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ON TURÁN-RAMSEY TYPE THEOREMS II

by
P . ERDŐS and VERA T . SÓS

This paper is a continuation of our papers [5], [10] . We investigated the follow-
ing problem

Let the edges of K„ be coloured by r colours, Gi , 1-i-r be the graph formed
by the i'th colour. Let f(n ; k 1 , . . ., k,) be the largest integer for which there is
an r-colouring of K„ such that

Kk,

	

Gi , l-,sr
and

r-1

( 1 )

	

e(G) =f(n ; k,,, . . ., k,) .
i=1

(Here e(G) denotes the number of edges of G.)
Due to Ramsey's theorem for fixed k 1 i . . ., k„ n > N(k,, . . ., k,) such a graph

does not exist. Therefore the problem makes sense only in the case when at least
one of the k i --- with n--~ .

It is trivial that f(n ; 3, 1) -2 nl. We proved in [2] that if 1=o(n) then

(2)

	

f(n ; 2k+1,1) = 2 (1-k) n2+o(n2) .

BOLLOBÁS-ERDŐS [1] and SZEMERÉDI [11] proved that f(n ; 4, 1)=
8+o (n2)

for 1=o(n). No asymptotic formula is known for f (n ; 2k, 1) when 1=o(n)
and k > 2 .

Here we start to investigate f (n ; k 1 , . . ., k r) for r=3 .

NOTATION . G„ (V; E) is a graph with ~V I=n, e(G„)=IE1, K(kl , . . ., kr) is a
complete r-partite graph with k; vertices in the Pth class, K„ is the complete graph
on n vertices .

Let V be the vertex set of the complete graph K,, . If we consider an r-colouring
of the edges of K„, let E; be the set of edges of K„ having the ith colour for I -- i :-!5r.
Put Gi = G(V; Ei) and

Vi (x) _ {Y : (x, Y)EEi}, di = I Vi(x)I,

V; (x ; U) _ {Y : (x, Y)EE,, YEV-U),

d, (x ; U) = IVi(x ; U) 1 .

For the case r=3 we prove the following theorems :
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THEOREM 1 .

(3)

	

f(n ; 3, 3, en) <
4+c2 en2

and for n >no (e)

4 +c,en2 < f(n ; 3, 3, en),

where c, >0, c 2 >0 are absolute constants .

THEOREM 2 . Let Gi(V ; Ei), 1 _ i 3 be graphs belonging to a 3-colouring of
K„ with the property

(7)

	

1E,UE2 1 < n2 (4 - yc+2c) +Iln2

where q---0 with e--0 .

REMARK . We obtain the lower bound in Theorem 1 by a colouring in which

G1 is the complete bipartite graph K ([2
n] ,

[n+ 11)
and G2 formed by two copies

of a trianglefree graph with maximum independent set of size o(n) and JE 2 1=o(n2) .
Theorem 2 shows that this extremum is sharp ; by the condition (6) we have the
stronger inequality (7) instead of (3).

PROOF of Theorem 1 .

(a) The upper bound.

We shall use the simple observation that

K3 c#Gí

	

í=1,2

Ken c# G3
implies

(8)

	

ivi(x)nv2(Y)i < en
for any x y, x, yE V .

Assume JE1 1 ~--JE2 1 . Let x o be a vertex for which d, (x) is maximal. Let

d, (Yo) = v max ^) d, (Y), YoE Vi (xo) .
Since K3

	

V1(x) n v, (Y) _ o .
Let U= V -(V1 (xo) U V1 (yo)) . Put

E2 ={(x,y) : (x, y)EE2 , x 4 U or yqU} .
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c~ G1

(4)

	

K3 ck Gi i = 1, 2,

(5)

	

Ke„ ck G3
and
(6)

	

JE1 1 -- JEJ > cn 2.
Then



First we prove

(9)

	

IE2 I < r2en2 .

By (8), obviously, any point zE V can be joined in G 2 to at most 2en points of
V, (xo) U V, (yo) . This gives (9) . Thus we only have to consider the set of edges

Ez* _ {(x, y) : (x, y)EE2, xEU, yE U} .
Put

and
S*n =maxd 2(x ; V- U) = d2 (x* ; V- U)

	

(x*EU) .
xEU

As before, by (8) we get that the number of edges in G, incident to a vertex in V 2 (x*)
is at most en2. Since K3 cK G,, the number of the remaining edges of G, is less than

4 (1-b*)2 . By all of these we obtain

(I1)

	

IE,UE2 I < 4 (I-b*)2+bb* 2+3en2

If S<3 (and consequently 8*<3) then (11) gives

2
IElUE2 1 < 4+3en 2 .

So all we have to show is 8 < 3

We assumed IE,I--IE21, thus we may suppose

IEII >8 , 1 VI(xo)1 4
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IUI =8n

Put IV, (xo)I=4 +t. If IV,(yo)I > 12 -t then

1 V, (xo) U Vi (yo) I >3 ,
3 .

If IV1(yo)I 12 -t, then

This gives

d, (x) --
lj2
- r for xE V, (xo) .

IE,1` 2(4 -t)(4+t)+(4+t)(12-t)_

2 (4 +t)
(6 n-2t)

	

2 (24 n2+
3

nt-2t2 < 82
,

which contradicts to (12) .
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This completes the proof of the upper bound of (3) .

(b) The lower bound in (3) follows by the adaptation of a construction in
P . ERDős [2]

Let 1 be an integer which will be determined later, let the vertices of G be
the 0-1 sequences of length 31+1 . Two vertices of G are joined by an edge in G
if the Hamming-distance of the corresponding two sequences is at least 21+1 (i .e .,
if the sequences differ in at least 21+1 places) . This graph has no triangle and
it follows from a theorem of KLEITMAN [9] that the size of the maximum inde-
pendent set equals the common degree of the vertices .

Now from this graph G we construct the graph G* as follows : we replace each
vertex by a set of vertices of size [2 31+1] , where 1 is the smallest integer for which

'? (31+1) m
l

	

31+1 < em'
i=u

	

i

	

2

It is easy to see, that this graph has no triangles and the maximum independent
set has <em vertices . The number of edges in G* is >cem2 where c>0 is an
absolute constant .

Now we consider the following three-colouring of K 2rn :
Let V=V1UV2 with JV1J=JV2J=m . Let G*(V1 ), G**(V2) be two graphs iso-

morphic to the above constructed G* and

G, (V) be the complete bipartite graph K(V, i V2) .
This construction gives the proof of the lower bound in (3) .

REMARK . Very likely the following stronger result holds : There is an absolute
constant c such that (e - 0)

f(n ; 3, 3, en) = 4 +(c+o(1))en2

but at the moment we do not know how to prove this .

PROOF of Theorem 2 .

Now we construct a sequence of points x 1 , . . ., xk and a corresponding sequence
of indices i1 i . . ., ik where V {l, 2}, with the following property : for _ Ve let

Ai,(x1)

	

An,

.Li jxv ; UJ >- í1n if v 1
where for v > 1

V

UV = V- U Vi, (X,).
1=1

E2, = E(G* (V,» UE(G** (V2)),
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Let x,, . . ., xk be maximal in the sense that for any xE V - {x,, xk }

di(x ; Uk) < fin .

Obviously, k<

	

Put

VI = U Vi,(xl ; U), V2 = U VI(xi ; U)
1=L5k

	

1s15k

(V1 n v2 =0) and VI = V-(VI U V2),
ni=jVjI, 1-i--3 .

Consider now the edges in E 1 U E2 of the following type :

Fü,I = {( x, y) : XEV,, yEV1, (x, y)EEj,
1-j_3, 1-_1-_3, i=1, 2 .

(a)

	

IF,,ll - 4 ni, IFz al 4 nz

since Gl and G2 are triangle-free.

IF,',,l < An 2,

	

IF!, 21 - 1n2
(b)

IF%ll < án2 , IF2,2I < á,n2 .

Otherwise we would have two points x,, and xµ with

i vi (x„) nv2 (xµ ) I>k n> 2 n= En

which contradicts (8) .

(c)

	

. IF,,3I < á,n2 for j = 1, 2, 3, i = 1, 2 .

Otherwise we would have an xE V with

max d, (x ; V,) -- ),n .
i=1,2

di(x ; V,) = di(x ; Uk)

this would contradict the maximality of the sequence x 1 , . . . , xk .
By (a)-(c) we obtain

(13)

	

ISII - 4
ni-f l n2

(14)

	

IE2I - 4
n2+Wn2 .

Now by the assumption
ISII -- IE2I -- c n2

we get
n i --2riyc-10.1

	

i=1,2.

31
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Hence by (13) and (14)

IEII+IE2I - n2 1 (4 -V-C+2c +ri(E)n 2

where, as a simple computation shows, ti(e)->0 with e-0 .

REMARK . If c > 16 , there does not exist a three colouring of K„, for which

K3

	

Gi ,

	

i=1,2

Ken G3
and

IE,I ' IEJ -- cn2 .

REMARK. First observe that the constant 4 - ~c+2c in Theorem 2 is best

possible . To see this, let
V = V1 UV2 , V1 n V2 = 0,

IV, I = [2 ~cn], IV, I = [(1-2 Cc) n],

V, = A ;UBj , IAjI = I2 IVjI], IBjj = [ 2 IVI+1], i = 1, 2 .

Join every vertex of A l to every vertex of Bi in Gi (for i=1, 2). Let the further
edges of G 1 , resp . G 2 form a graph on A 2 and on B 2i resp. on Al and on Bl which
has no triangle and the number of independent points is o(n) . (It is well-known,
that such a graph exists and in fact we used this method in P. ERDŐS-V. T . Sós [1]
or in (6) of the proof of Theorem 1 . Obviously this colouring has the required
properties .

To get the exact result for f (n ; 3, 3, En) is rather hopeless because of its close
connection with the Ramsey-numbers . This close connection is shown already by
the following

PROPOSITION 1 . Let E(n)-0 with n--. Then

(15)

	

R(3, s(n)n) = o(n)
implies
(16)

	

f(n; 3, 3, E(n)n) = o(n 2) .

(Here R(k, 1) is the Ramsey-number .)

PROOF . (a) Suppose R(3, E(n)n)=o(n) and that with a constant c>0

f(n ; 3, 3, E(n)n) > cn 2

holds. This means, that we have a three-colouring of K„, for which

K3 ckGi

	

i=1,2

K,( ,), c# G3

P . ERDŐS AND V. T . SÓS
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and, e.g ., JElJ>2 n2. Thus we have a vertex x with dl (x)>cn . Since K3 Gl ,

in V,(x) we have only edges of E2 and E3 .
But this means, that we have a two-colouring of the edges of K,,,, where in

the first colour class there is no K3 and in the second there is no K, ( „ ) ,, . This con-
tradicts (16) .

The converse statement, that (16) implies (15) is probably true, too, but we
could only prove the following weaker result :

Assume that

Then

It seems certain that

(18)

	

R(4, n) > n3-E

The probability method surely must give (18) but so far technical difficulties
prevented success .

GREENWOOD and GLEASON [8] proved

Rl (k1 +1, . . ., k,+1) (kl+ . . .+k,)!
k,! . . . k,!

This gives for example

and more generally
R, (3, 3, . . ., 3, n) -- c r n 2r

1

	

r

A simple observation leads to the following improvement :

PROPOSITION 2 .

(19)

	

R(3, 3, n) = o(n3)

TURÁN-RAMSEY TYPE THEOREMS 11

	

3 3

R(3, E(n)n) > cn .

f.(

	

E(n)n)
ln ; 3, 3,	2c

We hope to return to this subject later .

Some remarks on the Ramsey-numbers

As it is well-known, ERDős and SzEKERES [7] proved

> cn2 .

R(k, l) (k+1-1 2) .

Probably (17) is not very far from being best possible, in particular

n 2

	

n2 loglog n
c2 (log n) 2 ` R(3, n) < cl

	

log n

R3(3, 3, n) -- cn4

3
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and more generally
(20)

	

Rr(3, 3, . . ., 3, n) -- rnRr_,(3, . . ., 3, n) = o(nr +1 ) .
1

	

r

	

1

	

r-1

PROOF . Let us consider a "good" r-colouring of K. for k,= . . . =k,_,=3,
kr =n . Let Gi , 1--i--r the graph formed by the edges of the ith colour-class . Put

Vi(x) _ { y : (x, y) E Ei }, 1 -_ i _- r .

Let U= {x1 , . . ., x.) be the vertex-set of a maximal-sized complete graph in Gr .
We have v --n -1 . By the maximality of I U I we have

v r-1
U U Vi(xj ) = V-U.
j=1 i=1

Since Gi , 1-- i--r-1 is triangle-free,

IVi(xj)I < Rr-1(3, . . ., 3, n) for j = 1, . . ., v.

Now taking into consideration R(3, n)=o(n2), this proves (20) .

REMARK . We have no nontrivial lower bound for R(3, 3, n). It is trivially true,
that

R(3, 3, n) -- 2R(3, n) .
We expect that

R(3, 3, n)/R(3, n)

R(3, 3, n) n -2
or even more,

R(3, 3, n) >- 0-E

Some remarks on the two-colourings of K„

The following problem belongs to the questions we considered in [5] . Let
f (n ; G) be the smallest integer for which every graph of n vertices and of f (n ; G)
edges contains a subgraph isomorphic to G and f(n ; G, en) be the smallest in-
teger for which every graph of n vertices and f (n ; G, En) edges either contains
a subgraph isomorphic to G or has an independent set of size En .

First we investigate conditions which imply

(21)
where ri--0 with
(22)
with a c-0 .

We prove some preliminary results about (21) and (22) and
a few more results .

PROPOSITION 1 . (21) holds for G-K(l, r, r) .

PROOF . We need the following result of Erdős :

E--0 or
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For every 1 there exists a constant c, >0 such that if n -n,, and e (G„) > cn 2
then G„ contains a K(1, c,, n) .

Using this it is easy to show that if for G„ e(G„)=cn2 and the largest independent
set in G„ has size less than e(c)n, then G„ contains a K(1, r, r) .

PROPOSITION .

where il--0 with E--0 .

PROOF . The stronger

f(n ; K(3, 3, 3), en) = 4 (1+n)

f(n ; K(3, 3, 3» . 4 (1+tl)

follows from ERDős-STONE [6] .

We can prove the lower bound as follows :

Let I Vl I _ [ 2 ] , V2 1 _ [n Z Il We join every vertex of Vl to every vertex

of V2 . Additionally on Vi resp. on V2 we consider a graph whose largest independ-
ent set has size En and which contains no circuit C, with 3-_r--5 . (We know the
existence of such a graph from [3], [4].) This graph contains no K(3, 3, 3) since the
vertex set of K(3, 3, 3) cannot be decomposed into two sets neither of which spans
a graph without a circuit .

In a forthcoming paper we prove the more general

THEOREM A. Let G be a graph which is k-chromatic and the vertex-set can be
decomposed into k-1 sets which span graphs without circuits. Then there is a c>0
such that

f(n ; G,En)`= 2 (1- k I 1 -cl

for s-s , n>no .

As to (22) we prove

THEOREM B . Let G be a graph which is k-chromatic and the vertex-set of G cannot
be decomposed into k- I sets such that the subgraphs spanned by these sets have
no circuit. Then for every q ~- 0

f(n ; G, En),2 (I-kl 1 - ál

if E<EO(q),n~- no(q)

	

l
.

Added in proof (December, 1981). We proved with A . Hajnal and E. Szemerédi
that

f(n ; 2k, 1)

	

2 (3k-2) n2+o(n2)
for k > 2

when 1=o(n) . The proof will appear in a quadruple paper in Combinatorica .

3*
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