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ABSTRACT

A broom B, , is a tree obtained by identifying an end-
r

vertex of a path on £ vertices with the central vertex of star

on k edges. The Ramsey number r{Bk 2) is determined pre-
r

cisely for & > 2k and relatively sharp bounds are found for

1l <4< 2k. For appropriate choices of k and & we show

r{Bk 2) = {7 (k+2)/3-1} which is the smallest possible
r

value of the Ramsey number of any tree on k+& vertices.
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I. INTRODUCTION

Finding the Ramsey number of an arbitrary tree on n vertices
is a difficult unsolved problem in generalized Ramsey theory. A
more tractable probklem involves finding the best upper and lower
bounds of such numbers. Harary [7] has conjectured that the best
upper bound is 2n-2 (2n-3) when n 1is even (odd), the value
of the Ramsey number for a star on n vertices. We show that the
best lower bound is {4n/3-1} and demonstrate that this value
is obtained for a certain tree called a broom. A broom is a gen-
eralization of both a path and a star and is defined precisely
below. The lower bkound is also obtained for the tree formed by
joining two stars (of appropriate size) with a path of length
three from their central vertices. This last result was noted by
Burr and Erddés in [2].

All graphs will be finite without loops or multiple edges.
For G a graph we let V(G) and E(G) denote its vertex and
edge set respectively. The Ramsey number r(G,H) of a pair of
graphs (G,H) 1is the smallest positive integer n, such that
each red-blue two coloring of the edges of Kn produces a red
copy of G or a blue copy of H as a subgraph of Kn. When
G = H, the notation «r(G,H) is shortened to r(G). Red-blue
two colorings of the edges of a K, will be referred to simply
as two colorings. We will always let R and B denote the red
and blue edges respectively of the two colored Kn. Thus the
subgraph induced by the red edges will be denoted by <R> and

the one by the blue edges by <B>. The red (blue) degree of a




vertex x will be denoted by dR(x)(dB(x]), while NR(x)(NB(x))
will denote its red (blue) neighborhood. Further if A and D
are disjoint nonempty sets of vertices in Kn, K(A,D) will in-
dicate the complete bipartite subgraph with each vertex of A
adjacent to each vertex of D. Other notation will follow that
of [1] and [6].

It is easy to establish that the best lower bound for the
Ramsey number of a tree on n vertices is {4n/3-1}. Consider
any bipartite graph G whose parts have a and b vertices
respectively, a < b. Observe that a two coloring of
u contains no monochromatic

E( with <R> =K

Kra+b-2) K a+b-1
copy of G. Also a two coloring of E(Kyp_p) with

a-1

<R> = K contains no monochromatic G. Hence

p-1 © Ep-1

r(G) > max{2a+b-1,2b-1}. For a+b fixed this maximum is smallest
when 2a=b. Since each tree Tn on n vertices is bipartite,

this shows «r(T ) > {4n/3-1}.

II. BROOMS

A broom B is a tree on k+% vertices obtained by

k,2
identifying an endvertex of a path Pl on 1 vertices with the

central vertex of a star on k edges, these graphs being

K1,x

otherwise disjoint. We refer to the { vertices of the "path
part" of the broom as the handle and the k endvertices of the

"star part" as the bristles. Clearly a B is a star while a

k,1

B is a path.

1,k

The main results involve finding r(Bk 2} precisely when
r

£ > 2k and finding relatively sharp bounds for r{Bk j?‘) when
r




1 < 2 < 2k. Before we establish our first result we state the

following theorem of Jackson used in its proof.

Theorem 2.1. (Jackson) [8]. Let G(A,D) be a bipartite graph

with parts A and D such that d(x) > t for all xe A where

2t-2 > |p| > t. Then G(A,D) contains as subgraphs all cycles

on 2m vertices for 1 < m < min{|A[,t}.
Theorem 2.2. r(B, ,) = k+{32/2}-1 for 2 > 2k, k > 1.

Proof. When k= 1 this result agrees with the known value for
r{P£+l) so we assume throughout the proof that k > 2. Since

B is bipartite with parts of size {&/2} and k+[2/2], the

X, 2
previously given examples show that k+{32/2}-1 < r(Bk'g).
To establish k+{32/2}-1 as an upper bound consider a two

colored K For notational convenience let G denote

k+{32/2}-1"
this graph. Since r(CZt} = 3t-1, when t > 3, and r(C4} =6
(see [4]1), G contains a monochromatic cycle 02{1/2}. Note this
cycle has £ wvertices when & 1is even and #+1 when 2 1is odd.
Assume this is a blue cycle and let D = V(G)_V(C2{£/2}> so that
ID| = k+[2/21-1. If there exists a vertex x of the cycle with
NB{x} N D of cardinality at least k for & even or at least

k-1 for & odd, then G contains a blue B Thus we assume

k, 2"
the contrary, that INR{x) no| > {2/2} for each vertex x of
the cycle. But |[D| = k+[2/2]-1 and 2 > 2k, sothat there exists

a vertex u e D such that INR(u] n vi(c )| > k+l.

2{e/2}
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Choose any {%/2} vertices of the cycle including the vertex

a but excluding all the vertices BordgseensBy sy g Call

17
this set of chosen vertices A. Consider the subgraph K(A,D)

of the two edge colored graph G. The red graph <R N K(A,D)>
satisfies the conditions of Theorem 2.1 when & > 2k+l. This
follows since for & > 2k+1, 2{&/2}-2 > k+[%/2]-1 > {2/2}. Thus
when & > 2k+l the graph <R N K(A,D)> contains a cycle C'

with 2{%/2} vertices. Since C' contains ay, avoids
{az,a3,...,ak,ak+l}, and u is adjacent in red to
{al,az,...,ak,ak+1}, G contains a red By ,. Thus for & > 2k+l,
G 'contains a monochromatic Bk,l{

When & = 2k one can give an argument similar to the one

just presented, provided G contains a monochromatic C2k+1

with k >-3. We use this fact below leaving the remaining case
when k= 2 to the interested reader.
Since 2 = 2k, k > 3, the graph G has 4k-1 vertices and

thus contains a monochromatic C2k+2' We suppose the result is

false for this case, i.e. G contains no monochromatic Bk 2%
’

Since the argument given above (with a slight modification) works
if G contains a monochromatic C2k+1' we have that G contains

a monochromatic (say blue) Cok+2 and no monochromatic C2k+1'

Thus each pair of vertices at distance two on the Czk+2 are

adjacent in red, giving disjoint red cycles each with k+1

vertices, say C' and C". Also, letting D= V(G)-V(C ).

2k+2

we have |Np(x) n D| > k-1 for each x € V(C ), otherwise G

2k+2
contains a blue Bk 2k* Since any red edge between C' and C"
r

gives a red Bk,zk we have that K(C',C") is blue. Aalso <C'>




and <C"> are complete red graphs and no vertex of D is simul-
taneously adjacent in blue to a vertex of C' and one of C",
otherwise G contains a blue C2k+1' Thus D 1is partitioned
into sets D' and D" such that K(C',D') and K(C",D") are
red. But |[D'| >k or |D"| >k gives a red Copspr SO We
assume |D'| = k-1 and |D"| = k-2. Since a red edge from a
vertex of C' U D' to one of C" U D" gives a red Bk,zk' the
graph K(C' U D',C" U D") 4is blue. This blue graph contains
a blue Bk,Zk’ a contradiction. Hence the theorem also holds in
case & = 2k, k > 3.0

When 2k < 2 < 2k+2 the last theorem shows
r(Bk,Q) = {4(k+2)/3-1}, giving a specific tree whose Ramsey num-
ber is as small as possible.

The remainder of the section is devoted to proving a good

upper bound for r (B ) when 1 < 2 < 2k. The canonical exam-

k,%
ples given in the introduction show 2k+2[&/2]-1 < r(Ek,l)

when & < 2k-1 and 2k+2[%/2] < r{Bk,l) when £ = 2k-1. Thus
the upper bound given in the next theorem is close to the best
possible. Unfortunately the techniques of the proof prevent

further lowering of this upper bound.
Theorem 2.2. r(Bk E} < 2k+2 for 5 < & < 2k.

Proof. Two color the edges of a Kopss red and blue, so that

E (K is partitioned into the classes R and B. Call this

2k+¢)
graph G and let x be a vertex of G of maximal monochromatic

degree. Assume this maximal degree occurs in blue. Set




s = dB(x}, and let A = NB(x] and D = NR(x).
We first consider the case where at least one of the fol-
lowing occur.
(1) s > k+&-1.
(2) The graph <D> contains a blue path on
2-2-[s-(k+1)] = f+k-s-1 vertices.
(3) There exists a blue path on 2(%+k-s-1) vertices in
K(A,D).
Observe that each vertex of D is adjacent in blue to

some vertex of A, otherwise some vertex of D has red degree
greater than dB{x). Build the longest blue path in <A U D>
having an endvertex in. A and containing at least Q+k-s-1
vertices of D. Note when case (1) occurs this path may lie
entirely in A. If this path has at least 2&-1 vertices, then
<B> contains a Bk,z‘ Thus assume that the maximal blue path in
<A U D>, starting at a vertex z in A and ending at a vertex
y, has at most -2 vertices. This path contains at least

max{ 2+k-s-1,0} wvertices of D, so that it fails to contain at

least s-[(4-2)-(8+k-s-1)] = k+1l vertices of A. The maximality
of the path length implies dR(y} > 2k+8-1-(2-2) = 2k+l. Thus

s > 2k+1 and |D| < #-2.
Let A' be a subset of NR(y) n NB(x} such that

|A'| = k and denote the graph <A U D U {x}-A' > by H.
Note that |V(H)| = k+&. Since r(c,,) = 3t-1, for t > 3,
H contains a monochomatic C2t with 2t > 2[(k+2+1)/3] > . Now

both NB(x] n v(H) and NR{y} n V(H) are of cardinality at

least k+1, so that both NB(x) and NR(y} contain a vertex




of the monochromatic cycle. Thus whether or not x f(or vy)
belongs to this cycle. the original two edge colored graph G
contains a monochromatic Bk,l' The vertices of the handle of
the broom come from the cycle and those of the bristles come
from A'.

We next consider the case when none of the three condi-
tions are satisfied. For convenience we define zl and L,
by setting |A| = k+%, and Ip] = k+%,. Note that this is
possible since (2k+t-1)/2 < s < k+2-2, |A| =s, and
ID| = 2k+2-1-s. Thus 2,42, = 2-1 with 2, > (£-1)/2 > &, > L.
Since neither (2) nor (3) occurs <D> contains no blue path on
L+k-s-1 = £2 vertices and K(A,D) contains no blue path on

2% vertices.

2
Since <D> contains no blue path on 12 vertices, a well

known extremal result for paths of Erdds and Gallai [3] implies
that <D> contains at most {k+£2)(£2-2}/2 blue edges. In

[5] it is shown that a bipartite graph with parts of size a

and b, a < b, and no path on 2t vertices, 2(t-1) < a, contains
at most (t-1) (a+b-2(t-1)) edyes. Hence, since K(A,D) con-
tains no blue path on 212 vertices, it contains at most

+2) blue edges. By assumption each vertex of

=
G 1is at least of degree k+i2 in both colors so that

(22—11(2k+21—£

[B n E(<D>)| < (k+2,) (2,-2)/2 implies that K(A,D) contains at
least (k+12]2 - (k+£2](12—2) = (k+£2}{k+2} blue edges. Further-
more K(A,D) has fewer than (k+£2}{21-2) blue edges, otherwise
(k+12)-max[k+2,il—2} > k{k+2}+£2[11—2} > (22—1}(2k+11-12+2),

a contradiction. This last inequality follows since




2
K% > 2ke,-22,

We have established, since none of (1), (2), and (3) hold,

R 12, and 11 > 12.

that <D> contains at least

k;f-z) " [k+£2) (12—2}/2 = (k-l-!.z) (k+1) /2

red edges and K(A,D) contains at least
(k+£2){k+£l)-{k+£2){11-2} = (k+£2}(k+2) red edges. Hence there
exists a vertex z e D with dp(z) > 2k+4 (recall N_(x) = D).
If [NR{z) N A| ¢ k+1 choose a vertex w € D such that

INp(w) n A[ > k+1. In this case let A' be a subset of

No(w) N A with |a'| = k+1. If in addition

{Nn(w} U {wl) n {NR(z)-{x}] = ¢, we show that there exists a
ue DN NR(z) such that NR(u] n (NR{w)-{x}) + ¢. To see this
first observe, since K(A,D) contains no blue path on 212
vertices, at most 12-1 vertices of D have their red neighbor-
hoods disjoint from A'. Hence at least k-1 of the vertices
in D-{z,w} have red adjacencies to vertices of A'. At least
one of these vertices must belong to NR(z), since
INg (2)-{x}[+k-1 > |(a-A*) U (D-{w,z})|
Thus one of the following possibilities occur,. There exists a
subset A', |A'| = k+l, such that
(i) A' =Aan NR(z], z € D and dR{z) > 2k+4,
(ii) A' < An N (w), w,2 € D, dp(z) > 2k+4, and
(N (w) U {wh n (N (z)-{x}) # ¢, or
(1ii) A' € A N Np(w), w,z € D, dp(z) > 2k+4,
(Np(w) U {wh) n (NR[z)—{x}) = ¢, and there
exists a ue DN NR(z] such that

Np(u) n (NR(w)—{x}) ¥ .

91




No matter which possibility occurs denote the graph

<A U D U{x}-A'>. which has k+% vertices by H. As in the
first part of the proof H contains a monochromatic cycle

C2t with 2t > &. Since dR(z) > 2k+4, the choice of x gives
dy(x) > 2k+4. Hence ]NB(x] n v(H) | > k+3 and

|NR{z} n v(#)| > k+2, so that both N (x) and NR(z) contain
a vertex of the monochromatic Czt' It is now easy to check
that for each of the above possibilities the original two col-

ored graph G contains a monochromatic Bk e This completes
r

the proof of the theorem. [J

One can easily adjust the last theorem to include all val-
ues of 2, 1 < % < 2k, by increasing the upper bound from 2k+%
to 2k+2+3. Of course the last result leaves as unsettled the

exact value of r(B for 1< & < 2k.

k,l)
These results suggest a general question. If Ty is any

tree with parts of size n/3 and 2n/3 is r(Tn) = {4n/3-1}?

292
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