
1 < k < 2k . For appropriate choices of k and k we show

r (Bk,k ) _ {n(k+k)/3-1} which is the smallest possible

value of the Ramsey number of any tree on k+9, vertices .
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ABSTRACT

A broom Bk,k
is a tree obtained by identifying an end-

vertex o£ a path on k vertices with the central vertex of star

on k edges . The Ramsey number r(B, k ) is determined pre-
I

cisely for k > 2k and relatively sharp bounds
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I . INTRODUCTION

Finding the Ramsey number of an arbitrary tree on n vertices

is a difficult unsolved problem in generalized Ramsey theory . A

more tractable problem involves finding the best upper and lower

bounds of such numbers . Harary [7] has conjectured that the best

upper bound is 2n-2 (2n-3) when n is even (odd), the value

of the Ramsey number for a star on n vertices . We show that the

best lower bound is {4n/3-1} and demonstrate that this value

is obtained for a certain tree called a broom . A broom is a gen-

eralization of both a path and a star and is defined precisely

below. The lower bound is also obtained for the tree formed by

joining two stars (of appropriate size) with a path of length

three from their central vertices . This last result was noted by

Burr and Erdös in [2] .

All graphs will be finite without loops or multiple edges .

For G a graph we let V(G) and E(G) denote its vertex and

edge set respectively . The Ramsey number r(G,H) of a pair of

graphs (G,H) is the smallest positive integer n, such that

each red-blue two coloring of the edges of Kn produces a red

copy of G or a blue copy of H as a subgraph of Kn . When

G = H, the notation r(G,H) is shortened to r(G) . Red-blue

two colorings of the edges of a K n will be referred to simply

as two colorings . We will always let R and B denote the red

and blue edges respectively of the two colored Kn . Thus the

subgraph induced by the red edges will be denoted by <R> and

the one by the blue edges by <B> . The red (blue) degree of a
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vertex x will be denoted by dR(x)(dB(x)), while NR(x)(NB(x))

will denote its red (blue) neighborhood . Further if A and D

are disjoint nonempty sets of vertices in K n , K(A,D) will in-

dicate the complete bipartite subgraph with each vertex of A

adjacent to each vertex of D . Other notation will follow that

of (11 and [6] .

It is easy to establish that the best lower bound for the

Ramsey number of a tree on n vertices is {4n/3-1} . Consider

any bipartite graph G whose parts have a and b vertices

respectively, a < b . Observe that a two coloring of

E(K2a+b-2) with <R> = K a-1 U K a+b-1 contains no monochromatic

copy of G . Also a two coloring of E(K2b-2) with

<R> = K b-1 U K b-1 contains no monochromatic G . Hence

r(G) > max(2a+b-1,2b-1} . For a+b fixed this maximum is s-maliest

when 2a=b . Since each tree T n on n vertices is bipartite,

this shows r(Tn ) > f4n/3-1} .

II . BROOMS

A broom Bk,k is a tree on k+k vertices obtained by

identifying an endvertex of a path P Q on k vertices with the

central vertex of a star Kl,k on k edges, these graphs being

otherwise disjoint . We refer to the k vertices of the "path

part" of the broom as the handle and the k endvertices of the

"star part" as the bristles . Clearly a Bk,l is a star while a

B l,k is a path .

The main results involve finding r(Bk,k ) precisely when

k > 2k and finding relatively sharp bounds for r(Bk,k ) when
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1 < R < 2k . Before we establish our first result we state the

following theorem of Jackson used in its proof .

Theorem 2 .1 . (Jackson) [8] . Let G(A,D) be a bipartite graph

with parts A and D such that d(x) > t for all x e A where

2t-2 > IDI > t . Then G(A,D) contains as subgraphs all cycles

on 2m vertices for 1 < m < min{IAI,t},

Theorem 2 .2 . r(Bk,Q ) = k+{32/2}-1 for R > 2k, k > 1 .

Proof . When k = 1 this result agrees with the known value for

r(PR+1) so we assume throughout the proof that k > 2 . Since

Bk,k is bipartite with parts of size {R,/2} and k+[Q/2], the

previously given examples show that k+{3Q/2}-1 < r(B k,Q ) .

To establish k+{3R/2}-1 as an upper bound consider a two

colored Kk+{3k/2}-l • For notational convenience let G denote

this graph . Since r(C2t ) = 3t-1, when t > 3, and r(C 4 ) = 6

(see [4]), G contains a monochromatic cycle C2{R/2} . Note this

cycle has R vertices when k is even and 2+1 when k is odd .

Assume this is a blue cycle and let D = V(G)-V(C2{k/2}) so that

IDI = k+[Z/21-1 . If there exists a vertex x of the cycle with

NB (x) n D of cardinality at least k for R even or at least

k-1 for Q odd, then G contains a blue Bk,9, . Thus we assume

the contrary, that INR (x) n DI > {k/2} for each vertex x of

the cycle . But I D I = k+ [9,/2 ]-1 and R > 2k, so that there exists

a vertex u e D such that INR (u) n V(C2{2/2})I > k+l .

Let

	

{al,a2, . . .,ak'ak+l} c N R (u) n V(C2{2/2 }) .

286



Choose any {t/2} vertices of the cycle

al , but excluding all the vertices a2'a3, . . .,ak,ak+1' Call

this set of chosen vertices A . Consider the subgraph K(A,D)

of the two edge colored graph G . The red graph <R n K(A,D)>

satisfies the conditions of Theorem 2 .1 when 2 > 2k+1 . This

follows since for k > 2k+1, 2{Q/2}-2 > k+[Q/2}-1 > {R/2} . Thus

when k > 2k+1 the graph <R n K(A,D)> contains a cycle C'

with 2{Q/2} vertices . Since C' contains a l , avoids

{a2' a3" ,
ak'ak+l}' and u is adjacent in red to

{al' a2'**" ak'ak+l}' G contains a red B
k,Q . Thus for £ > 2k+1,

G contains a monochromatic Bk,l1
When k = 2k one can give an argument similar to the one

just presented, provided G contains a monochromatic C2k+1

with k > 3 . We use this fact below leaving the remaining case

when k = 2 to the interested reader .

Since R = 2k, k > 3, the graph G has 4k-1 vertices and

thus contains a monochromatic C2k+2' We suppose the result is

false for this case, i .e . G contains no monochromatic Bk,2k*
Since the argument given above (with a slight modification) works

if G contains a monochromatic C2k+1' we have that G contains

a monochromatic (say blue) C2k+2 and no monochromatic C2k+1'
Thus each pair of vertices at distance two on the C2k+2 are

adjacent in red, giving disjoint red cycles each with k+l

vertices, say C' and C" . Also, letting D = V(G)-V(C2k+2 ),

we have INR (x) n DI > k-1 for each x e V(C2k+2 ), otherwise G

contains a blue Bk,2k . Since any red edge between C' and C"

gives a red Bk,2k we have that K(C',C") is blue . Also <C'>
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and <C"> are complete red graphs and no

taneously adjacent in blue to a vertex of C' and one of C",

otherwise G contains a blue C2k+1' Thus D is partitioned

into sets D' and D" such that K(C',D') and K(C",D") are

red . But ID'I > k

assume ID'I = k-1

vertex of C' U D'

graph K(C' U D',C"

or JD"J> k gives a red C2k+1' so we

and ID"I = k-2 . Since a red edge from a

to one of C" U D" gives a red Bk,2k, the

U D") is blue . This blue graph contains

a blue Bk,2k, a contradiction . Hence the theorem also holds in

case k = 29., k > 3 . 11

When 29. < k < 29.+2 the last theorem shows

r(Bk,Q ) _ {4(9.+9.)/3-1), giving a specific tree whose Ramsey nv.m-

ber is as small as possible .

The remainder of the section is devoted to proving a good

upper bound for r(Bk R ) when 1 < k < 29. . The canonical exam-

ples given in the introduction show 29.+2[9./21-1 < r(Bk,k)

when 9. < 29.-1 and 29.+2[9./21 < r(Bk,k )
the upper bound given in the next theorem is close to the best

possible . Unfortunately the techniques of the proof prevent

further lowering of this upper bound .

Theorem 2 .2 . r(Bk,k) < 29.+Z for 5 < k < 29. .

Proof . Two color the edges of a K2k+k red and blue, so that

E(K2k+9.) is partitioned into the classes R and B . Call this

graph G and let x be a vertex of G of maximal monochromatic

degree . Assume this maximal degree occurs in blue . Set
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s = dB (x), and let A = NB (x) and D = NRW .

We first consider the case where at least one of the fol-

lowing occur .

(1)

	

s > k+k-l .

(2) The graph <D> contains a blue path on

k-2-[s-(k+l)] = k+k-s-1 vertices .

(3) There exists a blue path on 2(k+k-s-1) vertices in

K(A,D) .

Observe that each vertex of D is adjacent in blue to

some vertex of A, otherwise some vertex of D has red degree

greater than dB (x) . Build the longest blue path in <A U D>

having an endvertex in, A and containing at least k+k-s-1

vertices of D . Note when case (1) occurs this path may lie

entirely in A . If this path has at least k-1 vertices, then

<B> contains a Bk,V Thus assume that the maximal blue path in

<A U D>, starting at a vertex z in A and ending at a vertex

y, has at most k-2 vertices . This.path contains at least

max{k+k-s-1,0} vertices of D, so that it fails to contain at

least s-((k-2)-(k+k-s=1)] = k+l vertices of A . The maximality

of the path length implies d 2 (y) > 2k+k-1-(k-2) = 2k+1 . Thus

s > 2k+1 and IDI < k-2 .

Let A' be a subset of N R (y) n NB (x) such that

JA'J = k and denote the graph <A U D U {x}-A' > by H .

Note that IV(H)l = k+k . Since r(C 2t ) = 3t-1, for t > 3,

H contains a monochomatic C 2t with 2t > 2[(k+t+1)/3] > A,. Now

both NB (x) n V(H) and NR (y) n V(H) are of cardinality at

least k+l, so that both NB (x) and NR (y) contain a vertex
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of the monochromatic cycle . Thus whether or not x (or y)

belongs to this cycle . the original two edge colored graph G

contains a monochromatic B k,Q . The vertices of the handle of

the broom come from the cycle and those of the bristles come

from A' .

We next consider the case when none of the three condi-

tions are satisfied . For convenience we define 2 1 and 2 2

by setting JAI = k+2 1 and IDI = k+é2 . Note that this is

possible since (2k+t-1)/2 < s < k+2-2, JAI = s, and

IDI = 2k+2-1-s . Thus 21+22 = R-1 with 2 1 > (2-1)/2 > 22 > 1 .

Since neither (2) nor (3) occurs <D> contains no blue path on

2+k-s-1 = 22 vertices and K(A,D) contains no blue path on

222 vertices .

Since <D> contains no blue path on 2 2 vertices, a well

known extremal result for paths of Erdös and Gallai [3] implies

that <D> contains at most (k+2 2 )(22-2)/2 blue edges . In

[5) it is shown that a bipartite graph with parts of size a

containsand b, a < b, and no path on 2t vertices, 2(t-1) < a,

at most (t-1)(a+b-2(t-1)) edges . Hence, since K(A,D) con-

tains no blue path on 222 vertices, it contains at most

(2 2-1)(2k+21-2 2+2) blue edges . By assumption each vertex of

G is at least of degree k+2 2 in both colors so that

IB n E(<D>)I < (k+2 ? ) (2 2-2)/2 implies that K(A,D) contains at

least (k+2 2 ) 2 - (k+2 2 )(2 2 -2) _ (k+2 2 )(k+2) blue edges . Further-

more K(A,D) has fewer than (k+2 2 )(2 1-2) blue edges, otherwise

(k+ .Q 2 ) •max(k+2,2 1-2} > k(k+2)+2 2 (2 1 -2) > (2 2-1) (2k+2 1 -22+2),

a contradiction . This last inequality follows since

290



k2 > 2kk2-k2, k > k2 , and k l > k2 .

We have established, since none of (1), (2), and (3) hold,

that <D> contains at least

/k +k2 - (k+k2 ) (k2-2)/2 = (k+k2 )(k+l)/2

red edges
\
and K(A,D) contains at least

(k+k 2 )(k+kl)-(k+k2)(kl-2) _ (k+k 2 )(k+2) red edges . Hence there

exists a vertex z e D with dR (z) > 2k+4 (recall N R (x) = D) .

If INR (z) n AI < k+l choose a vertex w e D such that

INR (w) n AI > k+l . In this case let A' be a subset of

NR (w) n A with IA'I = k+l . If in addition

(NR (w) U {w}) n (NR(z)-{x}) _ 0, we show that there exists a

u e D n NR (z) such that NR (u) n (NR(w)-{x}) * 0 . To see this

first observe, since K(A,D) contains no blue path on 2k2

vertices, at most k 2 -1 vertices of D have their red neighbor-

hoods disjoint from A' . Hence at least k-1 of the vertices

in D-{z,w} have red adjacencies to vertices of A' . At least

one of these vertices must belong to NR (z), since

INR(z)-{x}I+k-1 > I(A-A') U (D-{w,z})I

Thus one of the following possibilities occur . There exists a

subset A', JA'I = k+l, such that

(i)

	

A' c A n NR (z), z e D and dR (z) > 2k+4,

(ü) A' C A n NR (w), w,z e D, d R (z) > 2k+4, and

(NR (w) U {w}) n (NR(z) - {x }) * (~, or

(iii) A' e A n NR (w), w,z e D, dR (z) > 2k+4,

(NR (w) U {w}) n (NR(z)-{x}) _ ¢, and there

exists a u e D n NR (z) such that

NR (u) n (NR(w)-{x}) * ~ .
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No matter which possibility occurs denote the graph

<A U D U{x}-A'>, which has k+Q vertices by H . As in the

first part of the proof H contains a monochromatic cycle

C2t with 2t > R . Since dR (z) > 2k+4, the choice of x gives

dB (x) > 2k+4 . Hence INB (x) n V(H)I > k+3 and

INR (z) n V(H)I > k+2, so that both NB (x) and NR (z) contain

a vertex of the monochromatic C2t . It is now easy to check

that for each of the above possibilities the original two col-

ored graph G contains a monochromatic Bk,P, . This completes

the proof of the theorem. 0

One can easily adjust the last theorem to include all val-

ues of k, 1 < 2 < 2k, by increasing the upper bound from 2k+R

to 2k+k+3 . Of course the last result leaves as unsettled

exact value of r(Bk,Q ) for 1 < Q < 2k .

These results suggest a general question . If Tn is any

tree with parts of size n/3 and 2n/3 is r(T n ) = f4n/3-1}?
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