let 1z
n = 1 be an arbitrary sequence o£ complex numbers . Put

n
A
n
= max

	

r (z-z
1
.) ~ .

I conjectured more than 20 years ago that

(1)

	

lim sup A
n

= .

(1) clearly belongs to the subject called irregularities of distribution started

by van der Corput and Aardenne-Ehrenfest . Very recently Wagner proved (1) using

a method of W . Schmidt .

I expect that for some c >0 and for all n >n o (c) .

1E A > n
+c

k=1 k

and that An can be bounded for only "very few" values of n .

I stated many problems on diophantine approximations in two of my survey papers .
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In the second one I give extensive references to the results obtained on these

problems . Thus, not to make this paper too long, I refer here only to these

papers . Here I only restate one of the problems which has been settled since

then by de Mathan and Pollington (independently) : Let n l <n 2 < . . . satisfy

nk+l/nk > c > 1 . Then there is always an irrational a for which the fractional

part of n
k
a is not everywhere dense . It turned out that the set of these a's has

Hausdorff dimension 1 in every interval .

P . Erdős, Problems and results on diophantine approximations I and II, Compositio

Math. 16 (1964), 52-65 and Répartition Modulo 1, Coll . Marseille- Luminy 1974,

Lectures notes in math . 475, Edité par G . Rauzy, 89-97 .

G . Wagner, Problem of Erdős in Diophantine approximation, Bull . London Math . Soc .
12 (1980), 81-88 .

B, de Mathan, Number contravening a condition in density modulo 1, Acta Math .Acad .

Sci . Hungar . 36 (1980), 237-241 .

A . D . Pollington, On the density of sequence {Tik&}, Illinois J . Math . 23 (1979),

511-515 .

§2 . Denote by n(x) the number of primes not exceeding x . I conjectured that for

every x > y

(1)

	

7T (X + Y) < a (x) + n(Y)

Perhaps it is presumptuous to call (1) my conjecture . Implicitly it is certainly

stated in earlier papers of Hardy and Littlewood .

A few years ago Hensley and Richards showed that if the so called prime k- .tuple

conjecture of Hardy and Littlewood holds then (1) certainly fails . The prime

k-tuple conjecture states as follows : Let {al,a2, . . .,ak) be any set of k inte-

gers . The necessary and sufficient condition that for infinitely many n all the

integers n + a j , 1 <j <k should all be primes is that {al, . . .,ak} should not form

a complete set of residues for all p . The necessity is of course obvious, the

whole difficulty is to prove the sufficiency, and in fact the conjecture is pro-

bably unattackable by the methods at our disposal since, in particular, it would

imply that there are infinitely many prime twins . Hensley and Richards in fact

proved that if the prime k-tuple conjecture holds then there is an absolute con-

stant c >0 so that for every y > y
0
there is an x for which

(2)

	

IT (x +Y) - n(x) - n(Y) >

	

cy 2
(log y)`

In our paper with Richards we disagreed on a conjecture. I believe that for

sufficiently large c and every x >y in (2) the inequality has to be reversed and

Richards believes that (2) can hold with arbitrary large c . I expect none of us
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alive now will know the truth . Straus (correctly in my opinion) observed that

(1) was wrongheaded in the first place . 'Me correct form of (1) should have been.

(3`

One would expectt t . .w_ ( - L , 2 ) contains more primes than any other interval of

length

	

since this is not quite true perhaps (3) should be modified to

1:.(x: y) < r(x) + max *(t, t+Y), -Y<t<0,
t

where ,r(t, t+y) denotes the member of primes in (t, t+y) . If (3) or (3') holds

then it is immediate that (2) holds as I conjectured . In any case the method

of Hensley and Richards can not be used to disprove (3) or (3'),

D . Hensley and Ian Richards, Primes in intervals, acts. Arith . 2S (3 .974), 3375-391 .

P . Erdős and Ian Richards, Density functions for prime and relatively prime num-

bers, Monatshefte frir Math. E3 (1977), 99-112 .

§3 . Rankin proved in 1938 that if p l <p-, < . . . is the sequence of consecutive

primes then for infinitely many n

(1)

	

Pr.+l - pn ' c L n , for some constant c >0,

L _ loan -log log n •log log log n

(leg log log n) -

I offered 10,000 (U .S .) dollars for, a proof of

(3')

,r(x+y) _

	

(<` + 2,

(2)

	

11 sun
(pr

	

p )-I

	

n

I proved that for infinitely 1uac:y n

(3) Min (p n,1 - pn ' r̂ n - p n _ 1 > c 2 L n

and conjcctured that for every k

(4)

(5)

	

lím fk +I (x) /f k ('x) = 0 .
x-.

0M in ,_k
( p it +i+I

	

pn+i) > -k L n .

Very recently Maier proved (4) in a very ingenious way . Nevertheless I am cer-

tain that, if we put

Max

	

Min

	

(pn+i+l - Pn+i )

	

fk (x) '<x 0<i<k
n

	

-

then

I can not even prove that the lim inf in (S) is 0 . It would be of interest to

try to prove (S) for other sequences defined by number theoretic properties, e .g .

for the squarefree numbers, but I have not succeeded to get any interesting result



lim
inf Pnlog

nPn
< 1 .
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No doubt the value of the lim inf is 0 . I never could prove

(7)

	

lim inf Max
(pn+l

loPn
Pn - Pn-1) < 1,

S n
but of course there is no doubt that the value is 0 here too .

R. A . Rankin, The difference between consecutiv

	

rime numbers, J. London Math .

Soc . 13 (1938), 242-247 .

H. Maier, Chains of large gaps between consecutive primes_ , Advances in Math . 39

(1981), 257-269 .

P . Erdős, Problems and results on the differences of consecutive primes, Publica-

tiones Math . Delrecen 1 (1949), 33-37 .

P . Erdős, The difference of consecutive primes, Duke Math . J . 6 (1940), 438-441 .

§4 . Sidon asked me nearly 50 years ago to find a sequence a l < a 2 < . . . for which

the sums a i +a j are all distinct and for which ak tends to infinity as slowly as

possible . Sidon called these sequences B 2 sequences and proved that there is a

B 2 sequence with a k <ck4 and he asked for an improvement . He expected that there

should be a B 2 sequence satisfying a k < k2+E for all k > k o (E) . I observed that the

greedy algorithm gives ak< ek 3 (this was also observed by Chowla and Mian who

further conjectured that the greedy algorithm gives a k <k2+c for some 0 <c <11 ) .

I conjectured that there is a B 2 sequence satisfying ak = o(k 3 ) . This modest

looking conjecture remained open until very recently Ajtai, Komlós and Szemerédi

proved it by a new and ingenious method . Unfortunately their method does not give

a B2 sequence for which ak <k3-E holds for some positive c >0 .

M . Ajtai, J, Komlós and E . Szemerédi, On finite Sidon sequences, European J . Comb .

2 (1980), 1-11 .

For further problems and results on these and related problems see the excellent

book of H . Halberstam and K . F . Roth, Sequences, I, Oxford Univ Press 1966 and A .

Stökr, Gelöste and ungelöste Fragen über Busen der Natürlichen Zahlenreihe, I and

II, J . refine u . angew . Math . 194 (1955), 40-65 and 111-140 .

55 . Let f(n) be an additive function for which f(n+l) - f(n) -+0 . I proved that

then f(n) = clog n . I further conjectured that if f(n+l) - f(n) < c then f(n) _

c l log n + g(n) where g(n) is an additive function satisfying lg(n)l<c l . This con-

jecture was proved and generalised by Wirsing in several beautiful papers .

6 5
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Let f(n) _ ±1 be a multiplicative function . I conjectured more than forty years
ago that

x
li.m 1 E f(n) .xx-

	

n=1

always exists and is 0 if and only if

	

E

	

1 =
f(p)= -1 p

Halász and Wirsing in a series of brilliant papers proved and generalised this

coniecture .

G . Halász, On the distribution of additive arithmetic functions, Acta Arith . 27
(1975), 143-152, On the distribution of additive and the mean values of multiI li-
cative functions, Studia Sci . Math . HuTig . 6(í97l), 221-133 and Acta Math . Acad .
Sci . Hungar, 23(1972), 425-432 .

E . Wirsing, Das asymptotische Verhalten vun Suimnen über multiplikative Funktionen
II, Acta . Math . Acad . Sci . Hungar, 13(1967), 411-467 .

E . Wirsing, A characterisation of log n as an additive arithmetic function, Inst .
Naz . di alta Math . Symp . Math, vol . IV., Acad . Press . 1974, 45-57 . See also a
forthcoming paper of Wirsing given at the Durham conference on number theory in

7979 .

I . Ruzsa, On the concentration of additive functions, Acta . Math . Acad . Sci . Hun-
gar . 36(1980), 215-232 .

N . G. Tchudakoff, Theory of the characters of number semigroups, J. Indian Math .
Soc . 20(195cí), 11-15 .

	

~~

§6 . T(n) denotes the number of divisors of n and T + ( n) denotes the number of in-

tegers k for which n has a divisor in (2k 7k+1)

	

One of my very old conjectures
states that almost all integers n have two divisors.ú l <d2 <2d 1 . This conjecture
is still open . I proved that the density of these integers exists but I could

never prove that it is 1 . In trying to prove this I conjectured that for almost

all n T+(n)/'T(n) i 0 . In a recent paper Tenenbaum and I disproved this conjecture .

In the Journee d'Arithmetique at Luminy 1978 Arterisque 61 p .73 I state : Put
(1 =d l < . . . <dT(n) =n are the divisors of n)

T(n)-1
Q(n) =

	

i E l di /d i+1

Prove that for almost all n Q(n) -' . . (I once claimed that this would imply my
conjecture on d i <d i+l < 2dí . This was nonsense .) It is trivial that Q(n) - - for
almost all n . I hope that I can prove that Q(n)/T(n) has a distribution function

(this should follow from our work with Tenenbaum) . My old conjecture on divisors
would only follow if I could prove that for almost all n Q(n) >-5

1
- r(n), which is

almost certainly false .

	

y
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P. Erdős and G . Tenenbaum, Sur la structure de la suite des diviseurs d'un entier_ ,
Annales de l'Inst . Fourier 31 (1981), 17-37 . This paper has many references to
the older literature,

In July 1981 at the number theory meeting in Budapest, Tenenbaum and I in fact
proved that Q(n)/r(n) has a continuous distribution function .

§7 . Let 1 < a l < a 2 < . . . be a sequence of density 0, Put A(x) =
a .

E
<x

1 and denote
i

by A,,(x) the number of distinct integers of the form a . +a . < x and by B(x) the

number of distinct integers of the form 0 <a . - a . < x . I conjectured that if

A(x) = o(x) then

lim
suA2(x)

>

	

B(x)p	
A(x) 3 and lim sup A(x) =

W
.

I observed that the first conjecture if true is best possible . Freiman proved my

first conjecture and Ruzsa my second . Ruzsa further proved the following conjec-

ture of mine : There is a sequence of integers 1 < a l <, . . satisfying

	

E

	

1 <
ai < x

logxx and every integer is of the form a l +2k

I . Ruzsa, On a problem of P . Erdős, Canada . Math . Bull . 1S(1972), 309-310, On

difference sequences, Acta Arith, 25(1973/74), 151-157, On the cardi .nality of
A + A and A -A, Coll . Math . Soc . J . Bolyai 18, Combinatorics, 1976 edited by A .
Hajnal and V . T, Sos, 933-938 .

G, A . Freiman, Foundations of a structural theory of set addition, Vol . 37, trans-

lations of math. monographs, Amer . Math . Soc . Providence (R .I .) (1973) .

§8 . A system of congruences a i (mod ni ), 1 <n l <n2 < . . . <nk is called covering if

every integer satisfies at least one of these congruences . My main unsolved pro-

blem here is whether n 1 can be chosen arbitrarily large . This remains unsolved .

Selfridge and I asked if all the n i can be odd . This problem also remains open .

I asked : Is it true that for every c there is an n for which o(n)/n > c but there

is no covering system whose moduli are the divisors of n ?

This question was recently settled affirmatively in an ingenious paper of Haight .

For further results and problems on covering congruences see my booklet with

Graham quoted in the introduction .

J, A, Haight, Covering systems of congruences : a negative result, Mathematika

26 (1979), 53-61,

§9, Denote by N(x,ö) the maximum number of points p 1 , .,,,pn which can be chosen

in a circle of radius x so that the distance between any two of them differs by at

least d from every integer . I conjectured that

N(x,ö) = o(x) and N(x,d) ->
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The first conjecture was proved by Sarkozy who proved

Ai(X,6) < -_cx

6 3 1og log x

Graham proved the second conjecture, he in fact proved

N(x, 111 ) > 1Q log x

Sárközy showed that to every e >0 there is a 6(E) > 0 so that for every 6 <6(E)

N(x,ö) > x`

Perhaps for every e >0 N(x,3) < x
",+C

Sárközy, On distances near integers I and II, Studia Sci . Math . Hungar . íl(1976),

37-50 and 105-111 .

§10 . D. Silverman and I asked the following question : Let 1 <a l < . . .< ak < n

be a sequence of integers for which none of the stuns ai +a j is a square . Deter-

mine or estimate max k . Trivially max k >
l3

to see this observe that if a k

	

1

(mod 3) then the sums a i +a . can never be a square . Can k be substantially larger

than n/3 ? Is there an infinite sequence 1 <a l < . . . of integers of density > 3
for which none of the sums a . +a . are squares ?i

	

1

I further asked : Let d be any positive integer, u l , . . .,u t , t >d/3 are residue

classes mod d . Is it then true that for some 1 < i < j < t u .
+uj

must be a quadra-

tic residue (mod d) ? Marsias showed that the answer is negative, he gave 11

residues mod 32 so that none of the sums ui +uu are quadratic residues . Lagarias,

Odlyzko and Shearer proved that if d # 32k then my conjecture is correct . They

further proved that in general

max k < (0 .48 + o(1.))n .

I then asked : Let 1 < n 1 < . . . be an infinite sequence of integers and 1 <a, <a 2 <

. . . be an infinite sequence of integers for which a i +aj # nu for every choice

of the integers i, j,u. When can we assertt that the density of the sequence

al <a2 <is less then

	

? This problem is not yet settled .

The result of Lagarias, Odlyzko and Shearer wí11 be published soon .

III

Now I discuss problems in combinatorics and graph theory . To shorten the paper

I will only discuss recently solved problems . For the older ones I refer to the

survey paper of Kleitman and myself, Katona and Burr .

S. Burr, Generalized Ramsey theory for graphs - A survey, Graphs and Combinatorics,

Lecture Notes in Math . 416 Springer Verlag (1974), 52-75 .

P. Erdős and Kleitman, Extremalsproblems among subsets of a set, Proc . second
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chapel Hill conference on Comb . Math ., University of North Carolina, Chapel Hill

N. C . 1970, 136-145, see also Discrete Math . 8(1974), 281-294 .

G . Katona, Extremal problems for hypergraphs, Combinatorics, Proc . Nato Adv . Insti-

tute, Nijenrode, Edited by M . Hall and J • H • van Lint, 1975, D . Reidel Dordrecht,

215-274 .

§1. I conjectured that for every 2 < c < m there is a function f(c) so that every

random graph G(n ;cn) contains a path of length at least f(e)n where f(c) ->0 as

c-2- and f(c) >1 as c-- . All these conjectures were proved by Ajtai, Komlós

and Szemerédi .

Rényi and I conjectured that with probability tending to one every

G(n ; ~(
2

+ e)r, logn ]) is Hamiltonian . This conjecture was proved by Posa in

a very ingenious way with c n log n instead of (
Z

+ c)n logn . His method was the

basis of all future work so far on this subject . The full conjecture was proved

soon afterwards by Kurshonov and Komlös-Szemerédi .

M . Ajtai, J . Komlós and E . Szemerédi, The longest path in a random graph , Combi -

natorica 1 (1981), i-12 .

P . Erdős and A . Rényi, On evolution of random graphs, Publ . Math . Inst . Hung . Acad .

Sci . 5 (1960), 17-61 .

L . Pósa, Hamiltonian cycles in random graphs, Discrete Math . 14(1976), 359-364 .

J. Komlós and E . Szemerédi, Limit distribution for the existence of Hamilton cycles

in random graphs, to appear in Discrete Mathematics-

§2 . Let m(n) be the smallest uniform hypergraph whose edges have size n and which

is three chromatic. The problem is to determine or estimate m(n) as well as

possible . In the older literature this question was posed in the -following way

determine the smallest integer m(n) for which there is a family of m(n) sets of

size n which does not have property B . The family of sets {Aa)
is said to have

property B if there is a set S such that 5!1Á a # 0 and S J> Act holds for every

member of the family . This definition is due to E . Miller and was named property

B after F . Burnstein . It is easy to see that this means that the hypergraph with

edge set {A
a ) has chromatic number 2 . Hajnal and I have a long paper on this

subject . It is trivial that M(2) = 3 and easy to check that m(3) = 7, m(4) is

unknown but 19 < m(4) < 23 . I proved

(1)

	

c12n < m(n) < c ,n2 2 n

and conjectured that

(2)

	

m(n)

	

W

2 n

(2) was recently proved by J . Beck, he proved
1h n

in fact that m(n) >cn

	

2
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An symptotic formula for m(n) is still out of reach . An exact formula for m(n)

may not exist (i .e . if it exists it is so complicated that it is not illuminating

- like a formula for the n-th prime) .

Schutte asked me 20 years ago, is there for every n an f(n) so that there is a

tournament (or a complete directed graph) of f(n) players so that every set of n

players is beaten by at least one of the players . Schutte observed f(1) = 3,

f(2) = 7 but it seemed difficult to calculate f(n) for n > 2 (or even to prove

the existence of f(n)) .

I proved by the probability method that for some c >0

(3)
2n+1

- 1 < f(n) < cn22n ,

and I asked for an improvement of (3) . E . and G . Szekeres proved f(3) = 19 and

f(n) > en 2n . At the moment an asymptotic formula for f(n) seems beyond reach .

J . Beck, On 3-chromatic hyper raphs, Discrete Math . 24(1978) 127-137 .

I . Spencer, Colouring n-sets red and blue, J . Comb . Theory A 30(1981) 112-113 .

P . Erdos, On a problem in graph theory, Math . Gazette, 47(1963), 220-223 .

E . Szekeres and G . Szekeres, On a problem of Schütte and Erdös, Math . Gazette,

49(1975), 290-293 .

P . Erdös and A . Hajnal, On a property of families of sets, Acta Math . Acad . Sci .

Hungar . 12(1961), 87-123 .

53 . Many mathematicians investigated recently various aspects and generalisations

of Ramsey's theorem . Here I only state a problem of Faudree, Rousseau, Schelp

and myself which has recently been settled by J . Beck. Let G1 and G 2 be two

graphs, r(G I , G 2 ) is the smallest integer for which there is a graph G of r(G I ,G 2 )

edges for which G +(G I ,G 2 ) . In other words : if one colours the edges of G by

two colours in an arbitrary way either colour I contains G 1 or colour If contains

G 2 . We asked for a determination or estimation of r(Pn,Pn ) and r(Cn,Cn ) . We

expected that (Pn is a path of length n and Cn a cycle of n edges .)

r(PnI Pn)/n ; - but r(C n ,Cn)/n 2 * b .

J . Beck in fact proved .

(1)

	

r(Pn,Pn ) <
CI n, r(Cn ,Cn ) < C 2 n .

The best possible values o£ the constants are not yet known,

various extensions of (1) for trees .

Beck further proved

P . Erdös, R . Faudree, C . Rousseau and R. Schelp, The size of Ramsey number,

Periodica Math ., Hungar . 9(1978), 145-161 .
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The results of Beck have not yet been published .

§4 . Let ISI = n and A i G S, 1 < i < t o be subsets of S which form a partially

balanced block design, i .e . every pair (x,y) of elements of S are contained in one

and only one of the A's . If n -= p` +p +1 where p is a prime or a power of a prime

then it is well known that a finite geometry exists i .e ., there is a block design

with t o = n, IAi l = p +l . V. T . Sós and I conjectured that if t o >p 2 +p +1 then

t o > p 2 +2p +1 . A well known theorem of de Bruijn and myself stated that

1 < to < n is always impossible and our conjecture seemed interesting because it

indicated a further gap in the possible values of t n .

Doyen, V . T . Sós and I discussed the problem of determining all possible values

of tn . A complete solution of this problem seems out of reach at the moment .

V. T . Sós and I proved our conjecture in some special cases and R . Wilson proved

the conjecture in full generality, but several related problems remain open .

N . G . de Bruijn and P . Erdős, On a combinatorial problem, Nederl . Akad . Wetensch,

Proc . 51(1948), 1277-1279,

§5 . Burr and I conjectured that if k is odd then there is a c k so that every

G(n ; ~c k n]) has a cycle whose length is congruent to 1(mod k) . G(n ;t) is a

graph of n vertices and t-edges . Robertson and Burr and I had some partial results

but Bollobás proved this conjecture with ck = k(k+1)2 k . The true value of c k is

probably much smaller .

Bollobás and I conjectured that every G( n ;
[n2

] +1) has an edge which is con-

tained in at least 6 triangles, and we observed that, if this is true, it is best
2

possible . For the proof we needed the following further conjecture : Let m > 4 .

Then every G(n ;m) contains a triangle (x l , x 2 , x 3 ) for which

(1)

	

v(x1 ) + v(x 2 ) + v(x 3) > 32 '

where v(x) is the val.ency or degree of x .

In fact we formulated a more general conjecture (for k(r) instead of k(3)) .

Edwards proved (1) and he in fact proved our conjecture nearly in its full genera-

lity

B . Bollobás, Cycles modulo k, Bull . London Math . Sco . 9(1977), 97-98 .

C . S . Edwards, Complete subgraphs with largest sum of vertex degrees, Coll . Math .

Soc . J . Bolyai 18, Combinatorics, Edited by A . Hajnal V. T . Sós, North Holland

1978, 293 .

For many further problems and results see the excellent book of B . Bollobás,

Extremal graph theory, London Math . Sac . Monographs No .11, Acad . Press 1978 .
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96 . V . T . Sós and I observed that if ISI = n and A
i C S JAil = 3, 1 < i < t and

if we further assume that for 1 < i < j < t, JA . 0 A .l # 1 then max t = n equality

if and only if n

	

0 (mod 4) . We further conjectured that if Sl = n, A
1.C S,

1 < i. < t k , lA i i = k and ! .4i n A j j # I for every 1 < i . < j < k then for n > n,,(k)

(l)

	

Max tk
= ( k-2 ) .

(1) was proved for k = 4 by Katona and by P . Frankl in the general case .

I further conjectured that if JSj = n, A kc S, 1 < i < t n , and if we further assume
that

JAi n A j l i r for every 1 <_i < j < t o

(the size of the A's is not restricted here) and that En < r < (
2

-E)n, then

(2)

	

to < ( 2 - E)n •
As far as I know (2) is still open though P . Frankl has many interesting results

which seem to make (2) more plausible .

P . Frankl, Families of finite sets containing no two intersecting in a singleton,
Boll . Australian, Math, Soc . 17(1977), 125-134 .

P, Frankl and R . M. Wilson, Intersection theorems with geometric consequences,
Combínatorica 1 no . 4(1981) .

Iv

Here I discuss some of my problems in analysis. . Since this paper is already longer

than I (and probably the editors) planned I wi .l1 be very brief .

cl . I first mention some problems in function theory . In a paper written in
Hungarian (Some remarks on a pape r of Küvzri, Mat Lalok 7 (195ö), 214-217) the

following two problems ,ere raised

	

_

(i) Is there an entire function f(z) for which for every infinite sequence of

integers n < n

	

. . . (n i ) t~e set Ú S

	

is everywheme dense, where S

	

is the1

	

2 (n

1

.)

	

i=1 n i

	

ni
set of roots of f

	

(z) ?

(ü) Let H l , 11 2 , . . , be an infinite set of sets . Assume that none of the Hk s has

a finite limit point . Does there then exist an entire function f(z) and a se-
quence n 1 < n 2

	

for which 5n

	

1 k: for every k ?k

	

.

The existence of both of these functions has been proved more than ten years

ago ( ' ) .

About 40 years ago I asked the following question : Let f(z) be an entire function
which is not a polynomial function . Is there a path P tending to infinitly for
which for every n
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If(z) /z n I

	

_?
Boas proved that the answer is affirmative, but as far as I know his proof has not

beer, published .

Huber proved that for every c >0 there is a path P e for which

(1)

	

( -	 1	 < m
'PE If(Z) I`

I conjectured that there is a path P for which the integral (1) is finite for

every e >0 . As far as I know this conjecture has not yet been settled .

Let f(z) = n=0 L a
n
zn be an entire function which is not a polynomial function . Put

M(r,f) = max if(z)J , u(r,f) = max

	

Jan 'r n ,

1zl=r

	

n> 0

Define

:i(r, f)

	

v (r, f)z(f) = 1im

	

g(f) = lim ----
r- M(r,f)

	

-- M(r,f)r-

I conjectured that a(f) = g(f) implies that both are 0 .

Clunie and Hayman disproved this conjecture . In fact they show that zfor every

A, 0 < A < ~, there is an f(z) for which a(f) = B(f) = A . They also investigate

the class of functions for which my conjecture holds .

A. Huber, on subharmonic functions and differential_geometry in the ' large, Comm .

Math. Helvetici, 32(1.957/58), 13-72, see p .52 .

J. Clunie and IV . K . Hayman, The maximum terns of a power series, J . d' ;?na1VSe Math .

12(1964), 143-186 .

§2 . Now i discuss some of my problems on polynomials . I stated several problems

in my paper, Note on some elementary properties of polynomials, Bull . American

Math. Soc . 46(1940), 954-953 ; also Herzog, Piranian and I stated many more problems

of a different kind in our paper, Metric properties of polynomials, J . d',knalyse

Math . 6(1958), 125-148 .

	

-	

All the problems stated in my first paper were solved by Saff and Shell-Small,

Kristiansen and Bojanic . Many of the problems stated in the second paper were

solved by Pommerenke and Elbert . In order to save space I give only references

and mention just two of the problems in the paper with Herzog and Piranian which

seem to me to be particularly attractive .

1 . Let fn(z) = zn + a lzn -1 +

	

an be a polynomial of degree n . Is it true

that the length of the leminíscate Ifn (z)I = 1 is maximal if fn(z) = z n 1 ? This

problem is still open and seems to us to be a very nice conjecture .
n

2. Put f (z) = n (z-z+z i l < 1, 1 < i < n . Denote by A(fn ) the area of the
i-1
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set lfn (z) 1 <1 and put e n = Min A(fn), where the minimum is extended over all poly-

nomials of degree n whose roots are ail in the unit circle . We proved that En +0

and Pommerenke proved Fn , c/1 2 . What is the true order of, magnitude of En ?

Perhaps it *_ends to 0 logarithmically .

F . d . Saff and 1 . Sheil-Small, Coefficient and integral mean estimates for alge-

braic and trigonometric polynomials with restricted zeros, J . London Math . Soc .

9(19 .',1, 16-22 .

G . K . Kristiansen, Some inequalities for algebraic and trigonometric polynomials,

J . London Maths . Soc . 20(1979), 300-314 .

The paper of Bojanic has not yet been published, it will appear soon .

53 . Some of my older problems on interpolation have been settled in a series of

remarkable papers by Kilgore, de Boor and Pinkus and Bratman - these papers contain

also many further results .

Vértesi and I recently proved that for every triangular matrix Ix k,n )

(1)

	

-1 <
xn,n <

	

< xl n < 1, n =1,2, . . .

there is a continuous function f(x) for which the sequence of Lagrange interpola-

tion polynomials Xn(f(x)) taken at the points (1) diverge almost everywhere .
n

The following curious problems remain open . Put wn (x) =
im=1

(x -x i'n ) and let

(n)
Rk (x) - w r (x k,n ) ("Y - xa,n )

be the fundamental functions of the Lagrange interpolation polynomials . Let -3 be
n

the set of points x in (-1, +1) for which the sequence E

	

k (n) (x)l remains
k=1 k

bounded as n m . It is well known that if x 0 ,á. then there is a continuous f(x)

for which the sequence Xn (f(x0 )) diverges, but if x. e -3 then Xn(f(x)) ~ f(x) .

Is there a triangular matrix with the property that for every continuous f(x)

there is an x 0 for which nevertheless t n ff(x 0 )) i f(x 0) ? In other words :

there is no f(x) for which t, (f(x)) diverges at all the points where it possibly

could diverge .

Is there a matrix (1) for which

	

is empty but for every continuous f(x) there

is an x 0 for which X.,(f(x 0 ))

	

f(x0) ? I offer 250 (U .S .) dollars for settling

these problems .

A fertile source of interesting problems is a recent paper of P . Turán .

C . de Boor and A . Pinkus, Proof of the conjectures of Bernstein and Erdös concern-

ing the optimal for polynomial interpolation, J . Approximation theory 24(1978),
289-303 .
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L . Bratman, On the polynomial and rational projections in the complex plane, S .I .
A .M .J . of Numerical Analysis (to appear) .

P . Erdős and P . Vértesi, On the almost everywhere divergence of Lagrange inter-
polatory polynomials for arbitrary system of nodes, Acta Math . Acad . Sci . Hungar,

36(1980), 71-89,

T . A . Kilgore, A characterisation of the Lagrange interpolatory projection with

minimal Chebyshev norm, J . Approximation Theory 24(1978), 273-288 .

P . Turn, On some open problems of approximation theory, Journal of Approx Theory

29(1980), 23-89 .

v

In this final chapter I discuss miscellaneous problems . First I select two pro-

blems on set theory .

51 . Thirty years ago Rado and I started to work on the subject which Rado called

partition calculus . One of our first problems was : characterise those a for

which if S is a well-ordered set of type w a and G a graph whose vertices is S

then either S has a triangle or if not then G has an independent se*_ of type w a

(i .e . there is a subset S'e S of type wa no two vertices of which are joined) .

I hope the reader will permit a very old man to give some personal reminiscences .

I seem to remember that Rado and I hoped that it will be possible to characterise

the a for which wo' ~(wa ,3) and that perhaps this in fact holds for all a . In

November 1954 after the International Congress in Amsterdam, I was in Zurich on

the way to Jerusalem and i told E . Specker : I give 20 (U .S .) dollars for a proof

or disproof of w 2 >(w ` ,3) . Specker's proof of this conjecture soon reached me

in Jerusalem . Then next summer Specker told me his surprising example

wn 4>(wn,3) for every 3 < n < w . Specker observed that neither his proof nor his

counter-example works for ww-(ww,3) and he called attention to this interesting

and surprising difficulty .

I soon offered 250 (U .S .) dollars for a proof or disproof'and in 1970 C .C . Chang

proved w"'>(ww,3), E . Milner soon somewhat simplified this proof and also showed

that w -(ww,n) holds for every n <w . Finally Jean Larson independently obtained

a considerably simpler proof of w-(ww ,n) . She further observed that if

wa .(w e ,3) then a must be power of w . The first open problem is

2

	

2
(1)

	

ww

	

(ww , 3 ) .

I offer 250 (U .S,) dollars for a proof or disproof of (1) and a 1000 (U .S .) dollars

for clearing up completely the truth value of w"->(wa,3) .

P . Erdős and R, Rado, A partition calculus in set theory, Bull . Amer . Math . Sec .
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62(1956), 250-260 .

E . Nosal nearly completely settled the truth value of w n (wm,k) .

E . Specker, Teilmeng^°n von blenaen mit Relationen . Comment . Math . Hely . (1957),
302-314 .

C . C . Chang, A partütion theorem for the complete graph on w w , J . Combinatorial
lbeory, (Ser A) 12(1972), 396-452 .

J . A . Larson, A short proof of a partition theorem for the ordinal uw , Ann . Math .
Logic 6(1973/74), 129-145 .

E . Nosal, Partition relations for denumerable ordinals, J. Conb . Theory, (Ser .B)
27(1979), 190-197 .

42 . Let a be an ordinal which has no predecessor - (i .e . a is a limit ordinal) .

Hajnal, Milner and I asked : Let C be a graph whose vertices form a set of type

a . Is it true that either C contains an infinite path (it does not have to be

monotonic) or it contains an independent set_ of type a? We proved this for all
a < W1+2

. Our proof breaks down for a = u +2 . I offer 250 (U .S .) dollars for

settling the problem for wi
+2 and 500 (U .S .) dollars for the general case .

P. Erdős, A. Hajnal and E . C . Milner, Set mappings and polarised partition rela-

tions, Combinatorial theory and its applications, Coll . Math. Soc . J . Bolyai 4,

1969, 327-363, see p.358 .

;3 . More than 30 years ago (sharpening an unpublished result of Mrs and Mr . Boas)

1 conjectured : Let f(x) be a real function . Assume that f(x+h) - f(x) is con-

tinuous for every h > 0 and -- <x < . Is it true that

f (x) = g(x) + h (x)

where g(x) is continuous and h(x) is Hamel fuuc-lion, (i .e ., h(x+y) = h(x) + h(y))?

I could not settled this conjecture, but I could do the next best thing : I told

this to N . G. de Bruijn, I thought that he would be able to settle this problem .

1 was right : He not only settled it but obtained much more general results .

De Bruijn and I raised the following problem : Assume that f(x+h) - f(x) is
measurable for every h 5 0 and -- <x < .. Is it then true that

f(x) = g(x) + h(x) + r(x)

where g(x) is continuous, h(x) is Hamel and r(x+h) - r(x) = 0 for every h and

almost all x ? (rne set where r(x+h) -r(x) / 0 can of course depend on h but it
must have measure 0 .)

This conjecture which remained open for 30 years was recently proved by Laczkovich .
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N . G . de Bruijn, Functions whose differences belong to a given class, Nieuw

Archief Voor Wiskunde 23(1951), 194-218 .

M. Laczkovich, Functions with measurable differences, Acta Math . Acadm . Sc .i .

Hungar . 35(1980), 217-235 .

§4 . Finally I discuss my meagre contributions to topology . My most important

contribution to topology I owe to World War 11 : Late in August 1939 Hurewicz

asked me to determine the dimension of the rational points in Hilbert space . He

was too upset to be able to think about it (A few weeks earlier his parents re-

turned to Poland - against his advice - from a sense of duty. This had a happy

ending insofar as anything in life can have a happy ending . They managed to get

back to the U . S . in 1940 and died peacefully there, fortunately, before the

tragic untimely death of Hurewicz in 1956 .)

I soon proved that the dimension of the rational points in Hilbert space is 1 .

I asked two problems : Can the rational points in Hilbert space be topologically

imbedded in the plane ? Roberts proved that the answer is affirmative .

Is there for every n > 1 a space S of dimension n for which 5 2 also has dimen-

sion n ? I noticed that the rational points in Hilbert space prove this for n =1 .

This was settled affirmatively about 15 years ago (2) .

Nearly 40 years ago I asked the following questions : Is it true that every con-

nected set in Euclidean space contains a connected subset, which is not a point

and which is not homeomorphic to it ?

Is it true that every connected set (in a Euclidean space) of dimension greater

than one contains more than c =2 connected subsets ?

I was rather pleased with these questions but Eilenberg told me that he does not

think that the questions will be very illuminating since a clever and difficult

counter-example will be found to both of them . Unfortunately he was right, Mary

Ellen Rudin using the continuum hypothesis found the required counter examples .

P . Erdős, The dimension of the rational points in Hilbet space, Annals of Math .

41(1940), 734-736 .

J . H . Roberts, The rational points in Hilbert space, Duke Math . J . 22(1956), 489-

491 .

P . Erdős, Some remarks on connected sets, Bull . Amer . Math . Soc . 50(1944), 442-446 .

M . E . Rudin, A connected subset of the plane, Fund . Math . 46(1958), 15-24 .

Added after completing the paper . July 1981 .
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There is here in Eger, Hungary a meeting on combinatorial analysis and this per-

mits some last minute corrections and additions .

I now would like to state two new problems . Let G(n ;e) be a graph of n vertices

and e edges . 11'e assume that e/n is large . Is it true that there is a function

f(,), f(x)/x+- as x-.- for which

Let G(n) be a graph with bounded edge density for all subgraphs . In other words

there is an absolute constant c so that if G(k) is any subgraph of G of k vertices

then the number of edges of G(k) is less than ck . Burr and 1 conjectured several

years ago that then

(1)

	

T( G(n) ) < f(c)n .

In other words the ordinary diagonal Ramsey number of G(n) is less than C n where

C depends only on c .

Perhaps in fact

r(G(n ;e) ) > e f
(
e ) ?

(2)

	

r (G(n) ) < f(c)n

(2) would clearly imply (1), my first feeling would be to try to find a counter

example to (2) .

Several years ago I conjectured that if one colours the edges (i,j), 1 < i < j < n,

by two colours,then if t is any given number and n > n p(t) then there is always

a monochromatic complete graph having the vertices 1 < i l < . . . < i k < n for which

k	1	
(3)

	

rYl 1 +logir > t .

The interest of (3) is that it does not follow immediately from Ramsey's theorem .

where the maximum in the first case is extended over all monochromatic complete

graphs and in the second equation the minimum is extended over all colourations

of our complete graph . Rodl proved that

log log log to&_n 	< F(n) < c log log log n .1 log log log log logn

	

2

He also showed that (3) fails for colouring with three colours . His paper on this

subject will appear soon .

Rödl now proved (3) . In fact put

k

	

1
(4)

Ma"(

min.
G

C

	

- - F( G(n) ),
r=1 1 + log ir

F( G(n)) = F(n)



NOTES
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K . F . Barth and W . J . Schneider, On a problem of Erdős concerning the zeros

of the derivatives of an entire function, Proc . Amer . Math . Soc . 32 (1972)

229-232 .

K . F . Barth and W . J . Schneider, On a problem of Bagemihl and Erdös concern-

ing the distribution of zeros of an annular function, J . refine u angew . Math .

234 (1969), 179-183 .

K . F . Barth and W . J . Schneider, Entire functions mapping countable dense

subsets of the reals onto each other monotonically, J . London Math . Soc . (2)

2 (1970), 620-626 .

K . F . Barth and W . J . Schneider, Entire functions mapping arbitrary countable

dense sets and their complements onto each other, J . London . Math . Soc . (2)

4 (1972) 482-488 .

(2) k . D . Anderson and J . E . Kiesler, An example in dimension theory, Proc .

Amer . Math . Soc . 18 (1967), 709-713 .
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