ANOTHER PROPERTY OF 239 AND SOME RELATED QUESTIONS

P. ErdSs, R. K. Guy and J. L. Selfridge

Introduction.

There are many questions that we can ask about the expression

of a factorial as the product of k factors:

(0) n! = aa,.. -ay

We might assume that the factors lie in the interval [n+],2n] and

that they are either distinct or not:

(1) n<a <a,<..< ak52n
ar
(2) n<a, bt a, L ak = 2n

On the other hand, we might require that the a; be distinct, but

remove the upper bound and perhaps relax the lower bound as well:

(3) n<a <a,<...<a
or
(€3] l<a <a,<...< q

or wa might only require that the a. be positive integers:
L

(5) a, 2a, %% a,

In a previous note [3] it was proved that (1) has only a finite

number of solutiens. Here we enumerate all solutions and prove

Theorem L. There are no solutions of (0) and (1) for n = 239,
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We also outline a proof of
Theorem 2. Solutions for (0) and (2) can be found for all n > 13,

Finally we make assumption (3) and denote the minimum value of ak
by f(n), i.e. fi(n) is the smallest integer for which n! can be rep-
resented as the product of distinct integers greater than n, the

largest of which is f(n). We then prove

Theorem 3. There are constants 0 < c] <e, such that

en e
n+——< f(n) < In + —
Inn lnn

for all sufficiently larpe n.

No doubt there is a constant ¢ such that

(414}
i) = 2+ 105 4 ol

and perhaps this can be shown by a more careful application of our

method.

Sqme other questions. The problem of determining min (ak—a]) is

also of interest. Assume k > 1 (else a, = n!); then it seems likely
that a, - a > ecn under condition (4) or (5), i.e. whether we assume
the a; to be distinct or not. At present such a theorem seems far
beyond our means. The real difficulty occurs when k is small; in

particular when k = 2. It has never been proved that
nt =a, (a+1)

has no solutions for n > 3. In fact

ni{ = :.eu‘(u+l)B

scems to have no solution larger than 4! = 233, A long outstanding

conjecture is that

n! = (x-1) (x+1)



has no solution for n > 7.

We determine min (ak—al} for small values of 1 under each of the
conditions (4) and (5), i.e. with and without the assumption that
the a. are distinct. Perhaps the general answers, under assumptions

(&), (2) and (5) are respectively

i min(a}ﬂal) = n+ o) 2
; =

E: min(ak—cl) = & + o(n) 2
i min(ak—al) = %ﬂ + o(n) ?

Under condition (3) with k¥ > 1 we believe that, for sufficiently large

n’
&ooay - a, > n ?
If we assume that @, = n, then it is easy to see that
(6) minﬁak~a]) *>n - Clnn

by looking at the highest power of two which divides n! If 2%|n!
then a > 7 - (Ilnn)/(ln2). On the other hand if 2ﬁﬂak!/621—l}! then

a < B < a; - al+ e h1ak and (6) follows immediately. Moreover (6}

is not far from being best possible, since if n = s! - 1, then
n-s+1
o (ntl)t 3
! A M., (s+)
so that
e il o BB
%k 1 Inlnn

Is it true, under condition (4) with k > 1, that
(7) min(ak~a]} =n -2

for infinitely many values of n? It would be nice to decide this



elementary question. For 4 <n < 16, min(ap—al) <n - 2, while for

n

16 the equality (7) holds. In fact it semms certain that when

n

2’ 1s a large enough power of two, then (7) holds for the following
reason. Unless cne of the a; is a multiple of 2v+1 we must have

. 1
-a, 2n - 2. if one of the a; is a mulciple of 7 we must have

k 1
1+¢€
a, > n. Now if a <n we can prove that a, -&a >n+ enflnn

a

+c
and although we cannot yet handle the case a, > n'TT gt s very

likely that it gives smaller values of a; - ajp.

Suppose that the a. are distinct, that k > 1 and that a,a; ... ak}n!

is an integer with no prime factors greater than m. TIs it true that
i min(ak-al) «en =2 7

Perhaps this can be proved, since an old and simple result says that

(2n)!/n!(n+3)1is an integer for almost all n.

I1f we only assume (5) then clearly every prime p = n must have a
multiple pq such that a; = pg = ap- This condition is not sufficient,
but we can prove that it does suffice provided a < Cn and n is
sufficiently large, n > no(c). Because the condition ay < Cn can no
doubt be very much weakened (we don't know by how much) we do not

give the lengthy proof.
We examined a problem which we find quite interesting. Let

P, <Pp < ... <Py be aset of 1 primes. Denote by A(p],...,pz)

the smallest integer such that every interval of length 4 contains

L distinct integers a; = 0 (mod p;), 1 = 7= 1. It seemed to us
that for every C there is a set of I = I(C) primes with A(pl....,pz) > Cpz.-

This problem can be specialized in the following ways.



Let hl(f::,n) be the smallest integer for which every prime p = n
has a multiple among the numbers m + £,1= % = kl' i.e. hl is the

least integer for which

[l <..p divides ﬂhl ()
o=n i=1

And let hz(m,n) be the smallest integer for which every prime power
pa < n has a multiple among the m + i, 1 = 7 = }‘2' Finally, let

hy(m,n) be the smallest integer such that

n! divides |—|h3 1f_f:'1+'£)
1=

Then it is easy to see that hl(m,n) = hz(m,n) = hs(m,n). Put

_ min .
Hj(-’ﬂ,?i) = 1=u=m hj(u,?’l), o 1,2,3.

For fixed n, as m increases, each of the Hj(m,n) decreases (from
near 1) to 1. We will investigate these functions in a later paper,

if we live. Here is a typical problem.

Let tn be the shortest interval < n(l+e) which contains a multiple
of each prime = n. (This definition is deliberately wvague to allow for
possible irregularities in the distribution of primes). Determine or
estimate the smallest m for which Hj(m,n) < t,;- We can show that tnis
m is greater than n' ¥ and that if one assumes conjectures about the
distribution of primes that are probably true but hopeless to prove,

then m > nzf(ln n}e.

Let 1 = U, < Uy <. be the sequence of integers all of whose
prime factors are = n, let u, be the smallest u, greater than m and

let 1 be the smallest integer for which every prime = n divides

r| & U . We conjecture that the equation
=0 r+i.
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(s 399

(8) nt = r|2 . :%ﬂj ,
J'= u :

1
[=]

£,

[%

is usually selvable, but if we insist that each uj is 0 or 1, then

(8) is not usually solvable. Note that for small values of m,

hl(m,n) = U7 T M i.e. for each prime p = n there is an ¢ = h (m,n)
with n + © = O(wodz). Determine the least m = m(n) for which

hl{m,ﬂ) <t . By E.g, if n = 10, to see that m(10) = 30 we note
that h1{30,10) = 5 (every prime less than ten divides one of 31,32,33,

34, 35) but ur = 36 (not 35) since 33 has a prime factor 11 and so

+7

is not a s and it is easy to check that hlon,lO) = u

e m for m < 30.

It should be possible to prove that m(n) is of order about n?,

For most wvalues of m, the values of hj(m,n) are not much smaller
than # since usually there is a prime very close to n which has a
multiple which is very little smaller than m. In fact, as x =+ =,

1 &= ,
= §m=1 hJ.(m,n) —» uJ_(?‘s) , 4 =1,2,3
and it is not hard to prove that aj(n)!n -+ lasn =» =, Can uj(n)

be determined explicitly?

To conclude this collection of problems we formulate a few

related questions and conjectures. Write
B(n,k) =[] f‘_ (n+d) .
=1
It seems certain that for % > 1, I = 1, m = n + k, the equation
H(n.,k) = B(m,l) has only a finite number of solutions (in fact very

few). Unfortunately, even special cases of this conjecture are usually
quite intractable,

A well known theorem [zﬁﬂ] of Pillai-Szekeres-Brauer states
that if 1 = I = 16 then I consecutive integers always include one

which is relatively prime to the others and this is false for every



1 >16. For I = 17 the integers 2184,2185,..,2200 form the simplest
counterexample, In a previous paper Lé] we found an example of an
interval [a,b) where a and b are relativelv prime and every a+1%
0<i<b-a, has a common factor with the product ab. We do not
know for which values of b - @ this is possible. We also asked the
following question which is probably very difficult. 1s it true that
for every r there are k:- consecutive integers n+1ln+2,..., n + kr

so that to each 2, 1 =1 < kr, there corresponds a j # ¢, 1 = j = kr

for which the g.c.d. (n+Z,n+j) has at least r distinct prime factors.
Finally an old problem of P. Erdds. Take k¥ =n in (0) and (5)

and determine or estimate max a,. It was conjectured that

i max a; > ;(l—:) i

for every € > Qandn > no(s). Selfridge and Straus believe that they
can prove that max a, >n/3 for n > n,. It is easy to see that

[t o]

lnn

mrs

max a, <

Erdds, Selfridge and Straus recently proved that

n
max a, = - + oin).
1 e

Proof of Theorem 1. We consider the identity

©) Myt = ) 42) .. (20)

and notice that the problem of expressing n! as the product of distinct
factors in the interval [n+],2n1] is exactly complementary to that of
expressing (3?) in a similar way. Now (3?) contains all the primes in
this interval, so we will concern ourselves only with those which are

less than n (and hence less than 2n/3). For example



28
14 )

= (23%19x17) » 57 x 33 x 23

and the product 57 » 33 % 2% can be arranged as 15= 18= 20, the product

of three numbers in the interval. So
14! = 16 21 % 22 x 24 25 %x 26 % 27 = 28.

There are two common circumstances in which the method shows that
we are doomed to failure. For example, if n = 20,

40} _

2] * (37x31%x29%23) x 13> 11 x 7% 5x 32 » 27

The primes between 2n/3 and n/2 (here 13 and 11) have to be paired with
2 or 3. If we form the smallest possible products, 13 2, 11x 2 and
then 7= 3, we are left with 5= 3 which is too small. So if there is a
solution, this part of the calculation contains less than four factors.
But if we form the largest possible products, 13x 3, 113 and 7x5,

we are still left with 22, so all attempts preduce a number of factors
strictly between 3 and 4. We denote this situation by the symbol 3+.

On the other hand, look at the case n = 81.

[gf? = (157.151...83)53.47.43,41,31,29,23,17.11,7%2,5.23

Here we have to pair the primes 53,47,43 and 41 with a 2 or a 3 and

there are only three such factors available. We denote this situation

by writing 4> 3. More generally, cven where there are sufficient factors
2 and 3, we may run out of the next hatch of small factors. 1f

n = 121 we have

242
121

] = (241.239...127)79.73.71.67.61.47.43.41.31,13.5% .25
Here the five primes 79,...,61 need a multiplier 2 or 3, while 47,43,41

need a multiplier 3,4 or 5 and 31 needs a multiplier 4,5,60r 7. There

are e¢nough twos for the first five, but only two factors 5 with which



to accommodate the next three and 31. We write this 9>7 (i.e.

54+43+155+2).

Table 1 shows the values of n, l1=nu= 242, for which there are no
solutions, together with one of these two reasons. For n= 243 there

is always a shortage of small factors.

34 3+ 15 7+ 108 9>6 137 76 162 6>4 184 9>7 211 11>9
36 3»2 79 7+ 109 10>8 138 10+ 163 6>5 185 14+ 212 11>10
0+ 37 3+ 80 7+ 110 8>7 139 10+ 164 725 186 9>8 213 16+
38 3+ 8] 4>3 111 10>8 140 10>9 165 7»5 190 13+ 214 16+
1+ 41 4+ 82 7+ 112 5>3 141 10+ 166 6>5 192 7-3 216 9>8
1+ 42 3+ 83 8+ 113 10>9 142 9+ 167 12>10 193 7>4 217 12>10
10 0+ 45 4+ 84 7+ 114 10>8 143 6+ 168 6>5 195 9>8 220 14+
12 1+ 46 4+ 85 7+ 115 9>8 144 9>8 169 9>8 196 6>5 225 9>7
13 2+ 49 5+ 87 7+ 118 10+ 147 8»7 170 10-8 197 10>9 226 8>7
16 1+ 50 5+ 88 7+ 119 10+ 148 8>7 171 7»6 198 7>5 227 12>11
17 2+ 53 5+ 91 7+ 120 524 150 11+ 172 7>5 199 7>6 228 9>8
19 3+ 54 4+ 92 7+ 121 9>7 151 12+ 173 10>9 200 75 231 15+
20 3+ 57 3+ 93 7+ 128 726 152 10>9 174 7>6 201 7»5 232 12>11
23 3+ 58 3+ 96 7+ 129 9+ 153 11>9 175 10>7 202 6>5 234 14>13
24 2+ 62 6+ 97 7+ 130 6>5 154 11>8 176 10>7 204 12>11 235 15+
26 3+ 65 6+ 100 6+ 132 9>8 155 11>9 177 9>7 205 15+ 236 15+
27 24 66 5+ 101 7+ 133 10>9 156 9>7 178 9>8 206 15+ 237 15+
30 3+ 70 5+ 102 7+ 134 10+ 157 9>8 180 9>6 208 10>8 240 15>14
31 3+ 71 6+ 105 9+ 135 7»6 160 7>6 181 9>7 209 11>10 24) 17+
33 4+ 72 6+ 106 8+ 136 5>4 161 10>8 182 9>8 210 11>8 242 17+

L= T
b
+

Table 1. Values of n for which there are no sclutions, and why.

Table 2 gives the complementary set of values of n for which there
are solutions, together with the numbers of solutions. There are no
solutions if n> 329. For n=239 there is a record number of 92967 solutions,

accounting for more than three-quarters of the total of 119126 solutions.
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31 252 4711 637 78 1 104 36 127 10 187 1! 219 648

61 281 48 10 64 2 86 18 107 6 131 165 188 1983 221 6

81 292 514 671 89 64 116 10 145 12 189 6 222 313

111 322 524 68 35 90 & 117 2 146 42 191 6 223 13855

141 351 551 69 5 94 11 122 237 149 302 194 20 224 360

151 39 2 56 3 7312 95 103 123 28 158 32 203 3255 229 54

16 3 401 59 2 74 2 98 6 124 1 159 338 207 9 230 288

211 433 608 766 99 16 125 97 179 120 215 696 233 1419

22 1 4417 611 77 108 103 8 126 30 183 3 218 882 238 392
239 92967

Table 2. Values of n for which there are solutions, and numbers of solutions.

Rxoof of Theorem 2. We start from the same identity (9) and multiply

each odd primepower factor of [i?] by the appropriate power of two to
bring it into the interval [n+1,272]. These products will all be distinct
and we may cancel them with the corresponding members of (n+1)(n+2)...(2n).

kg+r

It remains to deal with the extra power of two, say 2= 2 where

n+l= Zk:SEH and 1r|§ k/2. This may be regarded as g factors Zk which can

serve as ¢ of the a; (since condition (2) no longer requires them to be

distinct) and o remaining tobe disposed of. For large enough n it is
always possible to dispose of r twos by multiplying some of the [n+1,2n]

by suitable factors. For example, if n = 20,
lig] %x(20)1 = 21% 22 23% ... x 39 x 40
(37.31.29.23.13.11.7,5.32.22) (20)! = 21.22.23..... 39.40
(37.31.29.23.26.22,28.40.36) (20)! = (21.22.23..... 39.40)27
(20)! = 21.24.25.27.30.32.33.34.35.38.39.27

Write 27 as 32x 22 and absorb the 22 by multiplying 21 by 4/3, 24 by 3/2,

25 by 8/5 and 32 by 5/4 giving
(20)! = 28.36.40.27.30.40.33.34.35.38.39.32

Of course, there is at least one repetition, 40, since we know there is no
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solution for n = 20 under condition (1).

To be sure of finding solutions for large enough n we will restrict
ourselves to multipliers 3/2 and 4/3 if twos need to be inserted, or to
2/3 and 3/4 if r is negative and twos need to be deleted. We illustrate
with the example n = 110:

(10) [fig]= (211.197...113)73.71.67.61.59.43.41.37.31.29.23,19.13.11.7.5.3.2°

so we cancel the primes between 110 and 220 from both sides of the equation

an [220

110]11[}! = 111.112...,220
and multiply the remaining odd prime(power)s, 73,71,...,3, in (10) by the

appropriate powers of two te bring them into the interval [111,220]:
(12) 146,142,134,122,118,172,164,148,124,116,184,152,208,176,112,160,192.

Then we delete these numbers from the right of equation (11). This uses
1+1+14+ 1+ 142424 2424 24 3+ 3+44+4+44546 = 44 twos and these, apart fron the five
twos in (10), must be replaced. Write 24475 ag (27)52% or (27)6273,
In the first case we include five factors 128 and insert the other fo;r
twos by multiplying 111,117,123 and 129 by 4/3 (i.e. replacing them by
148,156,164 and 172) and 114,120,126 and 132 by 3/2 (replacing them by
171,180,189 and 198). 1In the second case we include six factors 128 and
delete the excess of three twos by multiplying 207,201 and 195 by 2/3
(becoming 138,134 and 130) and 204,180 and168 by 3/4 (becoming 153,135
and 126). Note that 192 occurs in the list (12) which has been deleted, and
is not available for multiplication by 3/4.

The first case multiplies odd multiples of three by 4/3 and multiples of
six by 3/2. These must be chosen from the interval [n+l,4n/3] and [fllQJ
of each type of number is available with the possible exception of just
one multiple of six which may have been deleted. The second case multiplies

odd multiples of three by 2/3 and multiples of twelve by 3/4. These must



be chosen from the interval [4{n+1)/3,2n] and tz/l@} multiples of twelve
are available, again with a possible exception (192 in the example)

which may have been deleted when disposing of the power of three from

n
[i } . Notice that we can alternatively absorb the multiplier 3/4 in

a number which is four times a prime in the interval [2n/5,n1/2] because
such primes do not occur in [ETJ. In the example, 188 and 212 could
have served in place of two of 204, 180 and 168.

In any case, n will certainly be large enough if Lf/l@]—li |z|
where we chose |r| = [k/2] and k¥ = |1b(2n)| where "1b" is the binary
(base 2) logarithm. There are enough numbers to absorb the multipliers
if 22 2 72 and smaller values of n can easily be checked. We need

consider only those entries which occur in Table 1.

4! 1+ (2 factors * 5% are too big, l factor = 8 is too small)

st 2+ (63 too big, 102 too small)

7' 3+ (10.14 must occur, then 82 is too big, 14 is too small)

9! = 10.122.14.18, or, more compactly, 123.14,15

10! 5+ (14 must occur, then 12215216 too big, 182202 too small)
12! = 14.15%2.16.18.22.24 = 14,15.16.182.20.22 = 152.162.18.21.22
13! 7+ (22.26 must occur, then 14.152.16.18z is too big if = > 12,

while 21.24%25y is too small if y< 36)

For n = 1,2.,4.5,7,10 and 13 there are no solutions. There are solutions
for the entries not in Table 1: 3! =6, 6! = 8.9.10, 8! = 12.14.15.16,
11! = 12.18.20%.21.22 = 14,18%,207.22 = 15.16.18.20.21.22; for » = 9 and
12 given above, and it is easy to construct solutions for n > 13 up to

where the method described earlier takes over.



Proof of Theorem 3. Recall that f(n) = min a; subject to (0) and (3).

We first establish the lower bound
2 cn
(13) n +Tﬁ—r‘1‘€ f(?’l).

a )
Let the standard form for n! be | |p © where the product is over all
primes not exceeding n. For the primes between 7/2 and 21/3 the exponent

up = 1, because 2p>n. so 2p and 3p cannot both be among the a;.

Suppose that Bz multiples of 2 and B3 multiples of 3 do not occur as a;s

i.e. these are missing from the product

fny-n
(14) M;, O+

Then, by the prime number theorem,

(15) B, + By = n(l+o(1))/61nn

the number of primes p, nf2<p< /3. Let ¥ya¥y be the exponents of 2 and
3 occcurring in the pPoduct (14) so that

(16) Y, - B, =&, and Yy — By Sey

»

the exponents of 2 and 3 in n! It is well known that

a, =n + 0(lnn) , c:3=!in + 0(1lnn)
(an .
Y, = f(n) - n+00nn, vy ;=%(f(r)-n) + 0(ln n)

and (15), (16) and (17) yield (13) with ey arbitrarily close to 1/9.

Lo obtain the upper bound

cn

(18) n + > f(n)

Inn

n

we return to the identity (9) and note that 5

] = Hpa, where the

product is taken over some of the primepowers less than 2n. The primepowers
between 7 and 27 may be cancelled from (9) and the primepowers less than n
can be multiplied hy appropriate powers of two, as in the proof of

Theorem 2, and also cancelled from (9) leaving an identity



nt o= 2" [ (#4)
where the product runs over most of the values of 7 from 1 to n.
The power of 2 is absorbed by doubling the first m values of n+1, so
that f(n) < 2n+ 2m(140(1)) and it remains to estimate m.
Write 2 = n(l+2(1))/1n n, so that the prime number theorem asserts
that 2 is the number of primes less than #. There are no primes

P, 2n/3<p<Mm, which divide [3?] . The number of prime divisors of [i?]

between 1,2 and 21/3 is z/6. There are none between 2n/5 and n/2, and

generally none between 2n/(2w+1) and nfw, while the number between n/(w+1)

and 2n/(2u+1) is 2z w+l)(2w+l). The power of 2 needed to bring such

primes into the interval [n+l,2n] is 2 where w+1=2Y< 2w+ 1, or

¥ = |1b(2w0+1)| and the total number of twos required is at most
2:::1|ﬁlb(2w+l)_[z/(w+1)(2w+l).

That is

2 Y . 3 % 3

< |l I S 3 4
& [(?”3} tastar tea et T tee T G +'“]z

and (18) follows for sufficiently large n with a,= 1.7, since the

scries in the bracket has sum less than 0.85.
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