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INTRODUCTION

By an r-uniform hypergraph (or r-graph, for short) H = (V, E) we mean a
collection E = E(H) _ {E I , . . ., E, } of r-element subsets (called edges) of a set
V= V(H), called the vertices of H. Let A"= {HI , . . ., H,t } be a family of r-
graphs, each having the same number of edges . By a U-decomposition of A°
we mean a set of partitions of the edge sets E(Hi ) of the H;, say E(Hi) _

Y'-1 E, ,j , such that for each j, all the Ei,j are isomorphic (as hypergraphs) .
Such decompositions always exist since (by our assumptions) we can always
take all the Ei, j to be single edges .

Let us define the quantity U( °) as the least possible value of t a U-
decomposition of can have. Finally, we let U,r (n, r) denote the largest
possible value U(AV) can assume as ranges over all families of k r-graphs,
each having n vertices and the same (unspecified) number of edges .

For the value r = 2, r-graphs are just ordinary graphs and in this case, the
241
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functions U,(n, 2) = Uk(n) have been investigated extensively by the authors
and others in [1, 2] . In particular, it is known that

and

U,(n) = 3n + o(n),

U,(n) = án + ok(n),

	

k> 3 .

In this paper we continue this study to the much more complex case of
r > 2 . Our basic results are the following (where c, , c 2 , . . ., denote appropriate
positive constants) :

PRELIMINARIES

We first prove several auxiliary lemmas . Suppose

	

_ {H,	Hk }, where
each H; is an r-graph having n vertices and e edges . Let us denote by c(oV)
the maximum number of edges in any hypergraph H occurring in all the H;
as a common subhypergraph .

LEMMA 1 .

ek
C(a2°) >

n k-1 .

r

Proof. Let S2 ; denote the set of all one-to-one mappings of V(H i ) into
V(H,) . For ~ ; E Sl„ e j E E(G j ), 1 < i < k, define

ek ) = 1

	

if A ; maps e j onto e, ,

= 0

	

otherwise,

c,n 4 /3 log log n/log n < U,(n ; 3) < C z n 4 / 3 ; (1)

for any s > 0, c,n2-z ik- E < U,(n ; 3) < c,n 2-I lk ; (2)

c s n r/2 < U 2(n; r) < có nr/2 for r even ; (3)

c,n ( r-
1) 2i (z r -1) < U2 (n ; r) < c,nri z for r odd ; (4)

nr- ' - r1k < Uk(n ; r) < nr - ' - v k for r > 3 . (5)



where we say that A i maps e ; onto e, if e, = UxEe;A,(x) . Consider the sum

s =
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, . . ., ek)
e,EE(H I ) A2EQ2

ekEE(Hk) -'kE~2 k

(r! (n - r)!)k -' = ek(r!(n - r )!)k
- ' .

e,EE(H I )

ekEE(Hk)

Since I .fl ; I= n! for all i then for some choice of ~ z E Slz , . . ., ~ k E Sl k ,

S

	

e k
l k(e,, . . ., ek) > (ni) k-' =

	

n k-'
e,EE(H,)

	

~

	

)

ekEE(Hk)

	

r

Consequently, the ~ ;, 2 < i < k, determine a subhypergraph H common to all
of the Hi which has at least e kA "r )k- ' edges .

LEMMA 2 . Let H be an r-graph with I E(H)I > rab + 1 . Suppose deg v =
{e E E(H) : v E e) < a for all vertices v E V(H) . Then H contains b disjoint
edges .

Proof. Suppose F is a maximal set of disjoint edges . If IF < b, the
number of edges containing some element of F must be at most IF1 ar <
I E(H)J, contradicting the maximality ofF.

LEMMA 3 . If r = 3,

24 3

Proof. It suffices to prove there is a star with t= [Ve/5n] edges
contained in each H; . By a star S we mean a collection of edges e ; such that
for some point x, e i n ej _ {x} for all i * j. Suppose H has n vertices and e
edges and does not contain S . Consider the set P of disjoint pairs of vertices
of V(H) defined as follows :

(i) Select v, with degH(v,) > deg,(v) for any v E V(H) . Let v* be a
vertex in Hx of maximum degree and define P, _ { v, , v ; } (where, for
x E V(H), Hx denotes the ordinary (2-) graph with edge set { { y, z } :
{x, y, z} E E(H) }) .

(ü) Suppose now that P,	P; have been defined . We form Pi ,, as
follows. Choose v i ,, so that :

(a) v i ,, P; for 1 < j < i ;
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(b) v,+, has maximum degree in the subhypergraph induced on
V(H) - X„ where

Xi = U Pi-
j=1

Let v,*, , be the vertex the graph H,,+, -Xi having maximum degree at least
one in H,, +, , Define Pi+, = {vi,„ v, } . We continue this process as long as
possible . The final set of pairs P is defined to be U ;,, P i .

Let di denote the degree of v ; in the hypergraph induced in V(H) - X;
(with Xo taken to be 0) . Since H does not contain a copy of S, we have

1{ EE(H):P i c-- é} > di/2t

for all i > 1. Let d* denote the degree of v* in the hypergraph induced on
V(H) -X j , - { vi} . Then di > d* and E, j (di + d*) > e. Therefore,
Y, i di > e/2 .

Now, for any v E V(H), define a(v) by

a(v) - ~ { E V(H) : é = {v } U P i for some i }j .

Thus,

a(v) > V ~{é E E(H) : P i E é}j
v

di/2t
i

> e/4t.

	

(6)

However, the assumption that S t H implies a(v) < t - 1 . Therefore, by (6)

(t - 1)n > e/4t,

which clearly contradicts the hypothesis that t < \/e/5n .

In a similar way we can prove the following .

LEMMA 4 . Let AV be a family of r-graphs, each with e edges . Then

ce
c( °) >

	

nr_2 ,

where c is a constant depending on k .
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BOUNDS ON U,(n ; 3)

The main result of this section is the following .

THEOREM 1 .

c, n" log log n/log n < U, (n ; 3) < c z n 4 i3

Proof. We first prove the upper bound . Let G, and G Z be two 3-graphs,
each with n vertices and e edges. We will successively remove isomorphic
subgraphs H from the Gi , thereby decreasing the number e of edges currently
remaining in each of the original graphs. The subgraph H = H(e) removed
will depend on the current value of e . We distinguish two ranges for e .

(i) e > n 5 3 . In this case we repeatedly remove a common subgraph
H(e) having at least e2/( 3 ) edges . The existence of such an H(e) is
guaranteed by Lemma 1 . If e i denotes the number of edges remaining in each
hypergraph after i such subgraphs have been removed then

Letting a i = e/(33 ) we have
za i+ , < a i - a i .

Since a i < 1 and i- I -i-2 < (i + 1)- ', it follows by induction that a i < i- '
for all i. Thus, after n4í3 steps, the remaining graphs have at most n' 13 edges .

(ü) e < n 5 / 3 . For this range, we repeatedly apply Lemma 3 . Let eo
denote the number of edges each graph has at the beginning of this process .
In general, if e ; denotes the number of edges remaining after i applications of
Lemma 3, then

e
ei+, < ei -

	

.

(3)

(7)

ei +, < ei -

Setting a i = 5ei n, we have a i+ , < a i -

	

. By hypothesis, a o < án 8 / 3 .
Suppose

a i < (f n4/3 - i/2 )2

for some i > 0. Then,

ai+, < (~15- n4/3 _ i/2 ) z - -.,15 n4/3
+ i/2

(,án4/3
- ( i + 1)/2) 2 .

(8)
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Therefore, after at most 2 n 4/ 3 steps, all edges in each graph will have
been removed . Since, the total number of steps required in (i) and (ü) is at
most (2 f + 1) n 4 / 3 then we have proved

U2(n ; 3) < c2 n 4/3

as required .
The lower bound is obtained by proving the existence of two hypergraphs

G, and G2 with cn 5 / 3 edges with the property that any common subgraph has
at most c'n'/ 3 log n/log log n edges .

Let G, consist of the disjoint union of n 2 / 3 copies of complete 3-graphs on
n' /3 vertices . We remark here that although n 2/ 3 and n'/ 3 may not be
integers, such statements are always made with the implicit understanding
that the hypergraphs (and quantities) involved may have to be adjusted
slightly by adding or deleting (asymptotically) trivial subgraphs (and
amounts) so as to make stated inequalities true .
G2 will be a 3-graph having the following properties :

(a) There is a point v, such that v, E é for all é E E(G2) ;

(b) Consider the ordinary (2-) graph G' with V(G) = {v 2 , . . ., v n } and
E(G') _ {é - {v, } : é E E(G2 ) } . Then G' has (n33 ) n 2 / 3 edges .

(c) Any induced subgraph of G' on n'/ 3 points has at most
n '/3 log n/log log n edges .

The existence of such a G2 follows from the following probability
argument .

Consider the set - of all ordinary (2-) graphs with n vertices and e =
(n 33 ) nz/3 edges . A graph F E J~'- is said to be bad if there exists a set of n' /3
points such that the induced subgraph on these vertices has at least
n'/ 3 log n/log log n edges . The number of such bad graphs F E is bounded
above by

n

	

n 2 / 3

	

(z)- n'/3 log n/loglog n
A - (n'/ 3 ) (n'/ 3 log n/log log n ) ( e - n'/ 3 log n/log log n )

A straightforward calculation shows
A

	

n

	

/

	

n2/3

	

n 5/3

	

logn/loglogn 01 3

(z) < n'/3/e \ n'/3 log n

	

n2

	

< 1 .

( e )

	

e log log n

Thus,

CHUNG, ERDÖS, AND GRAHAM

n

A < ( 2 ) = IF~
e

so that some graph G' E JT is not bad .
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Now, let us consider a common subgraph of G, and G2 . H must be
connected since all edges in G Z contain the common vertex v, . Also,
I V(H)j < n 113 since any connected component of G, has at most n 113 vertices .
Finally, property (c) of G z implies

E(H)j < n `13 log n/log log n .

Since G, and G Z each have at least n 5 / 3/10 edges then

U({ G„ G 2 0 > c, n 4/3 loglog n/log n .

This completes the proof.

BOUNDS ON Uk (n ; 3)

In this section we consider U-decompositions of k > 3 3-graphs. As might
be expected, our bounds are not as tight as in the case k = 2 .

THEOREM 2 . For any c > 0,

C 3 n
2 _g k-E

< Ukl(n; 3 ) < c, n' - ' .

Proof. Again, we first attack the upper bound . Let G, , G21 . . . . Gk be k 3-
graphs with n vertices and e edges. There are two possibilities .

(i) e > n3-zik . In this case repeatedly remove a common subgraph
(guaranteed by Lemma 1) having at least ek/(3 ) k- ' edges. Let e ; denote the
number of edges remaining in each graph after i such subgraphs have been
removed. Then

ei+, < e ; -

Letting a i = e;/(3 ) we obtain

Since a, = e/(3 ) < I and

3

(i)-1/(k-1) _ (i)-kl(k-1) < (i + 1)- 1/(k- 1)

then it follows by

\

in

l

duction that

I

t

a; < (i)-'1(k-')~

	

for all i,
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e i < (i) 11(k-1) n
3

After n2-1/k such subgraphs have been removed, the number of edges
remaining in each graph is at most

(n2-1/k)-1/(k-1)

	

n

	

<- n3-(2-1/k)(1/(k-1)) < n3-2/k

3

(ü) e < n3-2/k . In this case we repeatedly apply Lemma 3 . Let e ;

denote the number of edges each (hyper) graph has after i applications of
Lemma 3 (with eo denoting the initial number of edges on each graph at the
beginning of this step). Thus,

e ;+ , < e ; -

As in the proof of Theorem I, it can be shown that this implies

Therefore, after at most 2 5 n 2-1/k steps all edges have been removed from
all G ; .

Taking count of the number of subgraphs removed in each of the two
ranges for e, we conclude

Uk (n ; 3) < Cg n 2-1/k

as required .
The lower bound on U,(n ; 3) will be proved using probability arguments .

More precisely, we claim that for all e > 0, there exist 3-graphs G 1 , G 2 ,. . ., G k

with n vertices and n3-2/k edges such that any subgraph common to all of
them has at most n"' edges, provided n is sufficiently large . Elementary
counting arguments show that the number of k-sets of 3-graphs with n

vertices and n3-2/k edges which contain a common subgraph with at least
n 1 +

E edges is less than

Since

5e i n 5 2-uk - i12) 2

( ( 3+ )

	

( (32 _ n l+e
_

	

3B

	

nle (n! )k

	

3
n3-2/k

-n
l+e

) k .

B

	

n 3n 1 + ,nkn n(3-2/k)k •n 1 +E
/ (n)

	

k	< n0+c)n1+Eeknn3kn1+E < 1
/

	

3

\
n3-2/k



for n sufficiently large then

( (n) ) k
B <	3n 3-2/k

and so, there exists a k-set of such graphs G, , G 2 , . . ., Gk with any common
subgraph having at most n"' edges . Thus,
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U /n; 3> U G	e

	

2-2/k-E
kl

	

)

	

({ ,, . . ., Gk O > n,+E > n

for n sufficiently large .
This completes the proof of Theorem 2 .

BOUNDS ON UZ (n ; r)

This section will investigate bounds for general r-graphs . There are two
cases, depending on the parity of r .

THEOREM 3 . For r even,

c s nr12 < U 2(n; r) < có n' 2
.

Proof. Let G, and G2 be two r-graphs, each with n vertices and e edges .
There are two possibilities .

(i) e > n'/2 . For this case we apply Lemma 1 repeatedly, removing
common subgraphs having at least e 2 /( z ) edges. If e ; denotes the current
number of edges remaining after i steps, then it can be shown by methods
similar to those used in Theorems 1 and 2 that e ; < ( "r )/i. Thus, after at most
nr /2 steps there are at most n'/2 edges left .

(ü) e < n' 2 . In this case we simply remove one edge at a time .

Combining the two processes, the decomposition requires at most 2n r/2
and so,

U2 (n ; r) < c, n' /2 .

The lower bound is established by constructing two hypergraphs G, and
G2 with cnr/ 2 edges for which the largest common subgraph has a single
edge. To begin with, let G ; be the (hyper)graph defined by V(G,) _
{v,	v„} and E(G,) = { {v,,. . ., y r/2 } U 4 : é ~ {vr/2+,, . . ., v„ ), I éj = r/2~. G,
will be formed by selecting an arbitrary set of c 5 nr/ 2 edges from G, .

G2 will be an r-graph with Cr )/(ri2)G12) edges having the property that
any two edges of G 2 intersect in at most r/2 - 1 vertices . The existence of
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such a G2 is guaranteed by the following considerations . Let S be an
arbitrary r-subset of { 1, 2, . . ., n) . The number of r-sets which intersect S in i
elements is (,)( ; ). The total number of r-sets which intersect S in more
than r/2 - 1 elements is y /20 (~)( n~ r ) Therefore, there must exist a family
J7- of r-sets such that :

(a) any two r-sets in _ intersect in at most r/2 - 1 elements ;
n

	

n
(b)

	

> ~J 20 Ajl(nJ r) > G12 )(r/2) > CSnr12 .

Note that any two edges in G, intersect in at least r/2 elements . Thus, the
largest common subgraph of G, and G2 has just one edge . This implies

U2(n ; r) > U({ G„ G20 > c,nr12,

and the proof of Theorem 3 is complete . /

THEOREM 4. For r odd,

n(r-,)2i(2r-3) loglog n

	

U2(n r)

	

c8nri2c7

	

log n

Proof. The upper bound proof follows the same lines as the
corresponding result in Theorem 3 .

For the lower bound, we consider the following two r-graphs G, and G2
on n vertices . G, consists of n(r-')á(2r-3) disjoint copies of complete r-graphs
on n(r-2)/(2r-3) vertices . Observe that G, has c'n(rz-r-n1(2r-3) edges . For G2
we will take a hypergraph satisfying the following properties :

(a) There is a vertex v, which belongs to all edges of G2 ;
(b) G2 has c'n(r2-r-ni(2r-3) edges ;
(c) Consider the (r - 1)-graph G' given by V(G') = V(G) - {v,} and

E(G') _ { - {v, } : é E E(G2)}. Then any induced subhypergraph of G' on
n(r-2)/(2r-3) points has at most n(r-2)1(2r-3) log n/loglog n edges .

The (probabilistic) proof that such a graph G2 exists is very similar to that
used in Theorem 1 and is omitted .

Any common subgraph of G, and G2 must be connected and has at most
n(r-2)/(2r-3) vertices . Thus, it has at most n(r-2)/(2r-3) log n/loglog n edges .
It follows from this that

U2(n ; r) i c,12(r-1)2/(2r-3)



for n sufficiently large .
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CONCLUDING REMARKS

We close this section with the final result of the paper. Its proof uses no
new techniques and will not be included .

THEOREM 5 . For all r > 3 and all k,

nr-1-r/k

	

U (n, Y

	

nr-1-1/kkl e
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