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ON TURAN—RAMSEY TYPE THEOREMS Il

by
P. ERDOS and VERA T. SOS

This paper is a continuation of our papers [5], [10]. We investigated the follow-
ing problem:

Let the edges of K, be coloured by r colours, G;, 1=i=r be the graph formed
by the i’th colour. Let f(n; ky, ..., k,) be the largest integer for which there is
an r-colouring of K, such that

K,¢tG, 1=i=sr
and

r—

() Zl e(G) = f(n; ky, ..., k).

i=1
(Here e(G) denotes the number of edges of G.)

Due to Ramsey’s theorem for fixed k,, ..., k,, n>=N(k,, ..., k,) such a graph
does not exist. Therefore the problem makes sense only in the case when at least
one of the k;—~oo with n-»oo.

It is trivial that f(n; 3.l)==_—é~m'. We proved in [2] that if /=o(n) then

%) £ 2k+1, )= %[1;%] n+o(n?).

2
BoLLoBAs—ERDGs [1] and Szemerépi [11] proved that f(n; 4, I)=%—+o(n“)

for I=o(n). No asymptotic formula is known for f(n; 2k,!) when I=o0(n)
and k=2.
Here we start to investigate f(n; ky, ..., k,) for r=3.

NoTaTION. G,(V; E) is a graph with |V|=n,e(G,)=|E|, K(ky, ..., k,) is a
complete r-partite graph with k; vertices in the i’th class, K, is the complete graph
on n vertices.

Let ¥V be the vertex set of the complete graph K. If we consider an r-colouring
of the edges of K,, let E; be the set of edges of K, having the ith colour for 1=i=r.

Put G,=G(V; E;) and
Vitx) = {y: (x, )EE}, d; = [V(x)],
Vite; U) = {y: (x, )EE;, yeV—-U]},
d;(x; U) = [Vi(x; U)l.
For the case r=3 we prove the following theorems:
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28 P. ERDOS AND V. T. 808

THEOREM 1.
s
3) f(n; 3,3,en) < %+cgan2
and for n=ny(g)

2
%—I—Clﬁﬂg {f(ﬂ; 3,3,en),

where ¢;=0, c;=0 are absolute constants.

THEOREM 2. Let Gi(V; E), 1=i=3 be graphs belonging to a 3-colouring of
K, with the property

“ Ky €G i=12,
) Ky & Gy
and
(6) |Ey| = [Ey| > en®
Then
of1_ vz
(7 |E,UEy)| <n [?—} r:+2r:]—l—m12

where n—+0 with £¢-0.

REMARK. We obtain the lower bound in Theorem 1 by a colouring in which
G, is the complete bipartite graph K ([;'] A [#
of a trianglefree graph with maximum independent set of size o(n) and |E,|=0(n?).
Theorem 2 shows that this extremum is sharp; by the condition (6) we have the
stronger inequality (7) instead of (3).

]] and G, formed by two copies

Proor of Theorem 1.
(a) The upper bound.

We shall use the simple observation that
K+G i=1,2
Kan ¢ Ga
implies
(8) 1 (x)NVa(y)l < en

for any x=y, x, yeV.
Assume |E;|=|E,|. Let x, be a vertex for which 4, (x) is maximal. Let

di(yy) = y?}";’éﬂ) di(»),  Yo€Vi(xo).

Since K;¢ G,
Vi)Nvi(y) = 0.
Let U=V—(V1(x)UV1(3y). Put
Ef = {(x,y): (x, y)EEy, x4U or y¢U).
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First we prove
) |EX| < V2ent.

By (8), obviously, any point z€V can be joined in G, to at most 2en points of
V1(x) UV (o). This gives (9). Thus we only have to consider the set of edges

E* ={(x,y): (x,Y)EE,, x€U, yeU).
|U| = on

Put

and
o*n = max do(x; V—U) = dy(x*; V=U) (x*eU).

As before, by (8) we get that the number of edges in G, incident to a vertex in V,(x*)
is at most en® Since K, G,, the number of the remaining edges of G, is less than

%(1-5‘)9. By all of these we obtain
n* n®
(11) |E\UE| < (1-8"+88" =+ 3en?
2 a2 -
If 6*:5- and consequently <z then (11) gives
n?.

5 2
So all we have to show is 5{;.

We assumed |E)|=|E,|, thus we may suppose

n® n
(12) \Es| > Vi (xo)l = -

n n
Put |V,(xn)|:T+r. If V(v :rﬁ-—t then
n

V1 (x0) UV (0ol :’"j";

ie., 54%.
n

If [V, (o)l =51 then

a‘l(x)‘é%—; for x€V;(xo).

_1 3ﬂ_](£ ] [1 ][1_]_
IEIIZZ T t 4+f+ 4+f 2 1] =
L2 (Ene) s L (Srrs 2] <2
‘E[T“][E" U|=g|zrtam-2) <3
which contradicts to (12).

This gives
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30 P. ERDOS AND V. T. 808

This completes the proof of the upper bound of (3).

(b) The lower bound in (3) follows by the adaptation of a construction in
P. ErDGs [2]:

Let / be an integer which will be determined later, let the vertices of G be
the 0—1 sequences of length 3/+41. Two vertices of G are joined by an edge in G
if the Hamming-distance of the corresponding two sequences is at least 2/+1 (i.e.,
if the sequences differ in at least 2/4+1 places). This graph has no triangle and
it follows from a theorem of KLEITMAN [9] that the size of the maximum inde-
pendent set equals the common degree of the vertices.

Now from this graph G we construct the graph G* as follows: we replace each

vertex by a set of vertices of size [E;::—I] , where / is the smallest integer for which

Lo, [3H—l] S

From' i 23!+1

It is easy to see, that this graph has no triangles and the maximum independent
set has —<em vertices. The number of edges in G* is >cem® where ¢=0 is an
absolute constant.

Now we consider the following three-colouring of K,,:

Let V=V,UV, with |V |=|V,l=m. Let G*(V,), G**(V,) be two graphs iso-
morphic to the above constructed G* and

E, = E(G* (V) UE(G**(V),

G,(V) be the complete bipartite graph K(V,, V,).
This construction gives the proof of the lower bound in (3).

REMARK. Very likely the following stronger result holds: There is an absolute
constant ¢ such that (e—-0)

2
f(n; 3,3, ¢en) = %+(e+o(l))sn"

but at the moment we do not know how to prove this.
ProoF of Theorem 2.

Now we construct a sequence of points x,, ..., x; and a corresponding sequence
of indices i, ..., i, where i,€{l,2}, with the following property: for A=}z let

Ay (xy) = An,

A (x,3U)=2n if v=>1
where for v=1

L
U,=¥V- ‘UI Vi (x).
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Let x,, ..., X, be maximal in the sense that for any xéV —{x,, ..., x;}

di(x; U) <= in.
Obviously, k-c:%. Put
h= U Vi,(—'ﬁ; U), Va= U K(x; U)
e i

("iNVy=0) and Vy=V—-( UV,
ni:]Vi[! 1=i=3.
Consider now the edges in E;UE, of the following type:

Fji.l: {(xsy): xEVja _VEV;, (x! }’)GE-},
l=j=3, 1=1=3, i=1,2.
1 1
@ Fll = nt, |Fhol =8
since G, and G, are triangle-free.

|Fial <An®,  |Fis| <An®
(b)

|[FLal < An?,  |F3 | < An®.

Otherwise we would have two points x, and x, with

V() Vo (x,)| = —;tu n=lin=¢en
which contradicts (8).
(c) AFfgl <4n® for j=1,2,3, i=1,2
Otherwise we would have an x¢ V" with
max di(x; Vy) = An.
But since '
di(x; V) = di(x; Uy
this would contradict the maximality of the sequence xy, ..., x,.
By (a)—(c) we obtain

(13) |Ey) = )

?n§+101n2

(14) Bal = 72+ 1048,

Now by the assumption
|Ey| = |Ey| = en?

n,=2nyc—104 =12

we get

31
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32 P. ERDOS AND V. T. SOS

Hence by (13) and (14)
1
|E{| +|E,| = n? [—Z— Ve+ 2c] +n(e)n?

where, as a simple computation shows, 7(e)—0 with &—0.

REMARK. If c>%, there does not exist a three colouring of K,, for which
K €G, i=12

Kzrl ¢ G:&
and
|Ey| = |Ey] = en

ReMARK. First observe that the constant %~VE+2:: in Theorem 2 is best

possible. To see this, let
V= VIUVz, VlﬂVg:g,

Wil = [2Ven], Vel =[(1—2Ve)n),
vi=4UB, 4=z, Bi=[zwi+] =12

Join every vertex of A4; to every vertex of B, in G; (for i=1,2). Let the further
edges of G,, resp. G, form a graph on 4, and on B,, resp. on 4, and on B, which
has no triangle and the number of independent points is o(n). (It is well-known,
that such a graph exists and in fact we used this method in P. ErRp6s—V. T. S6s [1]
or in (6) of the proof of Theorem 1. Obviously this colouring has the required
properties.

To get the exact result for f(n; 3,3, en) is rather hopeless because of its close
connection with the Ramsey-numbers. This close connection is shown already by
the following

ProrosiTioN 1. Let e(n)—~0 with n—=. Then

(15) R(3,e(n)n) = o(n)
implies
(16) f(n; 3,3,e(n)n) = o(n?.

(Here R(k, I) is the Ramsey-number.)
PRrOOF. (a) Suppose R(3, e(n)n)=o(n) and that with a constant ¢>0
f(n; 3,3,e(n)n) = cn®
holds. This means, that we have a three-colouring of K, for which
K& G i=1,2
Koo & Gs
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and, e.g., ]El|>%n2. Thus we have a vertex x with d,(x)=cn. Since K¢ G,

in ¥,(x) we have only edges of E, and E,.

But this means, that we have a two-colouring of the edges of K, where in
the first colour class there is no K; and in the second there is no K,,,. This con-
tradicts (16).

The converse statement, that (16) implies (15) is probably true, too, but we
could only prove the following weaker result:

Assume that

R(3,&(n)n) = cn.
Then
s(n)n] _—

£ns 3,3, 200

We hope to return to this subject later.

Some remarks on the Ramsey-numbers
As it is well-known, ErpOs and SzZEKERES [7] proved

an R(k, ) = [k;fi} 2].

Probably (17) is not very far from being best possible, in particular

n® n?loglogn
“logny ~ "OM =00, —

It seems certain that
(18) R(4, n) = n®-*,

The probability method surely must give (18) but so far technical difficulties
prevented success.
GRreeENwOOD and GLEASON [8] proved

Bl s BdeT &

This gives for example

(ky+...+k)!

kil k!

R,(3,3,n) = en*
and more generally
RAB, 3, A S G HE:
1 r

-

A simple observation leads to the following improvement:
PROPOSITION 2.

(19) R(3,3,n) =o0(n%
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34 P. ERDOS AND V. T. SOS
and more generally
(20) R.(3,3,...3,n)=rnR _,(3,...,3,n) = o(n"*).
1 r 1 r—=%
ProoF. Let us consider a “good” r-colouring of K, for k,=..=k,_,=3,

k,=n. Let G;, 1=i=r the graph formed by the edges of the ith colour-class. Put
Vi) ={y: (x, Y)EE}, 1=is=r.

Let U={x,, ..., x,} be the vertex-set of a maximal-sized complete graph in G,.
We have v=n—1. By the maximality of |U| we have

jgl : Vi(x,) = V—U.
Since G;, 1=i=r—1 is triangle-free,
Vilx)l = R._,(3,....3,n) for j=1,..,v
Now taking into consideration R(3, n)=o(n?), this proves (20).

REMARK. We have no nontrivial lower bound for R(3, 3, r). It is trivially true,
that
R(3,3,n) = 2R(3, n).
We expect that
R(3,3,n)/R(3,n) - =

R(3,3,m)n™% - =
or even more,
R(3,3,n) =n*"=

Some remarks on the two-colourings of K,

The following problem belongs to the questions we considered in [5]. Let
f(n; G) be the smallest integer for which every graph of n vertices and of f(n; G)
edges contains a subgraph isomorphic to G and f(n; G,en) be the smallest in-
teger for which every graph of n vertices and f(n; G, en) edges either contains
a subgraph isomorphic to G or has an independent set of size en.

First we investigate conditions which imply

20 f(n; G,en) = yn?
where y—0 with é—=0 or
(22) Sf(n; G,en) < f(n; G)(1—c)

with a ¢=0.
We prove some preliminary results about (21) and (22) and state without proof
a few more results.

ProposITION 1. (21) holds for G~K(1,r, r).

Proor. We need the following result of Erdés:
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For every / there exists a constant ¢,>0 such that if n=n, and e(G,)=cn?

then G, contains a K(/, ¢;, n).
Using this it is easy to show that if for G, e(G,)=cn® and the largest independent

set in G, has size less than ¢(c)n, then G, contains a K(1,r,r).
PROPOSITION.
f(n; K(3,3,3),en) = J%2(1 +n)
where n—0 with g¢—0.
Proof. The stronger
£(n; K3, 3,3) = (14+1)

follows from ERDGS—STONE [6].

We can prove the lower bound as follows:
1 i
Let |V1]=[%], [V2|:[%]. We join every vertex of ¥, to every vertex

of V,. Additionally on V; resp. on ¥, we consider a graph whose largest independ-
ent set has size en and which contains no circuit C, with 3=r=5. (We know the
existence of such a graph from [3], [4].) This graph contains no K(3, 3, 3) since the
vertex set of K(3, 3, 3) cannot be decomposed into two sets neither of which spans
a graph without a circuit.

In a forthcoming paper we prove the more general

THEOREM A. Let G be a graph which is k-chromatic and the vertex-set can be
decomposed into k—1 sets which span graphs without circuits. Then there is a ¢=0
such that

# 1
f(ﬂ'; G, Eﬂ) = %[l —m—c]
for e<gy, n=n,.
As to (22) we prove

THEOREM B. Let G be a graph which is k-chromatic and the vertex-set of G cannot
be decomposed into k—1 sets such that the subgraphs spanned by these sets have
no circuit. Then for every 1n=0

- e ﬂe T l —
f(n; G,e:n):—2 {1 o | q]
if e<gy(n), n=ny(n).

Added in proof (December, 1981). We proved with A. Hajnal and E. Szemerédi
that

f(n;2k,f)=%[§:—:§]n“+o(n2) for k=2

when /=o0(n). The proof will appear in a quadruple paper in Combinatorica.
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