
Miscellaneous problems in number theory

P . Erdős

In this note I discuss some somewhat unconventional

problems on consecutive integers and on additive number theory

and on prime factors . Some of the work is joint with J . L .

Selfridge . I will try to give as exact references as my

memory permits .

Put

a . (n)
(1)

	

n! = II P i
i

Pi

I

a . (n) _

	

[ n ) < n
1

	

pk

	

p .-1

Recently Selfridge and I proved the following

Theorem 1 . Denote by h(n) the number of different ex-

ponents a i (n) . There are absolute constants c 1 and c2
for which

n

	

1/2	 n 	1/2
(2)

	

c1 ( log n

	

< h (n) < c2 ( log n

The upper bound of (2) is trivial . If _r > (nlog n) 112
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then by (1) there are at most ( log n )

1/2
possible choices

of a i.(n) and if p <_ (n log n) 1/2 there are

1/2
(2+0(1))(lon n)

	

such primes . Thus the upper bound of (2)

holds for every c2 >3, n > no (c2 ) .

The proof of the lower bound is slightly less trivial .

We will not try to give as large a value of c1 as possible

since it will be clear from the proof that our method will

never give the best possible value . We will leave some of the

details of the proof to the reader . Let a>o be fixed and

sufficiently small . Let

(3)

	

n1/2 < pi < . . . < pi <e 2 (n log n) 1/2~ pi

	

-pi >

	

clog n
1

	

r

	

j+1

	

j

be a maximal subsequence of the primes satisfying (3) (i .e .

P i

	

is the smallest prime greater than pp

	

satisfying
jj+1

	

l j
(3)) . It follows from (1) and (3) by a simple computation

that (ai (n)=[ pn ]) the ai (n), 1<-j<_r form a strictly
J

	

ij

	

J
decreasing sequence . Thus h(n) >_ r . Further it easily follows

from Brun's method that for sufficiently small e,
1/2

r >E4 (log n)

	

which completes the proof of Theorem 1 . Just

a few words of explanation about Brun's method . It is well

known and easily follows from Brun's method that there is an

absolute constant c so that for sufficiently small 6>o

the number of solutions of

p i <X, O < pi-pj < 6 log x

is less than C 6 log x . This easily implies r > e4
log x
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for sufficiently small a>o .

There is no doubt that there is a constant c>o for

which

(4)

	

h(n) _ (c+o(1)) (

	

n
log n

The proof of (4) seems to present very serious difficulties

since we do not know enough about the difference of consecutive

primes .

Put

n

	

a .(x,n)
(5)

	

11 (x+i) = 111 pi 2

	

112i=1

where in 11 1 the pi run through all the primes not exceed-

ing n and the primes q
7

, are the primes greater than n

It is easy to see that for every n there are infinitely many

values of x for which all the

In fact surely the a z.(x,n) are

ai(x,n)-ai(n) . (I did not carry

expect any difficulties .) On the

that for large n all the exponents

(6)

	

(ai (x,n),

	

B
i (x,n))

can be different . In fact I would conjecture that for every

k there is an n so that for n > n at least k of the0

	

0

exponents (6) must be 1 . This conjecture is no doubt un-

attainable at present . Several years ago Selfridge and I proved
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ai (x,n) are all distinct .

subject only to the condition

out the details, but do not

other hand I do not believe



that the product (5) is never a power and we conjectured that

at least one of the exponents (6) is 1 . This conjecture seemed

to us hopeless then and it still is hopeless and probably will

stay so for some time .

For small n of course all the exponents (6) can be dis-

tinct, but I can not even prove that for n=2 there are in-

finitely many values of n for which the exponents (6) are

all distinct . No doubt there are infinitely many primes p for

which 8 p 2 +1 is a prime, thus (3, 2, 1} occurs infinitely

often for n=2,

Let f(n)=p 7. where

j-1

	

a . (n)
1T p i

	

< (n ! )
i=1

In the American Math Monthly Selfridge and

the following problem

for

112

I proved

(.advanced problem 6334) . Prove that

lim f (n)/n = c
n---

7

	

a i (n)
< II pi
i=1

and that if f(n)=p
7

, then

m>n f(m) >_ p j-1 . Further f(n+1) <_ Pj+1 '

The proof of these statements is not difficult . We could

not prove that there are

which f(n)=p j

In fact we do not know any such value of n . This question

remains open .
a .

Let n= II pi
i

i

j-1

	

aL iII Pi <_

i=1

f (n+1)=p7-1

infinitely many values of n for

(i .e . f(n) is riot monotonic) .

Put f(n)=pj where

112 < n

	

a in
Pi

i=1
It is not difficult to prove that

n for which f(n) < n a exists . Denote

28

the density of integers

this density by g(a) .

g(O)=O, g(1)=1, g(a) is continuous and strictly increasing . We



leave the simple proof to the reader . The following problem

is perhaps interesting and certainly seems difficult :

Is it true that for every £>o there is a x £ so that

for every k > K E the density of integers n for which

k(2-E)

	

k

	

k( i E)
(7)

	

n

	

< f ( 11 (nti)) < n
i=1

is greater than 1-£ ?

I have not been able to prove or disprove this conjecture .

Perhaps the right and left side of (7) can be
k

	

k-E

	

1+
n
2£

and n

Denote by P(m) the greatest prime factor of m .

Selfridge and I considered the following question . Consider

(8)

	

a1
a2nak = in , P(In )<_ n .

replaced by

In other words r n is an integer all prime factors of which

are not exceeding n . Put

(9)

	

L(n) = min (a k -a 1 )

where the minimum in (9) is to be extended over all k > 1

and all sequences a 1 < . . .<a k satisfying (8) .

We hope to prove that for all n L(n)<_n-3 and that

this is best possible for infinitely many n . We hope to re-

turn to this problem in the future .

We could not prove that L(n)

	

as n-W . In fact we

could not even prove that L(n) > 2 for all n > n 0 . In other
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words we could not prove that if x(x'1) is an integer thenn .

P (x(n+1) ) > n . In fact we could not even prove that L (n) > 2

for infinitely many n .

It is very likely that for n > n0 ,

n! _ (x+1) . . . (x+k),

has no solutions for x>_2, k>_2 . Spiro pointed it out to me

that n!=x(x+1) is unsolvable for infinitely many n .

It is not difficult to prove that

(10)

	

L(n) < n - c 1 log n

holds for almost all n if c 1 is sufficiently small . To

prove (l0)observe that for almost all n

(11 )

	

II

	

(n +i)
1<-i<-c 1 log n

(11) immediately implies (10) . The proof of (11) is not dif-

ficult and I do not give it here . I expect that apart from the

value of c 1 (10) is best possible i .e . for almost all n

(12)

	

n - c2 log n < L (n) < n - c 1 log n

I am very far from being able to prove (12), but hope to

be able to convince the reader that (12) is well motivated . If

the lower bound of (12) would fail then it is easy to see that

we could assume a 1 > C n for every c if n > no (c) . Now we
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prove

(13)

Then

Theorem 2 . Assume a 1 > (1+c)n and

a 1 a 2n
n

	

ak = In , ak-a 1<n, In integer P(In )<-n .r

n-c3 nloglog n /log n
a 1 > 2

In other words if (13) holds then a 1 must be enormously

large . I hope that the following much stronger conjecture holds :

(13) implies k=1, a,=_o(mod n!) . The reason that I believe this

conjecture is that I think that for x>(,+s) n u<n, n>n0 (e)

we have P(x(x+u)) > n . Unfortunately the tools at our dis-

posal are far too weak to attack this conjecture .

We prove Theorem 2 in several steps . First we prove

Lemma 1 . For every prime p there is an integer m,

x < m <_ x+n so that

a(n)+1

	

1 np
IIP

	

(x+i )
m i-1

n
In other words m II (x+i)

i=1

power of p than n! .

The Lemma is well known and the proof is immediate . It

suffices to choose m so that m divides p to the highest

power amongst all the integers x+1, . . .,

The Lemma immediately implies that

to a power at most

31
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x+n .
n
r[ (x+i) divides p

i=1



(14)

	

a2 (n) + loog 2 < a2 (n) + 2 log x

(14) will be our main tool . Denote by H'(x+i) the product of

the integers x+i, 15i<-n, P(x+i) <_ n . To prove Theorem 2

it suffices to show that if

n-c 3 n loglog n/log n
n(1+e) < x< 2

then 2 divides n! to a higher power than H'(x+i) .

Assume first

(15)

	

n(1+e) < x <_ 2n

Observe that if n < p < n(I+e/2) then x < 2p :5 x+n . By the

prime number theorem the number of these primes is

(1+0(1)) 2 log x ' Thus by (14) if (15) holds then II'(x+i)

divides 2 to an exponent less than

a2 (n)+2 log 2n - ( 1+0(1)) 2 log x < a2 (n)

which proves Theorem 2 for x <_ 2n .

(16)

Assume next

2n<x<_n 1+6

where 6>o is a sufficiently small absolute constant .

It follows from the prime number theorem of Hoheisel

(see e .g . K . Prachar, Primzahlverteilung, Springer Verlag 1956)
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that if (16) is satisfied then

Thus there are at least c 4 n/ log n even integers m,

x < m < x+n with P(m) >J- > n . Thus II' (x+i) divides

an exponent less than

n (x+n) - II ( 2 ) > c4 n/log n

a2 (n) + 2 log x - c4 n/log n < a 2 (n) ,

which proves Theorem 2 for x <_ n

Now we need

Lemma 2 . Let x > n l+ó . Then there are at least c5 (ó)n
even integers m, x<m<_x+n, satisfying P(m) >n .

To see this consider

n1 ([2] +i),

	

15i52

(17)

	

n1 ([2] +i) i [ 2] i

2 - 2 log n - c5(6) n > ( 2 - 2 c 5 (ő) ) n

33

2 to

1+b

where in n1 we omit all the [2]+i with P([ 2] +i) > n and

for every p <- n we omit the integer [2] +i which divides

p to the highest power amongst all the [11] + i, 1
,,, :,,n,

By . Lemma 1

If Lemma 2 would be false then the product (17) would

have at least



factors Ell7 + i with p C[2 ] + i )_ <_ 2 . This contradicts

(17) . To see this observe that x > nl
+d and thus for

sufficiently small c 5 (S) a simple computation shows that the

left side of (17) is larger than the right one . This

contradiction proves Lemma 2 .

From Lemma 2 and (14) we obtain that for x > n1+b the

highest power of 2 which divides H'(x+i) is less than

a2 (n) + 2 log x - c 5 (b) n < a2 (n)

for x < 2 c
s (b)n/2

	

cs (b)n/2
which proves Theorem 2 for x < 2

Lemma 3 . Let x > 2cn . Then the number of integers

x<m :5x+n, P(m)Sn is at most (1+0(1))nlog n
It follows from Lemma 1 that

(18)

	

IT 1 (x+i) I n1

where in (18) 1 < i <_ n and the x+i with P (x+i) > n are

omitted and we further omit for every p 5 n an integer

x+J.p which is divisible by a power of p not lower than any

other x+i, 1 <_ i <_ p . From (18) and x > 2 cn it follows that

the product on the left side of (18) has at most c' log n

terms, which krmuediately gives Lemma 3 .

Now we complete the proof of Theorem

34

2 . Denote by x+t

the integer (1 <_ t <_ n) which divides 2 to a higher power

than the other integers x+i, 1 < i <_ n . Clearly if i#t then

the largest exponent to which 2 can divide x+i is [ig z ]
and there are at most 2 r integers x+i, 1 <_ i 5 n which

divide 2 to an exponent [ looggnn2 ] -r . Now by Lemma 3

II'(x+i) has at most (1+0(1)) log n factors and thus



1
X+3 II'(x+i) divides 2 to an exponent less than

c n loglog n/log n . But by our assumption n!I II' (x+i)

thus x+! divides 2 to an exponent greaterr than

a 2 (n)

	

c n loggnog n ' which completes the proof of Theorem 2

(since a 2 (n) > n - log 2 ) .g

I am sure that Theorem 2 is not best possible but I could

not improve it .

Perhaps the following remarks are not without interest .

Theorem 2 shows that it is difficult for II'(x+i) to be a

multiple of n! since usually 2 divides n! to a higher

exponent than II'(x+i) . In fact "usually" more is true .

There is an absolute constant C so that for every a>o and

n>n (e)0

(19)

	

II' (x+i) > n!

	

for

	

x < (C-e)n

and for (C+e)n < x < nf(n)

(20)

	

II' (x+i) < n!

where f(n) tends to infinity sufficiently slowly .

The proof of (19) and (20) is not difficult and can be

left to the reader . The condition x < nf(n) is probably not

needed and can no doubt be replaced by the following much

stronger

Conjecture : If n > n
0 (e) and x > (C+e)n then

R' (x+i) > n! holds only if there is an m x < m <- x+n, m >n!

P(m) 5 n .
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Very likely if x > n! (or even if only x tends to in-

finity exponentially) there is at most one m x < m <- x+n

satisfying P(m) <_ n .

The proof of the conjecture (if true) will no doubt be

very difficult . The reason that I can not replace in (20)

nf(n) by n1+c is the following curious difficulty : It is

well known that the number of integers m < n a (a>1) satis-

fying p(m)<_n is (P(a)+o(1))na where P(a) is the Dykman

function . It is known that P(a) < á . We would need that the

number of integers n a < m <- n a +n satisfying P(m) :5n is also

(P(a)+o(1))n . The proof of this seems to present considerable

difficulties, but perhaps I am overlooking a simple idea .

Denote by 1=u 1 <u 2 < . . . the sequence of integers satisfy-

ing P(u i ) :5n . I thought that for every integer n and m

n
(21)

	

II um+i - o (mod n!)
i=1

I do not at present believe that (21) is true . In fact I

would expect that for infinitely many m there are primes
n

p <_ n with p X R um+i

	

but I can not prove anything . In
i=1

fact let u . < u . < . . .

	

be the u's which are even . Is it1 1

	

.7. 2
true that

(2.2)

	

lim sup (i i+1 - ij ) = -

	

?

In other words : are there arbitrarily large consecutive blocks

of u's which are odd? It is easy to see that there are

36



arbitrarily large consecutive blocks of u's which are

even, since almost all u's are even and in fact if

p(m)
<_

n then almost all u's

	

are multiples of m .

P . Erdős, Problems and results on number theoretic

properties of consecutive integers and related questions,

Proc . fifth Manitoba conference 1975, 25-44 .

P . Erdős and J . L . Selfridge, The product of consecutive

integers is never a power, Illinois J . Math . 19(1975),

292-301• .

N . G . de Bruijn, On the number of positive integers

<_ x and free of primes > y, Indigationes Math . 13(1951),

50-60 .
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II

Now I discuss a few somewhat unconventional problems in

additive number theory . Let A and B be two disjoint sets

of positive integers whose union is the set of all integers .

Denote by A + respectively B + the set of integers which are

the distinct sum of integers a i e A (resp . bi a B) .

It is easy to see that either A + or B + (or both)

must have upper density 1

	

In fact the following stronger

result holds :

Theorem 3 . There is an absolute constant c and an in-

finite sequence n 1 < n 2 < . . . so that for every i every

n i < m < cnj belongs entirely to A + , (respectively to B + ) .

It is easy to see that apart from the value of c this

result is best possible .

Let a I <a 2< . . .

	

be an infinite sequence of integers .

Denote by a t (A)

	

the upper logarithmic density of our

sequence i .e .

d~(A) = lim sup log xx_~ a
1
5 x

(23)

	

max (d f (A + ), 2-1(B +)) < 1 .

39
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ai

It is easy to see that there are sequences A and B

for which

To prove (23) let A be the integers satisfying



2k

	

2k+1
(24)

	

24

	

< m < 24

	

, 172 = 0 , 1,

and B is the complementary set of the integers (24) . Then

a simple computation shows that the integers

(23) .

I am sure that

(25)

	

max(d£(A +), d £ ( B + » > 2

(24) satisfy

It will probably not be difficult to prove (25), but

at the moment I do not see how to determine

(26)

	

min max(d1 (A+), i1 (B + )} = c
A,B

and I postpone the proof of Theorem 3 until I can settle (26) .

The proof of Theorem 3 and probably (25) is routine, perhaps

the proof of (26) is not so trivial .

Define a non uniform hypergraph G(n) as follows :

The vertices are the integers 1 :5x< n . The edges are the

sets a I < . . .<ak for which a1+ . . .+ak=n . Denote by r(n)

the chromatic number of this graph, í .e . r(n) is the

smallest integer for which the integers not exceeding n can

be divided into r(n) classes so that no subsetsum of the

a's of the same class equals n . It would be of some in-

terest to determine or estimate r(n) as accurately as

possible . r(n) < c1n112 is trivial and it is not difficult

to prove that r(n) > n c 2 for some positive constant c2 .

It is easy to see that r(13)=2 and 13 is the smallest in-

teger with r(n) > 1 .

I asked : Is there an absolute constant c so that for
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every n > n o there are c partitions of n into distinct

summands whose chromatic number is >_3 ? This is of course

possible if n=_o(mod 13), but Joel Spencer proved that the

chromatic number is 2 for infinitely many n in fact for

all sufficiently large primes p .

Another similar hypergraph can be defined as follows :

The vertices are the non-zero residue classes mod n , and

the edges are the sets of distinct residue classes a 1 , . . .,a k

satisfying a,+ . . .+ak=o(mod n) . Determine or estimate the

chromatic number of this hypergraph as accurately as possible .

Here are two further problems which may be of some in-

terest . Denote by fn (k) the largest integer so that for

every choice of the integers 1!5a 1 < . . . < ak < n there is

always a subsequence of at least fn (k) integers a j < . . .
1

no subsetsum of which equals n

	

Similarly Fn (k) is the

largest integer so that if a 1 , . . ., ak is any set of distinct

non-zero residue classes mod n there always is a subset of

F (k) residues no subsetsum of whichn
fn (k) >- Fn (k) . Determine or estimate fn (k) and

is =o(mod n) . Clearly,

F (k) asn
accurately as possible . Perhaps this problem will turn out

to be easy .

Let a (n)<a(n)< . . . be the infinite sequence of integers

all whose prime factors are not exceeding n . Denote by g(n)

the smallest integer which is not the sum of two a's . I ex-

pect that the true order of magnitude of g(n) is about

exp n 112 A counting argument gives that for n >n o (s)

g(n) < exp (n1 /2+e )

and I would expect that for n > n
0 (s)
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(27)

	

g(n)

	

exp n ^E_

I am very far from being able to prove C27) and in fact

could not even prove g(n) > n2+E . Balogh informs me that

he can prove g(n) > n2+c for a certain c > 0 .

Denote by h(n) the smallest integer which is not

the distinct sum of pairwise relatively prime a i n) s .

I can prove

(28)

	

exp c 1n < h(n) < exp c 2 n .

Very likely there is an absolute constant c > 0 for which

h(n) = exp (c +o(1))n .

MacMahon defines a sequence 1,2,4,5,8,10,15, . . .

as follows : n occurs in this sequence if and only if n

is not the sum of two or more consecutive terms of this

sequence . Andrews conjectured

mn = (1 +o(1))n loglog n/log n

where mn is the n-th term of this sequence .

The remarks that he can not even prove

mn/n
-"

-' mn/ n l+c ; 0

and I also could not prove these attractive conjectures .

Let 1 s al < a2 < . . . be a sequence of integers for

which every sufficiently large n is the sum of one or

a's . No doubt
n

more consecutive

even nl+c an -). 0 for some c < 1 .

41

an -> 0 and perhaps



Let f(x) be the smallest integer for which there is

a sequence 1 = a l < . . . < at <_ x l (t = f(W so that every

integer 1 <- n s x is the sum of one or more consecutive

a's . It would be of interest to determine (or estimate)

f(x) as accurately as possible . No doubt

f (x) = o(x) but f (x) /
x

-> m .

R. Guy, Unsolved problems in number theory,

Problem books in Mathematics Vol . 1 E . 30 p . 120,

Springer-Verlag 1981 .
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III

Finally I state a few problems and results on prime
a

ifactors of integers . Let n= II p í . Put

(30 )

	

F(n) = maxEa í , (a í ,a
i
)=1, a í <_n

where the a .s are entirely composed of the prime factors

of n . Let further

( 31 )

	

f(n) _

	

p í sz , p i si < n < p s+1

i .e . in (31 ) the a, are assumed to be powers of primes .i

Clearly F(n) >_ f(n) holds for all n and it is not hard

to see that F(n)=f(n) for infinitely many n which are not

powers of a prime and in fact for which w(n)-- (w(n) is the

number of distinct prime factors of n) . I expect that

F(n)/f(n)-- for almost

do not expect that the proof will be very difficult .

I further expect that for almost all n

Also probably the logarithmic density L(C) of the in-

tegers n satisfying f(n)ln >- c exists and is a continuous

strictly decreasing function of c , L(O)=1, L(-)=O . The

ordinary density will not exist and even the mean value

1 XX E f(n)/n will not exist since f(n)/n-- on a sequence of
n=1

upper density 1 .

F(n) _ (1+0(IJ) n loglogn
2

all n . I have not proved this, but
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but no doubt

(32 )

Finally

max f(n) _ (1+n(1))x log x/loglog x
n<x

1
X

(max F(n) - max f(n))-
n<_x

	

n<x

The maximum possible value

both less than n . w(n) where

M

of f(n) and F(n) are

w(n) denotes the number

of distinct prime factors of n . It is very likely that

n w (n)- F(n) tends to infinity if n runs through the

integers which are not powers of primes . It would perhaps

be of interest to try to estimate how fast (32) or

max (nw(n)-F(n)) and max (nw(n)-f(n))
n<x

	

n<x

tends to infinity . At the moment I have no interesting results .

Put

( 33)

	

G(n) = max E a í ,

	

(a i ,a
i
)=1, a i <-n

It would be of interest to determine as accurately as possible

the a's which occur in the sum ( 33) . This does not seem to

be easy, I am not even sure that the maximum in (33 ) is

assumed for a unique choice of the a's .

n occurs in the sum ( 33) if and only if F(n)=n , and

the density of these n is o . Perhaps one can get an

asymptotic formula for the number of these integers and also

for the integers n < x with f(n)=F(n) .



It is not difficult to prove that both G(n)=. . .=G(n+k)

and G(m)< . . .<G(m+k) hold for arbitrarily large values of k

but I have no good estimate for the largest possible values of

these k .
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