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Abstract. Some problems concerning the additive properties of subsets of R are investigated.
From a result of G. G . Lorentz in additive number theory, we show that if P is a nonempty perfect
subset of R, then there is a perfect set M with Lebesgue measure zero so that P+M = R. In
contrast to this, it is shown that (1) if S is a subset of R is concentrated about a countable set C,
then A(S+R) = 0, for every closed set P with A(P) = 0 ; (2) there are subsets G, and G s of R both
of which are subspaces of R over the field of rationale such that G,n GZ = {0}, G,+G $ = R and
A(G,) = A(G,) = 0. Some other results are obtained under various set theoretical conditions .
If 2~40 = N,, then there is an uncountable subset X of R concentrated about the rationale such that
if A(G) = 0, then A(G+X) = 0 ; if V = L, then X may be taken to be coanalytic.

P. Erdős and E . Straus conjectured and G. G. Lorentz proved that if
1<a1<a2< . . . is an infinite sequence of integers, then there always is an infinite
sequence of integers 1 <b, <b2<' .' of density zero so that all but finitely many positive
integers are of the form a i +bj [1] . In this note we investigate the measure theoretic
analogues of this result .

Throughout this paper, the real line will be denoted by R . If A and B are subsets
of R, then A+B = {a+b : ac-A, b e B} .

THEOREM 1 . Let P be a nonempty perfect subset of R. Then there is a perfect set M
with Lebesgue measure zero so that P+M = R .

Let us note that it suffices to prove the theorem under the additional assumption
that P9 [0, 1]. Let us also note that under this assumption it suffices to prove the
existence of a closed set M so that P + M contains some closed interval . With this
in mind, for each n and i, set I(i, n) _ [i/2", (i+1)/2 " ] . For each n, set

A„ _ {i : int(I(i, n)) n P 0 01
and

P„ _ U {I(i, n) : i c- .A .} .

Clearly, P,2P, 2 . . . and () P„ = P.
We will prove the following lemma .
LEMMA 2. There is a sequence of positive integers ml<m2<m3< . . . and a se-

quence {B}p=, of sets of nonnegative integers so that
1) for each p, BPc[1,2n'P"),
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2) for each n, P1j+M„=> [1 +2-11, 2] where M,, = U {I(i, m„) : i c- B„},
3) for each n, M„ + 1 c (M„ -1/21") v M u (M„+ 1/2'"),
4) for each n, A(M„)<2 - " .
At this point, let us note that Theorem 1 follows immediately from Lemma 2 .

In fact, setting

M = {x : 3(x„) --+ x and for each n, x„ e Mjn and j„ -++ co} ,

we see that M is a closed set with Lebesgue measure zero and P+M=, [1 + 1/21 ', 2]
In order to prove Lemma 2, we will employ the following finite version of

Lorentz's theorem .
THEOREM L. There is a positive number c so that for any positive integers n, m,

and k, if A is a set of integers, Ae [m, m+k), with JAS >,1, there is a set B of integers,
Be [n, n+2k) so that A + B contains all integers in the interval (n+m+k, n+m+2k]
with IBI<clogl/l.

Proof of Lemma 2 . Choose m, so that 2clogl,/11 < 1/2, where

1 1 = card (A,,,, n ( 1, 211))
So,

A 1y = 1<a,<a2<-<a,<211 .

By Lorentz's theorem there is a subset B, = 1 < b l < b 2< . . .<b,,<2' 1 ` so
that A1,+B, contains all integers in (211, 211+1] and such that

card(B,) = t,<c211+1 1og1 1 /1, .

setM, = U {I(i, m,) : i e B,} .

Then M, c [0, 2], 2W j)< 1/2 and Ply +M, [1+2-11 , 2] .
This completes stage 1 .
Stage 2 will be indicated (all higher stages are similar) .
Now choose m 2 = m, +k,, k,>0 so that for each i, 1,<i<,1,, we have

where

l(i) = card (A,,,. n [2" a,, 2k1(ai+1))) .

For each i, 1 < i< 1, and j, 1 < j < t,, we are guaranteed by Lorentz's theorem
that there is a subset B(i, j) of [2k ' b,, 261 b,+2 .2k1 ) so that

(A, n [2 k'ai, 2k1(a,+1)))+B(i,j) :D [2k1 , 2k, (a,+bj)+2 .2k1)
and

card(B(i,j)) < c2k1 log l(i)1l(i) .

clog(l(i)) < 211

1(i)

	

81, t,



Let B2 = U {B(i, j) : 1 < i 1 < 1 1 i l <j< t1} . Let K2(i,j)= U {I(p, m2) : p e B(i,j)} .
Then

A(K2(i,j))<2 -MZ(2"clogl(i) = 2`clogl(i)/l(i)<1/811 t 1
and

PM2+K2 (i, j)=~[ai+b ;+ 1/2m ', qi+b;+2/2m'] .

Set K2 = U {K2(i,j) : l<i<li and l<j<ti} . Then

2(K2)<1/3-2-' and K2 cM i v (Mi + 1/2m') .

Set M2 = K2 v (K2 -1/2") . Then

4W<2-2 , MZ c (MI -1/2") v Mi v (Ml + 1/2m1 ) ,
and

Pmt + M2 [1 + 1/2", 2] . Q. E. D .

Let us remark that Theorem 1 has the following corollaries .
COROLLARY (Talagrand [2]) . Let A be an analytic subset of R such that if X is

a closed subset of R of measure zero, then A + X has measure zero . Then A is countable .
Talagrand proved this result for arbitrary abelian locally compact groups . We

will show later in this paper that this result cannot be extended to coanalytic sets .
We give another corollary of Theorem 1 which implies a theorem of S . J. Tay-

lor [4] .
COROLLARY. Let P be a perfect subset of R . There is a perfect subset M of R with

Lebesgue measure zero such that the linear measure of the planar set M x P is infinite .
Proof. Let M be a perfect subset of R so that M+P = R and such that

(M) = 0 . Consider the shear transformation T: R -> R defined by T((x, y))
_ (x, x+y). Since, 7r 2(T(M x P)), the projection of T(M x P) into the second coordi-
nate, is all of R and the Lebesgue measure of ar 2(T(M x P)) is no more than the linear
measure of T(MxP), T(MxP) has infinite linear measure. Noticing that if Eg~ R 2 ,
the linear measure of T(E) is no more than three times the linear measure of E, it
follows that the linear measure of M x P must be infinite . Q.E.D.

We note that our proof of the preceding corollary shows that if A is a subset
of R such that for every subset G of R with Lebesgue measure zero, A x G has
linear measure zero, then A+E has Lebesgue measure zero, for every set E with
Lebesgue measure zero .

QUESTION . Is the converse of this result also true?
THEOREM 3 . Let P be a nonempty perfect subset of R . There is a subset M of R with
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00
Lebesgue measure 0 so that if P = U Xi , then there is some i so that Xi+M = R.

i=1
Proof. Let {p"} , be a countable dense subset of P. For each n and m, let

M(n, m) be a perfect subset of R with Lebesgue measure zero so that

(PC) [p"- 1/m, pn + 1/m])+M(n, m) = R .
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Let G be a G g subset of R with Lebesgue measure 0 which contains U M(n, m) .

Suppose P = U Xi and for each i, X,+G R.
i=i

For each i, let r i E R-(Xi +G) . Thus,

Xi n (G-ri) = 0

co
UXinn(G - ri)=0 .
i=1

	

i=1

But by construction each G-ri is a dense G6 set with respect to P . Q. E . D .
Let us remark that Theorem 3 contrasts with several results in the opposite

direction . The reminder of this paper is devoted to these contrasts .
Recall that a subset M of R is concentrated about a countable set C provided

every open set which includes C contains all but countably many points of M .
THEOREM 4 . If S is a subset of R which is concentrated about a countable subset C,

then íl (S+P) = 0, for every closed set P with Lebesgue measure zero .
Proof. It is enough to prove this for compact closed sets P with .1(P) = 0 .

Let C = {x,, : n e N} . Let e > 0 and let V be an open set with .1(V) < e and
CO

v- U (P+xn ) .
n=1

Let T = {x e S : (P+x) n (R-V) ; 0} . It can be checked that T is closed
with respect to S . Thus, S-T is open with respect to S and contains C. Therefore,
S-T contains all but countably many points of S . This implies that .1(S+P) < e .
Q . E. D .

One may think that if S is concentrated then Z(S+P) = 0, for every set P of
measure zero . However, we have the following theorems .

THEOREM 5 . There are subsets G, and G2 of R both of which are subspaces of R
over the field of rationale such that G, n G 2 = {0}, G,+G 2 = R and both G 1 and G2
have Lebesgue measure zero .

The proof of this theorem will be based on the next lemma. Let us set some
notation first . Let K, be the set of all x which can be expressed in the form

x =

	

ai1(2i)! ,
i=1

where 0 <ai < 2i, i = 1, 2, . . .
Let K2 be the set of all x which can be expressed in the form

x = a,/(2i+1)! ,
i=1

where 0<a i <2i+1, i = 1, 2, . . .
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LEMMA 6 . Let Hi be the subgroup of R generated by Ki , i = 1, 2. Then
Ht +Hz = R and A(H1) = 2(Hz) = 0 .

Proof. Since every x in [0, 11 can be written in the form

x = Y ai/i! ,
i=1

where, 0 <a i< i, for i = 1, 2, . . ., it follows that H, + Hz = R .
The subgroup Hl can be expressed as

H1 = U (p1Ki+ . ..+psK1),
(P,	PO

where the union is taken over all finite sequences of integers . Thus, in order to show
that Hl has measure zero, it suffices to fix (p 1 , . . ., p) and show that
L = p 1 K1 + . . . +p sK1 has measure zero. If x e L, then x can be written

CO s

X =

	

( piak)l(2k)!
k=1 i=1

with 0 < aik < 2k, i = 1, 2, . . ., s; k = 1, 2, . . . There is a positive integer m so that

0O

X = Y- ckl(2k)!
k=1

where Ick l < m(2k), k = 1, 2, . . . For each k, ck = tk(2k)+d, where Itk l <m and
0 < dk< 2k. So, x can be expressed as

x =

	

bi/i! ,
i=1

where (bzi_1l<m and 0<bzi <2i, for i = 1, 2, . . . Let E(m) be the set of all such x .
It suffices to show that E(m) has measure zero. For each tuple (a 1 , . . ., a zn) such
that la, 1, last , , laz„-, I <m and 0 < az i < 2i, let H(a1 i . . . , az „) be the closed interval

00
with center Y ai/i! and radius 4m/(2n-1)! For each n, E(m) u U H(a, i . . ., az n),

i=1
where the union is taken over all appropriate 2n-tuples . But,

,t

A(U H(a1, . . ., az„))< ~2(H(a1, . . ., az„))<

	

8m
	 (2m+1)„(2 .4 • . . . •2n) .

(2n-1)!

Since this last expression goes to zero as n increases, E(m) has measure zero .
A similar argument shows that Hz also has measure zero .
Proof o f Theorem 5. Let Vi be the subspace of R over the rationale which is

generated by the additive subgroup H,, i = 1, 2 . Thus,

V1 = U (r,H, + . . . +r„H,),
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where the union is taken over all tuples of rationale . But,

and
<Ta>Q n (U {Fp : t3,<y})S<Ty>Q .

Let us note that once this construction has been carried out, then the con-
clusion of the theorem follows immediately upon setting Gl = <S,,,,) Q and
G2 = <T.>Q .
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qn-H, + . ..+ - H, = ~-
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Pn
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Therefore, each set r l Hl + . . . + rn Hl has measure zero . Thus, VI and V2 have measure
zero .

Set G, = V1 . The set G2 will be constructed by transfinite recursion .
Well order R-G I : x0 , x l , . . ., xa , . . ., a<S . Express x0 as xo = 910+v20,

where 910 e G l and V20 C_ V2 . Set G20 = {ga20 : q e Q} . Then G20 C V2 , G20 is
a subspace of R over Q, the rationale, G2o n G l = {0} and x0 e G, + G20 .

Suppose 0 < a < S and for every /i, 0,< Q < a, subsets G20 of R have been deter-
mined so that G2P C V2i G2a is a subspace of R over Q, G2 p n G l = { 0}, x s e Gl +G2B
and if 0,<x<T<a, then G2x gG 2s . Let Tea = U {G2# : fl<OCj- If x., c- G, +T20 ,
set G2a = T2a . If xa 0 G,+T2a , write xa = g, a+v2 a , where q, a e G l and v2a e V2 .
Set G2a = {t+gV2 a : t e Tea and q e Q} . In either case G2a still satisfies the defining
conditions. Finally set G2 = U {G2a : a<61' Q. E. D .

Next, we note that under some set theoretic assumption an even stronger
example along the lines of Theorem 5 can be given .

THEOREM 7 . Suppose that the union of less than continuumly many meager subsets
of R is meager. There are subsets G, and G2 of R both of which are subspaces of R
over the field of rationale, both of which meet every meager set in a set of cardinality
less than 2N° and such that G, n G2 = {0} and G l +G2 = R. (Of course, if every
subset of R with cardinality < 2K° has measure zero, then G i and G 2 both have measure
zero . If CH holds, then G i and G2 are both Lusin sets .)

Proof. Let w, be the first ordinal with cardinality 211 ° . Well-order the closed
nowhere dense subsets of R into type w, : F0 , Fl , . . ., Fa , . . ., a< co, . Also, well-order
R-{0} into type co. : x0 , x, , . . ., xa , . . ., a<w, . We denote the rational numbers
by Q and if SCR, then <S> (2 denotes the rational span of S .

It will be shown by transfinite recursion that there are elements s a , ta , a<a),
of R which have the following properties for each a < oo, (Notation : for T < w,,
Sf = {sp : /3,<T} and T2 = { ts : f3,T}) .

1 . <S.>Q+<Ta>Q2{xy : y<a},
2. <Sa>Q n <Ta>Q = { 0},
3. if y < a, then

<Sa>Q n (U {Fp . a<y})C<S7>Q,



Construct so and to as follows . Set

B= (U {qFo : q e Q and q 0 0}) v

v (U {xo -qFo : q e Q and q 0 0}) v

u ({qx o : q e Q}) .

Choose so to be an element of the residual set R-B and set to
Clearly,

or
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xo -so .

<{so}>Q+<{to}>Q2{xo} ,

<{so}>Q n <{to}>Q = {0} ,

<{so}>Q n Fo = {0} ,

<{to}>Q n Fo = {0} .

Suppose 0 < i < uo, and elements s, t,,, a < i have been determined so that if
a < °c, then conditions 1, 2, and 3 all hold .

Define s, and t, as follows . First, set S,' _ {s,, : a<z} and TL = { t. : a<T}
and W, = U {F,, : a,<i} . If x, e <Sl.>Q+<TT>Q, then set s, = t, = 0 . If x, 0 <S,>Q +
+<TT>Q , then choose s, to be an element of R which is not in any of the following
meager sets :

U {<S.,>Q-<Tí>Q+rx, : r e Q} ,

U {qW,-µ: q e Q and µ e <S,> <? }
or

U {x,-q W,-v : q c- Q and v e <T,>Q} .

Finally, set t, = x,-s, .
Setting S, = SL v {s,} and T, = TT v {t,}, we have

<S,>Q+<T,>Q2 {xa : a< r} .

Suppose w e <S,>Q n <T,>Q . There are rationale a and b, u s <S,>Q , and
v e <T,> Q so that

w = k+as, = v+bt, .

If x, e <ST>Q + <T,>Q, then s, = t, = 0, and w e <SL>Q n <T,, >Q = {0} . If x, ~ <ST>Q +
+<TT>Q, then

p+as, = v+b(x,-s,) .
Or,

(a+b)s, = v-µ+bx, .

We consider two cases .
Case 1 . a+b = 0. Then bx, = v-µ. Since x, ~ <S,>Q+<T,>Q, b = 0 . Then

a = 0 and w = µ = v is an element of <S=>a n <T,>. Thus, w = 0 .
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Case 2 . a+b 0. Then

But, this is prohibited by the choice of s r . Thus,

<Sr>Q n <Tz>Q = {0} .

Next, suppose. 7<z and w e <S,>Q n (U {Fa : /i<7}). There is an element
y e <S,> Q and a rational r so that w = u+rs, If xt e <ST>Q+<T,' >Q, then st = 0
and it follows that w e <S,)Q . If x, ~ <S{>Q+<T,>Q and r :0 0, then sr e (1/r) w-µ.
But this is prohibited by the choice of sr . Therefore, r = 0, w = µ and it follows that
w e <S y>Q . Thus,

<S,>Q n (U Fa : Il<T))s<Sy>Q .

It can be shown in a similar fashion that

<T=>Q n (U {Fa : {i<7})s<Ty>Q . Q .E.D .

Our final goal is to show that under certain conditions there is an uncountable
concentrated set such that the sum of this set with every set of Lebesgue measure zero
still has measure zero. This is the content of Theorems 12 and 13 . First, we prove
some lemmas which hold outright .

Let us make the following conventions .
Define IF : 2N -~ [0, 1] by

If S(--I;, let

and let

Qs = P(Ps)c [0, 1]

Notice that if S(-- T(--N, thenPs CPT and Qs c QT . Also, if S is infinite, then Ps
and Qs are perfect sets .

For each Sc--N, set

RS = U {QT : ISJTI<a)l = U {QT : Tc*S} .

Of course, if Tc * S, then RT c R s .
Finally, if f e NN, Pf, Qf , Rf denote Pran(f)I Qran(f), and Rran(f), respectively .
LEMMA 6 . If I and J are subintervals of R, then A(I+J) _ ) (I)+A(J) .
LEMMA 7 . Let I be a subinterval of R and let fe NN be strictly increasing . For

each n e N,

2 (I+ Qf) < 2n(2 (I) + 2-f(n)) .

1

	

1

	

b
sZ

a+b
v

a+b p+ a+b x
r

`I'(<zni) _

	

zn2- n .
n=1

Ps = {z e 2N : W ~ S (zn = 0)}



P r o o f. Notice that for each n e N, Qf is a subset of a union of 2" intervals each
of length 2 -f(" ). Thus, this lemma follows immediately from the preceding lemma .
Q. E . D .

Let us make the following convention, if f, g e NN, say f,<g past n provided
Vm>,n(f(m)<g(m)) and f5*g if and only if 3n(f<g past n) .

LEMMA 8. Let U be an open subset of R with A(U) < + oo . For each e>0 and n e N,
there is a strictly increasing f e NN such that if g e NN is strictly increasing and f<g
past n, then

.1(U+Q9),<2"A(U)+s •

Proof. By blocking the components of U, there is a sequence {Vk }k_ 1 of pairwise
disjoint sets such that U = U Vk , each Vk is a union of finitely many open intervals
and for each k> 1,

A(U- U Vj)-s , 2-2k-n-2
j<k

Consequently, for each k>l, Z(V k)<e •2 -2k- n -2 with
i

Vk - U {I : i < rk} ,

where the sets Ik are disjoint open intervals .
Now, choose a strictly increasing f so that 2n -f (n) •rl ,< e • 2-1 and so that for

k>1,
2n+k-f(n+k),rk,< e ,2- k-1

Assume g e NN, g is strictly increasing and g if past n . Then

Also, for k > 1,

Thus,

(~)
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~(V1+Q9 )< ~(I1+Q9),< Y2n(~(Il)+2-'(n))
i<ri

	

i<ro

,2n),(U)+r1 2n- e (n) \2níl(U)+e . 2-1

A(Vk+QY) ::-~~: (Ik+ Qy),<

	

2n t k(~(jk)+2-9(n+k))
i<rk

	

i<rk

\2n+k~(VK)+rk 2n+k-9(n+k)\e,2-k-1ye,2-k-1 = E'2k .

),(U+Qa)<2n)(U)+ Y s'2-k = 2"A(U)+P . Q.E.D.
k=1

LEMMA 9 . If A(G) = 0, then there is a strictly increasing element g of N N such
that . (G -i- Qh ) = 0, whenever h is strictly increasing and g < * h .

Proof. Let {Un}n 1 be a sequence of open sets with Un ? Un+ , , A(Un)<2-2 .,

and G g-: () Un . For each n, let fn be a strictly increasing element of NN such that
if h is strictly increasing and f<h past n, then

a(Um+ Qh)<2"A(U,,)+1/n .
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Choose a strictly increasing g so that for each n, fn <g past n. If h is strictly
increasing and g < * h, then (*) holds for all but finitely many n and therefore,
A (G + Qh) = 0 . Q. E . D .

LEMMA 10 . If SSN and . (G+Q s ) =0, then A(G+Rs) =0.
Proof. This follows from the fact that Rs is the union of all translates of Q s

by dyadic rationale .

	

Q. E. D .
Let D be the set of all dyadic rationale in the interval [0, 1) and let

E _ {z e 2N : z is eventually zero} . Then D = nP (E) and since D = R®, D C=Rs
for any subset S of N.

LEMMA 11 . Let U be an open set containing D . Then there is an element g of N N
such that R he U whenever h e NN is strictly increasing and

J{n : g(n)<h(n)}I = Ko .

Proof. Let V = 1P -1 (U) . For each z = <z„> e E, let pz be the least p e N such
that do>,p z(z„ = 0) . For each p e N, let k(p) be some integer greater than p so
that

bzeE(pz<p--+{ie2N : Zip= i jp and Hm(p<m<k(p)->z(m) = 0)}eV) .

In particular, for all p

{ie2N : Vm(p<m<k(p))->T(m)=0}eV .

Thus, if T cN and 3 p ([p, k (p)) n T = fő), then PTC V and QTC U. Thus, whenever

J {p : [p, k(P)) r) T = fő}1 = Ko
then RTc U.

Suppose h e NN is strictly increasing and there are only finitely many p such
that [p, k(p)) n ran (h) = 0 . Then for all but finitely many n,

[h (n) + 1, k (h (n) + 1))) n ran (h) = fő ,

or h (n + 1) < k (h (n) + 1) . Thus, for some cc-N, h < *ge , where g, is defined by

gC(1) = c .
g,(n+1) = max{k(p) : p<g,(n)+1} .

It follows that if we choose g so that g ~< *g for all c e N, then for all strictly in-
creasing h,

-1(h<*g)- RhcU . Q.E.D .

THEOREM 12. Assume 2 ~t 0 = N 1 . Then there is a subset X of R such that
(1) IXI = 8 1,
(2) VGgR[A(G) = 0

	

A(G+X) = 0],
(3) X is concentrated on the rationale .
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Proof. Let {h,, : a < co, } be a family of strictly increasing elements of NN such
that

(a) if a < f3, then ha< *hp,
(b) if a < f3, then ran(hp ) c *ran (h a),
(c) Hg e NN, 3 a (g <'%chJ .
Choose xo e Rh ,, and for each a, 0 < a < co, , xa E R h.- {xó : 6<a}. Let

X = {xa : a<co,} . It follows from Lemmas 9, 10, and 11 that X satisfies (1), (2)
and (3) of the conclusion .

	

Q. E. D .

Let us remark that Theorem 12 cannot be proved as it stands under MA + -1 CH,
since MA + -1 CH implies that no uncountable set can be concentrated on the
rationale. Of course, under MA + -ICH it is true that A(G+E) = 0 for any set G
with 7 (G) = 0 and JEJ <2"° . Finally, our proof of Theorem 12 can be easily modified
under the assumption of MA + -1 CH to yield a subset X of R of size c so that if U
is an open set containing the rationale then JX- UI <c and such that if .1 (G) = 0,
then )(G+X) = 0.

Added in proof. Friedman and Talagrand [6] have done this .

OPEN QUESTION . Can one prove in ZFC that there is an X satisfying (1)
and (2) of Theorem 12?

Added i n proof. T. Carlson has shown that the answer is no .
Finally, we comment on where an X satisfying the conditions cf Theorem 12

can lie in the projective hierarchy . From Theorem 1, X cannot contain a perfect
set, so X cannot be analytic . Also, one cannot even produce a projective X in
ZFC+GCH, since Solovay has shown that it is consistent with GCH that every
uncountable projective set contains a perfect subset . If we assume V = L, then a stan-
dard argument, due to Gödel will produce an X which is d? _ (PCA n CPCA) .
A somewhat more careful argument yields

THEOREM 13 . If V = L, then there is an X satisfying the conditions of Theorem 12
which is coanalytic (_ isi) .

P r o o f. It is sufficient to show that there is a subset H = {h,: a < co, { of NN
satisfying conditions (a), (b) and (c) listed in the proof of Theorem 12 so that H is
coanalytic and such that h a hp , if a f3 . We may then define xa to be T (z,,),
where za(n) = 1 if and only if n e ran (h a) . The set X = {x,, : a < co, } will then be
coanalytic, since X = P(g(H)), where g : NN -+2N by g(hJ = Z,,,,ch> . The map g is
Borel measurable and when restricted to the Borel set, D, of strictly increasing
elements of NN it is also one-to-one . Thus, g I D is a Borel isomorphism of D onto
g (D) . Since He D, g (H) will also be coanalytic .

To construct such an 1-I, let

A = { o < a), : Le k ZF-P and Le is point-definable} .

Since A is unbounded in co,, let {oa : cc <co i I be an increasing enumeration of A.
If g = op, define hp to be the < L-first h e NN such that
3 - Fundaments Mathematicae CXIII/3
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(1) V fE NN n Le(f< * h) .
(ü) Va < j3 (ran (h) c *ran (h a )),

(iii) Vn(l {m : 2"3'c-ran(h)}j = x,),
(iv) Th (Le) is recursive in h .
Notice that (i) and (ü) ensure that {ha : a<wi } satisfies (a)-(c) of Theorem 12 .

Also, (iii) makes (iv) possible ; Th(LQ) can be encoded in, for example,

(n : pm (2" 3 'c-ran (h)) > µm (2"+ 1 3'c-ran(h))) .

Finally by (iv), H is 7ri .

	

Q. E . D .
Let us note that Mokobodzki has demonstrated the following theorem
THEOREM . Let X and Y be compact metric spaces, let F be an analytic subset

of X x Y, let y be a regular Borel measure on X and let v be a regular Borel measure
on Y. If, for every compact subset K of X with µ(K) = 0,

(*)

then

v(ar y(F n nX 1 (K))) = v((y : 3x«x, y) E F n (Kx Y»» = 0 ,

v ({y : 1P1 > Ko}) _

[31 .

Here P - {x : (x, y) e F} .
It follows from the methods of Theorem 13 that Mokobodzki's result cannot be

extended to coanalytic sets .

THEOREM 14. If V = L, there is a coanalytic subset F of T x T, where T is the circle
group such that (*) holds where µ and v are Hoar measure on T and yet for every y,
FY is uncountable .

P r o o f. Assume V = L and construct an uncountable coanalytic subset C of T
which is concentrated on the rational points of the circle and such that if it (M) = 0,
then p(C+M) =0 .

Let F= {(x, x+ c) : x e T and c e C } . Clearly, F is a coanalytic subset of T x T
which has the required properties .

	

Q. E. D .
Let us note that Theorem 13 includes a partial answer to a question of

A. Ostaszewski [51, namely, is there a coanalytic concentrated set? `
Finally, let us note that our constructions can be slightly altered to answer

a question of S . J. Taylor [4] . At the end of that paper Taylor raises the question
of whether there is a subset X of R of power 2 "0 such that if G is a subset of R with
Lebesgue measure zero, then the planar set Xx G will always have linear measure
zero. We have the following theorems .

THEOREM 15 . Assume 2 "0 = x, Then there is a subset X of R such that

(1) 1XI = ,,
(2) V G R [7, (G) = 0 - X x G has zero linear measure),
(3) X is concentrated on the rationale .
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THEOREM 16 . If V = L, then there is an X satisfying the conditions of Theorem 15
which is coanalytic .

The proofs of these theorems are similar to those given for Theorems 12
and 13. These proofs use Lemma 11 as it stands and the following two lemmas which
are analogous to Lemmas 9 and 10 .

LEMMA 17 . If 7 (G) = 0, then there is a strictly increasing element g of NN such
that the linear measure of the planar set G x Q,, is zero, whenever h is strictly increasing
and g<*h .

We indicate how this lemma follows immediately from Theorem 1 of Taylor's
paper. One only need note the following connections . Let G R with ~(G) = 0 . Let
{an } be a sequence with an > 0 for each n such that if {bn ) {an} (Taylor's notation),
then G x W (y) {bn} (Taylor's notation) has zero linear measure . Let g be a strictly
increasing element of NN so that for each n, 2-9(n) <an . Now, if h is strictly in-
creasing and g < * h, then {0} x Q,, _ W(y ) {bn }, where b,, = 2-h(n)

LEMMA 18 . If SAN and G x Qs has zero linear measure, then G x R s has zero
linear measure .

We wish to thank R . J. Gardner for his comments concerning the connections
of our work to that of some others .
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