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Abstract. Some probdems concerning the additive properties of subsets of R arc investigated,
From a result of G. G. Lorentz in additive number theory, we show that if P is a nonempty perfect
subset of R, then there is a perfoct set M with Lebesgue measure zero s0 that P+M = R, In
contrast to this, it is shown that (1) it § & & subset of R is concentrated about a countable set C,
then A(S+R) = 0, for every closed set P with 4(P) = 0; (2) there are subsets G, and G, of R both
of which are subspaces of R over the ficld of mtionals such that G,n Gy = [0}, G, + Gy, = R and
A(G,) = i(G;) = 0. Some other resulis are obtained under various set theorctical conditions.
If 2% — ¥, then there is an uncountable subset X of R concentrated about the rationals such that
il A{G) =0, then A(G+X) = 0; il V = L, then X may be taken to be coanalytic.

P. Erdds and E. Straus conjectured and G.G. Lorentz proved that if
l<€a; <a;<... is an infinite sequence of integers, then there nlways is an infinite
sequence of integers 1 €6, <b, <... of density zero so that all but finitely many positive
integers are of the form a;4-&, [1]. In this note we investigate the measure theoretic
analogues of this result.

Throughout this paper, the real line will be denoted by R. If A and B are subsets
of R, then A+B = {a+b: acA,beB).

TrEoREM 1. Let P be a nonempty perfect subset of R. Then there is a perfect set M
with Lebesgue measure zero so that P+M = R,

Let us note that it suffices to prove the theorem under the additional assumption
that P=[0, 1]. Let us also note that under this assumption it suffices to prove the
existence of a closed set M so that P+ M contains some closed interval. With this
in mind, for each n and {, set J{i, m) = [if2", (i+1)/2"]. For each n, set

Ay = {i: int(1{i,n)) n P % O}
and
P,= ) {I(,n): ieA}.

Qlearly, P,2P;2 ..and (| P, = P.

We will prove the following lemma.

Lemva 2. There is a sequence of positive integers my<my<my<... and a se-
quence {B,}7., of sets of nonnegative integers so that

1) for each p, B,=[1,2"*"),
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2) for each n, P, +M,=[1+27™, 2] where M, = |) {I(i,m,): ieB,},

3) for each n, M, (M, —1/2") o M v (M,+1/2™),

4) for ecach n, A(M)<27"

At this point, let us note that Theorem 1 follows immediately from Lemma 2.
In fact, setting

M = {x: 3(x,) — x and for each n, x, € M;, and j, —+co},

we see that M is a closed set with Lebesgue measure zero and P+ M o[l +1/2™, 2].
In order to prove Lemma 2, we will employ the following finite version of
Lorentz's theorem.

TuroreM L. There is a positive number ¢ so that for any positive integers n, m,
and k, if A iv a set of integers, A< [m, m+k), with | A} =1, there iz a set B of integers,
B |n, n+2k) so that A+ B contains all integers in the interval (n4+m+k, n+m +2k]
with |Bl<cloglil

Proof of Lemma 2. Choose m, so that 2clogl/l, <1/2, where

I = card(4d,, n{l,2™).
So,
Ay = l€a<ai<..<g<d™.

By Lorentz’s theorem there is a subset B, = I1<h, <b, <. <h, <2™*! 50
that A, + B, contains all integers in (2™, 2™*'] and such that

card(B,) = t; <e2™*logi /i, .
setMy = |J {I(i,m,): ieB,}.

Then M,<[0,2], A(M;)<1/2 and P, +M;=[142"™, 2]
This completes stage L.
Stage 2 will be indicated (all higher stages are similar).
Now choose my = my-+ky; ky=0 so that for each i, 1<i<ly, we have

clog(l(n)) _ 2™
i 8t

where
I(i) = card(4,,, n [2Ma, 2%(a;+1))) .

For each i, 1<i</| and j, 1=</j<t,, we are guaranteed by Lorentz’s theorem
that there is a subset B(i,) of [2%86;,2" b, +2-2") s0 that

[A'm o [y, 28(a+ D)+ B, fy= [24, 28 (a+ b)) +.-?.*2")
and

card(B(i, 1)) < e2" logl(i)I(F) .
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Let By = U {B(i.)): 1<i, <l 1)<t} Let Ky(i, /) = U {I(p, my): pe B(i, ))}.

Then
MK, ))<27™ (2 elogl(i) = 27™ elogl (@)Y < 1/8, 1,
and
P+ Kli, Y= lap+ b+ 1/2™, g+ B+ 2/2™] .
Set K; = U {K;(i,/): 1<i<l, and 1<j<t,}. Then
AK)<1/3:27% and K,eM, u(M,+1/2™),
Set M, = K; w (K;—1/2™), Then

MMY<27%, Mo (M, =12 u M, o (M4 12™),
and
P +M;=[141/2™,2]. QE.D.

Let us remark that Theorem 1| has the following corollaries.

CoroLLARY (Talagrand [2]). Let A be an analytic subset of R such that if X is
a closed subset of R of measure zero, then A+ X has measure zero, Then A is countable.

Talagrand proved this result for arbitrary abelian locally compact groups. We
will show later in this paper that this result cannot be extended to coanalytic sets.

We give another corollary of Theorem 1 which implies a theorem of 8. J. Tay-
lor [4].

CoroLLARY, Let P be a perfect subset of R. There is a perfect subset M of R with
Lebesgue measure zero such that the linear measure of the planar set M x P ix infinite,

Proof. Let M be a perfect subset of R so that M+P = R and such that
A(M) = 0. Consider the shear transformation T: R— R defined by T((x,))
= (x, x+¥). Since, (T (M % P)), the projection of T(M x P) into the second coordi-
nate, is all of R and the Lebesgue measure of 7,{7(M x P)) is no more than the linear
measure of T(M x P), T(M x P) has infinite linear measure. Noticing that if E< R?,
the linear measure of T{E) is no more than three times the linear measure of E, it
follows that the linear measure of M %P must be infinitc. Q.E.D.

We note that our proof of the preceding corollary shows that if A is a subset
of R such that for every subset G of R with Lebesgue measure zero, A x G has
linear measure zero, then 4+ FE has Lebesgue measure zero, for every set E with
Lebesgue measure zero.

QuesTION. Is the converse of this result also true?

THEOREM 3. Let P be a nonempty perfect subset of R. There is a subset M of R with
o

Lebesgue measure 0 so that if P = |) X, then there is some i so that X,+M = R.
i=1

Proof. Let {p,}7., be a countable dense subset of P, For each n and m, let
Min, m) be a perfect subset of R with Lebesgue measure zero so that

(P o [py=1im, pyt Vm])+ M(n, m) = R .
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Let G be a Gy subset of B with Lebespue measure (0 which eontains | ) M(n, m).
m
Suppose P = | X; and for each i, X;+G # R.

=]
For each i, let r,e R—{X;4+G). Thus,
X, n(G—r) =0
and
=] o
UXinN(G—r)=9.
f=1 i=]
But by construction each G—r; is a dense Gy set with respect ta P. Q.E.D,

Let us remark that Theorem 3 contrasts with several results in the opposite
direction. The reminder of this paper is devoted to these contrasts.

Recall that a subset M of R is concentrated about a countable set C provided
every open set which includes C contains all but countably many points of M,

Tueorem 4. If S is a subset of R which is concentrated about a countable subset C,
then A(S+FP) =0, for every cloved set P with Lebespue measure zero.

Proof. It is enough to prove this for compact closed sets P with A(P) = 0.
Let C = {x,: neN}. Let >0 and let ¥ be an open set with A(F)<e and

V= Cl (P4+x).

Let T= {xe8: (P+x) n(R—V) # B}. It can be checked that T is closed
with respect to 5. Thus, §—T is open with respect to S and contains C. Therefore,
8§ —T contains all but countably many points of S. This implies that A(S+P)<e.
Q.E.D.

One may think that if 5 is concentrated then 1(5+P) = 0, for every set P of
measure zero. However, we have the following theorems,

THEOREM 5. There are subsets Gy and G5 of R both of which are subspoces of R
over the field of rationals sueh that Gy n Gy = {0}, G;+G; = R and both G, and G,
have Lebesgue measure zero.

The proof of this theorem will be based on the next lemma. Let us set some
notation first. Let K, be the set of all x which can be expressed in the form

X o= tf': a2,

where 0<a, <21, i=1,2,..
Let K, be the set of all x which can be expressed in the form

x mlfla'}'{ﬂ+1}!,

where Oa,<2i+1, i=1,2,.;
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Lemma 6. Lei H; be the subgroup of R generated by K, i=1,2. Then
H,+H; =R and A(H,) = L{H;) = 0.
Proof. Since every x in [0, 1] can be written in the form
x= ) affl,
=1
where, 0<a;<i, for i = 1,2, ..., it follows that M, 4+ H; = R.
The subgroup H,; can be expressed as

H, = U (p Ky +...4p,K)),
{l:lum Pa)

where the union is taken over all finite sequences of integers, Thus, in order to show
that H; has measure 2ero, it suffices to fix (py,..,p) and show that
L=p,K +...+p:K, has measure zero. If xe L, then x can be written

L1 5 .
x =3 (X pa)2K)!
k=1 i=1
with 0<al<2k, i=1,2,..,5 k = 1.2, ... There is a positive integer m so that
x =t§lm’ﬂk}1 y

where | <m(2k), k= 1,2,.. For each k, ¢, = n(2k)+d, where |t,J<m and
O=d,<2k. S0, x can be expressed as

x =Y bJit,
=]
where |by,|<m and 0< b, <21, for { = 1, 2, ... Let E(m) be the set of all such x,
It suffices to show that E(m) has measure zero. For each tuple (ay, ..., ay,) such
that |a, |, |as], -, @y, | €mond 0<a,,<2i, let H(ay, ..., as,) be the closed interval
with center ¥ afi! and radius dm/(2n—1)! For each n, E(m)= ) H(a,, ..., a3,),
i=1

where the union is taken over all appropriate 2n-tuples. But,

AU Hay, .., ax ))& Y A(Hlay, ..., a2)) < (2m+1)"(2-4- ... -2n).

8m
(2n=1)!
Since this last expression goes fo zero &s n increases, E(m) has measure zero.
A similar argument shows that /,; also has measure zero,

Proof of Theorem 5, Let ¥V, be the subspace of R over the rationals which is
generated by the additive subgroup H;, i = 1,2, Thus,

Vi = U H+..+rHy),
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where the union is taken over all tuples of rationals. But,

1
o P__)(Z:m Py Pa 1)

Therefore, each set ry H, + ... +r, H; has measure zero. Thus, V¥, and ¥, have measure
zero

qu_t‘i‘-u'l‘ EI'!H-I _ (
1 P

Set Gy = F;. The set &; will be construcied by transfinite recursion.
Well order R—G,: Xg, Xy, cen Xgy -, @<, EXpress x, 85 Xp = g0+ 030,
where F10€ 0y and C3p € V’. Set Gap = {Q'I:'jﬁ QEQ}f Then G Vi, G” is
a subspace of R over @, the rationals, G, N &), = {0} and x, € G, +Gy,.

Supposc 0<x<é and for every fi, 0<fi<a, subsets G;; of R have been deter-
mined so that G, V;, G, is a subspace of R over @, Gy G, = {0}, x5 € Gy + Gy
and if 0<x<t<g, then G,, ©G;,. Let Ty, = | {Gyy: f<a}. If x, G+ Ty,
set Gy, = Ty,. If x, ¢ G+ Ty, write x, = gy, +vy,, where g,,€ G, and vy, € V3,
Set Gy, = {t+gvy,: teT,, and qe Q). In cither case G, still satisfies the defining
conditions. Finally set G; = | {G;,: a<8}. Q.E.D.

Next, we note that under some set theoretic assumption an even stronger
example along the lines of Theorem 5 can be given.

TaeoREM 7. Suppose that the wnion of less than contimeammly many meager subsets
of R ix meager. There are subsets Gy and G; of R both of which are subspaces of R
aver the field of rationals, both of which meet every meager set in a set of cardinality
less than 2% and such that G, n G, = {0} and G, +G, = R. (Of course, if every
subset of R with cardinality <2® has measure zero, then G, and G; both have measure
zero. If CH holds, then G, and G, are both Lusin sefs.)

Proof. Let @, be the first ordinal with cardinality 2®°, Well-order the closed
nowhere dense subsets of R into type &.: Fy, Fy, -y Foy ooy <. Also, well-order
R—{0} into type ®.: X5, X;, -..s Xgy o, X<t0.. We denote the rational numbers
by Q and if SR, then (S), denotes the rational span of §.

It will be shown by transfinite recursion that there are elements s,, 1, a<o,
of R which have the following properties for each a<w, (Notation: for t<w,,
Sy = {53 p<t} and T, = {11 <))

1 {SDe+<{TDe2 (%, y<a},
2. (8¢ 0 {Tg = {0},
3. if y<a, then

{Sog N (U {Fp: B<7))={S,2q.
and

(TOan (U (Fp: B<y))S{T -
Let us note that once this construction has been carried out, then the con-

clusion of the theorem follows immediately upon setting G; = {5, ) and
Gy = (Ta20-
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Construct s, and 7; as follows. Set
B=(U{gF: geQ and g # 0}) u
U (U {xo—aFo: g€ Q and g # 0}) u
w ({gx: g€ Q}) .

Choose 553 to be an element of the residual set R—B and set fy = x;—5;.
Clearly,

LsoPat{{telre=2{xo}
Usolde N {{tolre = {0},
{5} n Fo = {0},
{{to}2e n Fy = {0}.

Suppose O0<t<w, and elements =,, ¥,, ¢<t have been determined so that if
<71, then conditions 1, 2, and 3 all hold.

Define s, and 1, as follows. First, set S, = {5,: <t} and 7| = {1,: a<t}
and W, = | {F.: a<th If x, € (Syg+{T'Dg, then set 5, = 1, = 0. If x, ¢ (5o +
+¢{T,»q, then choose s, to be an element of R which is not in any of the following
meager sets:

U ((S2e—(Tidg+rx: re 0},
or
U {gW,—p: qe @ and pe{S)}
or
U {x,—gW,—v: ge 0 and ve{Tq}.

Finally, set f, = x,—s,.
Setting S, = S, u {5,} and T, = T, u {1}, we have

{8+ {Tog={x: a<).
Suppose we (8o N {T,)g. There are rationals ¢ and b, pue(S;)q, and

ve{T,)y so that
w= u+as, =v+bt,.

If x, € (S3g+<{Tiyg, thens, = t, = 0,and w e {S0g N {Tivg = {0} If x, & (S )o+
+{T:}n, then
u+as, = v+bix,—s).
Or,
(a+b)s, = v—pu+bx,.
We consider two cases. .
Case 1. a4+ b = 0. Then bx, = v—pu. Since x, {5 )g+<{T>g, b = 0. Then
a=0and w=p = is an element of {§3g N {7,>. Thus, w=10.
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Case 2. a+b # 0. Then

1 1

WS Th ath ath

But, this is prohibited by the choice of s,. Thus,
e n{Te = {0}.

Next, suppose y<t and we{Syon (U {Fs: f<y}). There is an element
HE{So and a rational r so that w = p+rs,. If x,€ {5+ {Tiyq, then s, = 0
and it follows that w e {8,3¢. If x, ¢ (S;o+<{T>g and r # 0, then s, & (1/r)w—p.
But this 15 prohibited by the choice of 5,. Therefore, r = 0, w = p and it follows that
w e {8 p. Thus,

(S0 (U Fp: f=y})={S0 -

It can be shown in a similar fashion that

&0 (U {Fy: B<r)VECTde.  QED.

Our final goal is to show that under certain conditions there i an uncountahle
concentrated set such that the sum of this set with every set of Lebesgue measure zero
still has measure zero. This is the content of Theorems 12 and 13. First, we prove
some lemmas which hold outright.

Let us make the following conventions.

Define ¥: 2¥ — [0, 1] by

Y({z)) = ﬁlznz_n 7

If S=N, let
Pi= {zez": YnéS(z, =0
and let
Oz = ¥(Pg<[0,1].

Maotice that if S TN, then Py Pr and Q= Oy. Also, if S is infinite, then Pg
and Qg are perfect sets.
For each S<JV, set

Rg = {Qr: |54T|<w} = |) {Or: T=*5}.
Of course, if T=*S, then RycRs.
Finally, if fe N¥, P,, Or, Ry denote Pryinyy Qrnirys 80d Rypnir, respectively.
LeMMA 6. If I and J are subintervals of R, then A(I+J) = A(D)+A(J).

Lemmia 7. Let I be a subinterval of R and let fe NV be strictly increasing. For
each ne N,

AT+ 0 <2 (A +277"),
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Proof. Notice that for each n e N, O is a subset of a union of 2" intervals each
of length 277", Thus, this lemma follows immediately from the preceding lemma.
Q.E.D.

Let us make the following convention, if f, ge N®, say f=g past n provided
Ymz=n(f(m)<g(m)) and f<*g if and only if In(f<g past n).

Lemma 8. Let U be¢ an open subset of Rwith Al U)< + oo, Foreache>0and ne N,
there is a strietly increasing fe N such that if g e N is strietly increasing and f<g
past n, then

AU+ Q)=2"A(U)+8.
Proof. By blocking the compaonents of U, there is a sequence { V)= of pairwise

disjoint sets such that U = |J) ¥}, each F} is a union of finitely many open intervals
and for each k>1,

A=) P)se2 23,
J=k

Consequently, for each k>1, A(V)<e-27*""? with
Vo= {8 i<},

where the sets J; are disjoint open intervals.
Now, choose a strictly increasing f so that 2*/™.p <g-27! and so that for
k>1,
it 1

Assume g e N", g is strictly increasing and g=f past n. Then
AV + 0, }ilz M+ 0, )5‘}: (A1) +274™)
=rg

<ry

<P AU +r, 2N <P A (U) 46027t
Also, for k=1,

AV + Qg}ﬂiz (I:+Qﬁ}gﬁiz 2l+l{‘1u:}+2—ﬂu+t}}

LR L) ey TR e DR 4 92T R o 928
Thus,
MU+ Q)<2"UU)+ ¥ 827" = 2"A(U)+e. Q.E.D.
k=]

Lemsa 9. If A(G) = O, then there is a strictly increasing element g of N* such
that J(G+Q,) = 0, whenever k is strictly increasing and g<*h.

Proof. Let {U,]%; be a sequence of open sets with U,2U,4,, {U)<2™*
and G [ U,. For each n, let f, be a strictly increasing element of N ¥ such that
if & is strictly increasing and f<h past n, then

(») MU+ Q<22 A(U)+1/n.
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Choose a strictly increasing g so that for each n, f,<g past n. If & is strictly
increasing and g<*h, then () holds for all but finitely many »# and therefore,
AG+0) =0. Q.ED.

LemMma 10. Jf SN and A(G+ Q) = 0, then A(G+Rg) = 0.

Proof. This follows from the fact that Rg is the union of all translates of Qg
by dyadic rationals. Q.E.D.

Let D be the set of all dyadic rationals in the interval [0,1) and let
E = {ze2": z is eventually zero}. Then D = ¥(E) and since D = R,, D<R;
for any subset § of N.

Lemma 11. Let U be an open set containing D. Then there is an element g of N™

such that Ryc U whenever he N is strictly increasing and
I{n: g <h(m)] = 6.

Proof. Let ¥ = Y~ Y(U/). For each z = {z,5 € E, let p, be the least p e N such
that Vaz=p,(z, = 0). For each pe N, let k(p) be some integer greater than p so
that

VzeE(p.<p— {te2": z|p = t|p and Vm(p<m<k(p)— t(m) = 0)}= V).
In particular, for all p
{re2: Vm(p<m<k(p)) —1(m) = 0}=V.
Thus, if T= N and 3p([p, k(p)) 1 T = @), then Py<V and Q< U. Thus, whenever
I{p: [ k(P) T = B} = g,
then Ryl

Suppose he N¥ is strictly increasing and there are only finitely many p such
that [p, k(p)) n ran(h) = @. Then for all but finitely many n,

[A(my+1, k(h(m)+1))) N ran(h) = @,
or hin+1)<k(h(m)+1). Thus, for some ce N, h<*y., where g, is defined by
gll)=-¢,
gln+1) = max{k(p): p<g.(m)+1}.

1t follows that if we choose g so that g.<*g for all ce N, then for all strictly in-
creasing /i,

Ak=*g)—-RclU. QE.D.

THEOREM 12. Assume 2™° = w,. Then there is a subset X of R such that
(1) 1X] = w,

(2) YGSR[AUG) =0 = A{({G+X) = 0],

(3) X is concentrated on the rationals.
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Proof. Let {A,: a<w,} be a family of strictly increasing elements of N" such
that

(a) if w=<f, then h,<*hy,

(b) if &=<f, then ran(hy)s *ran(h.),

(€) YgeN¥, Julg<*h).

Choose x,eR;, and for each o, O<a<w;, x,eR, —{x; d<a}. Let
X = {x;: a<w }. It follows from Lemmas 9, 10, and 11 that X satisfes (1), (2)
and (3) of the conclusion. Q.E.D.

Let us remark that Theorem 12 cannot be proved as it stands under MA + 7ICH,
since MA 4+ —|CH implies that no uncountable set can be concentrated on the
rationals. OF course, under MA 4 1CH it is true that A(G+E) = 0 for any set G
with 1(G) = 0 and |E|<2%". Finally, our proof of Theorem 12 can be easily modified
under the assumption of MA+ T1CH to yield a subset X of R of size ¢ so that if U
is an open set containing the rationals then |X'—U|<e¢ and such that if 4(G) =0,
then A(G4+X) = 0.

Added in proof. Friedman and Talagrand [6] have done this.

Oren QuesTioN. Can one prove in ZFC that there is an X satisfying (1)
and {2) of Theorem 127

Added in proof. T. Carlson has shown that the answer is no.

Finally, we comment on where an X satisfying the conditions of Theorem 12
can lie in the projective hierarchy. From Theorem 1, X cannot contain a perfect
set, so X cannot be analytic. Also, one cannot even produce a projective X in
ZFC+GCH, since Solovay has shown that it is consistent with GCH that every
uncountable projective set contains a perfect subset. If we assume V = L, then a stan-
dard argument, due to Gidel will produce an X which is 43 = (PCA n CPCA).
A somewhat more careful argument yields:

THEOREM 13. If ¥ = L, then there is an X sarisfying the conditions of Theorem 12
which iy coanalytic (= m}).

Proof. It is sufficient to show that there is a subset H = {h,: a<aw,} of N¥
satisfving conditions (a), (b) and (c) listed in the proof of Theorem 12 so that #f is
coanalytic and such that h, # iy, if o # f. We may then define x, to be ¥(z,),
where =(m) = 1 if and only if peran(h). The set X = {x,: a<w;} will then be
coanalytic, since X = P(g(H)), where g: N" — 2" by g(h} = ¥eum. The map g is
Borel measurable and when restricted to the Borel set, D, of sirictly increasing
elements of A" it is also one-to-one. Thus, g|D is a Borel isomorphism of D onto
g{D). Since He D, g(H) will also be coanalytic,

Te constmuct such an H, et

A ={p<w,;: L,k ZF-P and L, is point-definable} .

Since A is unbounded in @, let {p,: x<w,} be an increasing enumeration of 4.
If g = gy, define Ay to be the <,-first he NY such that
1 — Fundamenta Mathematicas CXIILZ
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(@) YieNY nLLf<*h).
(ii) Va<f{ran (h)=*ran(h,)),
(i) Yn(l{m: 2"3" eran()}| = ),
{iv) Th(L,) is recursive in A.
Notice that {i) and (i) ensure that {h,: @<} satisfies (a)-{c) of Theorem 12,
Also, (iii) makes (iv) possible; Th(L,) can be encoded in, for example,

(s pun(2"3"™ & ran(h))> um (2" 13" & ran (b)) .

Finally by (iv), H is =}. Q.E.D.

Let us note that Mokobodzki has demonstrated the following theorem [3].

TueoreM. Let X and Y be compact mictric spaces, let F be an analytic subset
of X x Y, ler p be a regular Borel measure on X and fet v be a regular Borel measure
on Y. If, for every compact subset K of X with u(K) =0,

{+) v(me(F ooy {(K))) = v{(3: 3x((x, ) e F n (Kx T)))) =0,

then
vi{y: |F =) = 0.

Here F* = {x:1/(x, ) e Fl.
It follows Irom the methods of Theorem 13 that Mokobedzki®s result cannot be
extended 1o coanalytic ‘sets.

TreoriM 14 IV = L, there is a coanalytic subset Fof T % T, where T is the circle
group such that () holds where i and v are Haar measure on T and yet for every y,
F* is uncountable.

Proof. Assume V = L and construct an uncountable coanalytic subset C of T
which is concentrated on the ratiopal points of the circle and such that if p(M) = 0,
then p(C+M) =0,

Let F= {(x,x+¢): xeTand ee C}. Clearly, Fis a coanalytic subset of T'xT
which has the required properties. QLE.D.

Let us mote that Theorem 13 includes a partial answer to a question of
A. Ostaszewski [3], namely, i5 there a coanalytic concentrated set? -

Finally, let us note that our constructions can be slightly altered to answer
a question of S. J. Taylor [4]. At the end of that paper Taylor raises the question
of whether there is a subset X of R of power 2™ such that if G is a subset of R with
Lebesgue measure zero, then the planar set X » G will always have linear measure
zero., We have the following theorems,

Turorem 15, Assumie 2% = ;. Then there is a subset X of R such that

(1) |X] = HE’

(2) VG=R[MG) = 0 = XxG has zera linear measire],

(3) X is concentrated on the rationals.
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TueoreM 16, If V = L, then there is an X satisfying the conditions of Thearem 15
which s coanalyric.

The proofs of these theorems are similar to those given for Theorems 12
and 13. These proofs use Lemma 11 as it stands and the following two lemmas which
are analogous to Lemmas 9 and 10.

LEMMA 17, If A(G) = 0, then there is a strictly increasing element g of NV such
that the linear measure of the planar set G x 0, is zera, whenever i is steictly increasing
and g=<*h.

We indicate how this lemma follows immediately from Theorem 1 of Taylor's
paper. One only need note the following connections. Let G =R with A{G) = 0. Let
{a,} be a sequence with a,>0 for each n such that if {b,)<{a,} (Taylor’s notation),
then Gx %" {b,} (Taylor’s notation) has zero linear measure. Let g be a strictly
increasing element of A so that for each m, 27" <a,. Now, if A is strictly in-
creasing and g<*#h, then {0}x Q, = €'{b,}, where b, = 27",

LemMa 18, Jf SN and Gx Qg has zero linear measure, then Gx Rg has zero
linear measure. ;

We wish to thank R. J. Gardner for his comments concerning the connections
of our work te that of some others.
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