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Note that, by (4 .4) and (4 .5), (7 .6) holds for all nonnegatíve p . Substituting
from (7 .6) in (6 .1) and (6 .2) and evaluating coefficients of xm, we obtain the
following two identities .
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In particular, for q = 0, (7 .8) reduces to

r-1
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m
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We remark that (6 .1) is implied by (6 .2) . To see this, multiply both sides
of (6 .2) by q, interchange p and q, and then add corresponding sides of the two
equations . Similarly, it can be verified that (7 .3) is implied by (7 .4) and
(7 .7) is implied by (7 .8) .
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A sequence of integers A = {a 1 < a2 < . . . < a k < n} is said to have property
P,(n) if no aj divides the product of r other a's . Property P(n) means that no
a j divides the product of the other a's . A sequence has property Q(n) if the
products ajaj are all distinct .

Many decades ago I proved the following theorems [2] :

Let A have property ?1 (i .e ., no aj divides any other) . Then

maxk=
ln

+1
J2

The proof is easy .

(p > 0, q > 0),

(p>0) .

(p > 0) .

(7 .7)

(7 .8)
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Let A have property P 2 then [7(n) is the number of primes not exceeding r.]

(1)

	

Tr(n) + c l n2/3 (log n)
-2 < max k < ir(n) + c 2n2/3 (log n) -2 .

The c's will denote positive absolute constants not necessarily the same at
each occurrence . We will write P. instead of Pr (n) if there is no danger of
confusion .

Probably there is a c for which

(2)

	

max k = 7(n) + (c + O(1))n2/3 (log n) -2

but I could never prove (2) .
Assume next that A has property Q . Then

(3)

	

Tr (n) + C3n314(1og N)-3/2 < max k < r(n) + G,4n 3/4 (log r )-z13 .

Here too I conjectured

(4)

	

max k = 1,(n) + (c + 0(1))43/ 4 (log n) -3/2 .

I could never prove (4), which seems more difficult than (2) .

In this note I consider slightly different problems . Denote by S, the set
of positive integers not exceeding n . Observe that S„ can be decomposed into

l+rl

	

n
log 2

gers LI < a <_ [
	

2'1 1]

sets having property P 1 . To see this, let S consist of the inte-

The powers of 2 show that 1 + [log2 is best possible .

Denote by f,(n) the smallest integer for which S, ; can be decomposed as the
union of f, (n) sets having property P, and g(n) is the smallest integer for
which S„ can be decomposed into g(n) sets having property Q . We just observed

fl (n) = 1 + [l
logn
og 2]'

We prove

Theonem 1 :
112

c to

	

< f2 (n) < 241/2
g n
113

c In

	

< g (n) < 24112 .
4g

The upper bound in (5) and (6) follows immediately frim the fact that

(5)

(6)

777, (m + i 1 ) (m + i2) if 1 < i t

Now we prove the lower bound in (5) . The proof
in [2] . Let S' be the integers of the form

pu, u < 1 4112 , 4112 < p < 24 1/z .
2

Now let al < az
We prove that then

(9)

< . . . <

k

Sn >c	 n
log n

< .Mi1 2 .< 22

wí11 be similar to the proof

ak be a subset of S,' which satisfies property P 2 .

n

llz

	

1/z

< 2 + c to g n < nl/z .

(8) and (9) clearly complete the proof of (5) .
Thus we only have to prove (9) . Put ai = piui where pi and ui satisfy (7) .

How make correspond to the set a l < . . . < a k a bipartite graph where the white
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vertices are the u's and whose black vertices are the primes p i . To a i = piui
corresponds the edge joining p i and ui . This graph clearly cannot contain a
path of length three . To see this, observe that íf a, = p l u s , a z = u lp „ and
a 3 = p,il 2 is a path of length three then a,la,a 3 , which is impossible . A bi-
partite graph which contains no path of length three is a forest and hence it
is well known and easy to see that the number of its edges is less than the
number of its vertices . This proves (4) and completes the proof of (5) .

By a more judicious choice of the black and white vertices the lower bound
of (5) can be improved considerably . A well known and fairly deep theorem of
mine states that the number of integers m < n of the forms u • U, where both u
and v are not exceeding nv2 is greater than

n

	

x=1- 1+ loglog2
+E '

	

log 2(log n ) ~

for n > n~( ), and that this choice of r is the best possible [3] . This imme-
diately gives, by our method,

n 112
f;(n) >

(log n) 3+E

We do not pursue this further, since we cannot at present decide whether

J2
(n) = O( n1/Z)

is true . The following extremal problem, which I believe is new, is of inter-
est in this connection : Let 1 < a, < . . . < a r < n and 1 < b l < . . . < b s < n be
two sequences of integers . Denote by I < u, < . . . < u, < n the integers not
exceeding n of the form a i b ; . Put

( ) = max L

r+a'

where the maximum is extended over all possible choices of the a's and D's .
Our proof immediately gives f 2 (n) > n(n) . I can prove

n 1/2
n(n) <

(log

	

for some S > 0 .
n) 3

It would be interesting if it would turn out that for some ú < a,

b (n) >
. i 1Iz

(log n) e .

The upper bound of (6) is obvious, thus to complete the proof of Theorem 1
we only have to prove the lower bound in (6) . The proof will again be similar
to that of [2] . Let Sn be the integers of the form

(10)

	

pu < n, u < 21 y 113 , n 2/3 < p < 2n 2 / 3

Clearly (by the prime number theorem or a more elementary theorem)

(11)

	

1 nj

	

log n'

Now let a, <

	

< ak be a subset of Sn having property Q (í .e ., all the
products ai aj are distinct) . We prove

(1

	

213 +	 nz132)

	

k < n

	

c log n'

(11) and (12) clearly give the lower bound of (6) ; thus to complete the proof
of our Theorem we only have to prove (12) . Consider a bipartite graph whose



SOME EXTREMAL PROBLEMS ON DIVISIBILITY PROPERTIES OF
1981]

	

21iSEQUENCES OF INTEGERS

white vertices are the primes n`/3 < p < 2n2 / 3 and whose black vertices are the
integers

To each a = pu, we make correspond the edge joining p to u . This graph cannot
contain a C,,, i.e ., a circuit of size four . To see this, observe that if p l ,
p 2 , ul , and uz are the vertices of this C y then plus , P1U21 p 2 u 1 , and p2Ú2 are
all members of our sequence and

Plu l • PZU2 - PIU2 • P 2 Ú 1 '

or the products aj ar are not all distinct, which is impossible .
Now let vi be the valency (or degree) of p i (n 2/3 < p i < 2n 2/3 ) . We now es-

timate k, the number of the edges of our graph, as follows : The p i 's with v i = 1
contribute to k at most

n 2/3

a <

	

log n'

Now let p l , . . ., p r be the primes whose valency v i is greater than 1 . Observe
that

	

1 1/3

(13)

	

/`2
< C2

2

	

< 8n z/3

Xi-1

[2 nl/3

	

is the number of u's . If pi

	

joined to v, u's, form the 2 pairs

of u's joined to p, . Now, if (13) would not hold, then by the box principle
there would be two p's joined to the same two u's, i .e ., our graph would con-
tain a Cy , which is impossible . Thus (13) is proved .

From (13) we immediately have
r

E V i <
i-1

(14)

u < 1

	

n113
2

n213

	

< y z133
mín(vi - 1)

(14) clearly implies (12) and hence the proof of our Theorem is complete .

I expect g(n) < n(1/3+e) but have not even been able to prove g(n) = o(nl/z) .

Recall that f r (n) is the smallest integer for which S„ can be decomposed
into fr,(n) sets having property P, . We have

Theorem 2 : For every e > 0,

n

	

< f, (n) < c,n

The proof of Theorem 2 is similar to that of Theorem 1 and will not be given
here . Perhaps

( 1- i ) .
fr, (n) =

O `n
Finally, denote by r(n) the smallest integer for which S , can be decomposed

into F(n) sets {A i }, 1 < i < F(n), having property P .
Using certain results of de Bruijn [1], I can prove that for a certain ab-

solute constant e

(15)

	

F(n) = n exp {(-c + O(1))(log n log log n) 1 /2 1 .

We do not give the proof of (15) here .

Now I discuss some related results and conjectures . Let al < az
be the largest subset of S , for which the sums ai + aJ are all distinct .

< a k
Turán
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and I proved that (4]

max k = (1 + o(i)n1/2

and we in fact conjectured

(16)

	

max k = n1n + 0(i) .

(16) is probably deep, and I offer $500 for a proof or disproof .
I conjectured more than 15 years ago that if b l <

	

< b, is any sequence
of integers then there always is a subsequence

bt < . . . < b :,, s > (1 + o(1))nu2 ,

so that all the sums bí, + bi z Z are distinct . Komlós, Sulyok and Szemerédi [5]
proved a much more general theorem from which they deduced a slightly weaker
form of my conjecture, namely s > en'/2 for some c < 1 . Denote by m(n) the lar-
gest integer so that for every set of n integers bi < . . . < b, one can find a
subsequence of m(n) terms so that the sum of any two terms of the subsequence
are distinct . Perhaps m(n) is assumed for S .

Recently I conjectured that if b l < b 2 < • • • < b„ is any sequence of n in-
tegers, one can always select a subsequence bi, < • • • < bt •, s > (1 + o(1))n1/2
so that the product of any two b i;'s is distinct . Straus observed that with
s > cnL2 this follows from the Komlós,Sulyok and Szemerédi theorem by a method
which he often used . One can change the multiplicative problem to an additive
one by taking logarithms and then, by using Hamel bases, one can easily deduce
s > cn112 from the theorem of Komlös, Sulyok and Szemerédi .

Let 1 < al < • • • < ak < n be any sequence of k integers, not exceeding n .
Denote by F(k, n) the largest integer so that there always is a subsequence of
the a's having F(k, n) terms and property P 1 . It is easy to see that

(17)

	

F(k, n)	 k	l+logn

and the powers of 2 show that (17) in general is best possible . It is not dif-
ficult to see that if k > en then F(k, n) > g(c)n and the best value of g(c)
would be easy to determine although I have not done so . It is further easy to
see that g(e)/c - • 0 if c - 0 . If k < nl-E, then (17) gives the correct order
of magnitude except for a constant factor e , and in general the determination
of F(k, n) is not difficult .

Many further questions of this type could be asked . For example, denote by
FZ (k, n) the largest integer so that our sequence always has a subsequence of
FZ (k, n) terms having property P 2 . F2 (k, n) seems to be more difficult to han-
dle than F(k, n) . It is easy to see that

F Z (k, n) > k(2n 1/ 2 ) -1 ,

but perhaps this can be improved and quite possibly for every c > 0

F2 (cn, n) /nl/2 , «, •

The following question seems of some interest to me : Let

1< al < . . . < a k < n .

What is the smallest value of k that forces the existence of three (or s) a's,
so that the product of every two is a multiple of the others? In particular,
is it true that if k > on there always are three a's so that the product of any
two is a multiple of the third? At the moment I cannot answer this question,
but perhaps I overlooked a trivial argument .

To end our paper, we state one more question : What is the smallest k = k,
for which FZ (k, n) > 3? In other words : Determine or estimate the smallest
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k = k„ for which for every 1 < al < . . . < a k 5 n there are three a's, aí3, ai, ,
a í , so that the product of two is not a multiple of the third . I have no sat-
isfactory answer, but perhaps again I overlooked a trivial argument .

On the other hand,I can get a reasonably satisfactory answer to a slightly
modified question .

Theoh.em 3 : Let 1 < a l < . . . < ak < n be such that the product of every two a's
is a multiple of all the others . Then (exp z = e')

(18)

	

max k = expf(I + 0(1))log 2 . 3 log n(log log n)
_3,

We only outline the proof of Theorem 3 . Let 2, 3, . . ., pa be the primes not

exceeding (1 - E)3 log n . Let the a's be the integers of the form

(19)

where u runs through
p's . From the prime
exceeding n . To see

and

Since a í aj is a multiple
are multiples of p3 , 1 <
the a's are multiples of
for every pj there is an aj
aj < xí,1 < 2a1 . From this
computation, the details of
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a
uíf1pí

the integers that are the product of [s/2] or fewer of the
number theorem, we easily obtain that all the a's are not
this, observe that by the prime number theorem

í]
i
pí = exp((1 + 00))(1

í ~

e

	

z+a(1)
u < n p,

	

< exp
/
'(1

i .l tt
Further, by the prime number theorem,

s > (I - E)3 log n(1og

and the number of u's is not less than 2 8-1 , which proves the lower bound in
(18) .

Now we outline the proof of the upper bound of (18) . Let p l ,

	

pe be
the prime factors of

k
a i,

of all the other a's, all but one of the a' s, say a ( i ) ,
j < s . Disregarding these a (j ) 's, we assume that all
all the p1 's . By the same argument we can assume that

so that every aí divides pJ with an exponent xí , 1 ,
and the prime number theorem we obtain by a simple
which I suppress, the upper bound in (18) .
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