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RECIPROCALS OF CERTAIN LARGE
ADDITIVE FUNCTIONS

BY
J-M. DE KONINCE, P. ERDOS AND A, IVIC

1. Introduction and statement of resulis

Let gin)=3%,.p and Bi(n)=% ., ap denote the sum of distinet prime
divisors of n and the sum of all prime divisors of n respectively. Both B(n) and
B(n) are additive functions which are in a certain sense large (the average
order of Bin) is #°n/(6logn), [1]). For a fixed integer m the number of
solutions of B{n)=m, is the number of partitions of m inlo primes, while the
number of solutions of B(n)=m, p*(n)=1 is the number of partitions of m
into distinet primes. There is a certain analogy between the relation of B(n) to
B(n) and the relation of the well-known additive functions w(n)=3%,, 1 and
n)=%,-), . Asymptotic estimates of B(n) were investigated in [1], reveal-
ing the connection between B{n) and large prime factors of n. In this paper we
turn our attention to sums involving reciprocals of S{n) and B(n). We shall
prove the following theorems:

TueorEM 1. For any & =0 and x = x,(&),

(1) xexp(—(2+e)(logx-loglogx)'®)= ¥ 1/Bin)

Isn=Ex

= T UB(n)=xexp(—(G—e)llog x - loglog x)'?),

2=nsx

Tueorem 2. There exist positive constants Cy, C; =0 such that

(2) , Y. B(n)/B(n)=x+O(x exp(—C,(log x - log log x)")),

(3) 1E B(n)/B(n)=x+ Oix exp(—C; (log x + log log x)"/?)).
THEOREM 3.-

(4) ¥ 1/(B(n)— Btn)) = Cx + O(x? log x),

nT=x
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where

1 0
(3) C=j (Flr)—6m 23t dt, F{!'.I=H (I + Z { ha "]—t“‘{"'m}p'“),
)

P k=3
and ¥' denotes summation over n=x such that B(n) ¥ Bin).

2. Proofs
We first prove the lower bound in (1). Let

A ={n|(n=x)A(p*(n)=1)alp(n)=x"*)}

where we shall use p{n) o denote the largest prime factor of n, x will be
sufficiently large and k = (log x/log log x)"*, If n is a product of k different
primes each not exceeding x'™, then n e A,. There at least U =3kx""/(4 log x)
primes not exceeding x'’™, which means

U(U-1)--- (U-k+1)
(6) 1=(.")= =GEU)/k!,
,,Z:Aq (E) k! :

since U'—k+1=2013 for x sufficiently large. From Stirling’s formula or by
induction it is seen that (k/2)* = k! for k=6, which when combined with (6)
pives

{7) Y 1=xlog*x
ety
"™ logx
Now for neA, we have Bin)= gi{n)=p{nlwin)<————, hence
log log x
Y UBm= Y 1UBm»xlog'x } 1
{g} I=nedy TEned noAy

=x""" log™ ! x = x exp(—2(log x * log log x)'®)log ™" x,

which proves the lower bound in (1). To prove the upper bound in (1) write

Y ysm= Y ygmi+ Y 1/Bn)

{g'} 2EnmEy 2=ip=y plnhey A=z, pinl=y
= 2 14yt Y i=sgly)ixy
Z=mp=x.pinl=y n==x.plnl=-y

where y=y{x) =2 will be suitably chosen in a moment. For the function

pixyl)= Y 1

nzx pinj=y

we use the following estimate of [2]:
(10) rlx, y)<cax log® y - expl—allog a +log log & — c.)),
where c; and c, are some positive, absolute constants, im,__.. ¥ =% and

(11) 3<a=log xfllog y <4y"*{{log v).
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MNow we choose

(12) y = expl(log x - log log x)"?).
Then (11) s satisfied for x =x, and

(13) dx, v)=, x expl—(3—e)log x - log log x)'7),

where =, means that the constant implied by the symbol <« depends on & only.
Substitution in (9) then gives the right-hand side inequality in (1), finishing the
proof of Theorem 1.
To prove Theorem 2 it is enough to prove (2), since trivially
(14) 2 Bm/B(n)=x+0(1),
T=n=x

and by the Cauchy-Schwarz mequality we have

2
a5 s2rom=( ¥ 1)5 Y BB Y. B(m)/B(m),

ESES I=n=x 2E=m =

so that (2) then implies (3). Let
(16) §= Y Bi(n)(n)=5§,+8S.,

A=n=x
where in §; summation is over 2=n = x such that B(n)=<kB(n), and in S, over
2=n=x such that B{n) = kB(n), where k= kix) 15 a large number which will
be suitably chosen later. Note that if B{n)=rB{n) for some integer r=2, then
n must be divisible by p° for some prime p, so that the number of n=x for
which p" divides n for some p s €} xp "« x27". Then we have
(a7 &=Y Y B(n)/B(n)< ¥ x(r+1)27" < x exp(—Cik)

ri=k 2=n=x r=8{M1Enr+1 ri=k

for some Ci=0. To estimate 5, write
(18) 8,=81+8].

In S, summation is over 2=n=x such that B(n)< kg(n) and n is divisible
by p* for some prime p>L, where L =L(x) is a large number that will be
suitably chosen. Thus we obtain

(19) Stk ¥ 1=k Y xn2«kx/L.
nim=sras=l n=L
If n=pi---plhiscountedin S} then a,=1forp =L andj=1,..., i which
implies
(20) Bin)={a,—p,+--+la—1)p+Bn)=Lia,+- - -+a—i)+pn)

=L(Qn}—aw(n))+B(n)=L (log xllog 2)+ B(n).
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Therefore we have

@ S| 5“%‘ 1+L(log x/log zlh;.,”ﬁ{")

= x+O(xL log x - expl(—Cyllog x - log log x)"%)),
where we have used (1) to estimate Y., 1/8(n). From (16}+21) we obtain
S =x+0(kx/L)+O(x exp{—C,k))
+ O(xL log x - exp(—Cy(log x - log log x)'™)).
Noting that trivially §=x+O(1) and choosing
(23) k =(log x - log log x)"7,
(24) L=exp(Csllog x -loglog x)'?),  Cs=C,/2,

we obtain (2) from (22).

To prove Theorem 3 we employ an analytical method. Let O0=t=1 and
observe that %" #" js 4 multiplicative function of n satisfying (%" 8" =
"V for k=1,2,... and every prime p. Therefore for Res>1

(22)

i ‘B(n'l—ﬂllllnﬂl EH {1 +P—!+£pp—1l +II#F"HI d=5 s -‘.|
[25'} ne=] »
w ¢(8) [T+ (P = 1)p 4 (13 = t7)p~* 4+ ) = LG (s, 1),

where {(s) is the Riemann zeta-function and for Re 5 >3

(26) Gis )= i gim, tin",

n=]1

and g(n, 1) is a multiplicative function of n for which g(p, 1)=0 and |g(p*, 1)| =
1 for k =2, Therefore uniformly for 0=1=1 we have

(27 Y letn 0|« x'?,

and by partial summation we subsequently obtain
Z (Blm-Bin) z gln, ;H‘xjn}zx z gtn. Hin+0 z lgin. :][)
L

(2B) .= A =
= xG(1, 1+ 0{x'7),
where
G(1, t}lsﬂ (]+ i [t“"'"—l""‘"‘}f*)=ﬁﬂ.
p k=2
and therefore

FO=[T0-pH=6/n*
"
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Note that B{n)= Bin) if and only if n is squarefree. Therefore we have
uniformly in ¢
I‘ (Bl (Himi—dini-1
LEg sy Bink#in

(29) =xt"'F(1)+ O(x"%t ") — ¥, pwi(ni™

LEE ]

= x(F(t)—6/= )1+ O(x'?17").

Since F(0)=6/m" the function (F(r)—6/7*)1" is continuous for O=t=1,
and we obtain the conclusion of the theorem integrating (29) over r from
elx)=x"* 1o 1, since

(30) J' ¥ et g = 3 1B(n) - B(n) + O(x'),
eix] m=n n=x
(31) x f"'mn-wﬂr‘ dr<¢ xe(x)=x"",
(32) [l Ox"*1 ") dr= x'? log 1/e(x) =< x" log x.
win}
3. Some remarks

It seems probable that the inequalities (1) may be replaced by asymptotic
formulae, viz.

(33) log Y 1B(n)~logx—Cllogx -loglogx)'?, x—®, C>0
D=y

(and a similar formula with B(n) instead of B{n)), but we are unable to prove
(33). Our results concerning B(n) and B(n) may be compared with correspond-
ing results for “small” additive functions Ln) and w(n). Utilizing essentially
the method of proof of Theorem 3 it was shown in [3] that

(34) Y 1/0(n) = x/log log x + a;x/(log log x)*+ < - = & ay_ yx/(log log x)¥
Dy =y

+ N xl(log log x)™),

(35) Y Uwln)=xflog log x + bax/(log log x)* 4+ + + + by_x/(log log x)¥
Dy

+ O(x/(log log x)™),

where the als and b)s are computable constants and N is arbitrary, but fixed.
Similarly [4] contains a proof that

Y Qn)/win)=x+c,xlloglog x +- - - +cx_x/(log log x)™*

(36) o=
+ O(x/(log log x)™),
and the formulae (34)-(36) are further sharpened in [5]
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The degree of sharpness of the above formulae is not attained in our
theorems concerning B(n) and B(n), which is to be expectad since Bi(n) and
Bin) are much larger functions than w(n) and £}(n), possessing notably wider
fluctuations in size.

It is clear that the method of proof of Theorem 2 would yield (2) and (3)
with B{n) and B(n) replaced by B™(n) and B™(n) respectively, where m is a
fixed positive integer. Our methods also work in the general case of other large
additive functions defined by

finy=Y hip), Fln)= ¥ ahip),

pln plin
where for some fixed K, ¥ =0 and a fixed real § we have
hix)=explK log” x - (log log x)*).

For other results and problems concerning B(n} and B{n) the reader is
referred to [1].

Closely related to Bin) and B(n) is the function B,(n}=}_.;,p". From
B,(n)=B(n) and the fact that B,(n)= B(n)=B{n) if n e A, (the sct defined at
the beginning of §2) we conclude that the bounds of Theorem 1 hold also for

HE- 1/B,(n).
It seems likely that
(37) ; Y. Bi(n)/B(n)=(c;+o(1)x loglogx
and
(38) HE Byn)/B(n)=(C+o(l)x, C=>0.

We can rigorously prove at present only

(39) 2. By(n)iB(n)=3x log log x + o(x log log x).

I=n=x

To see this let p, < - -< p, be the primes not exceeding x. Suppose pf=x<
pi*! (i=k) and define =1 by

(40) tpr=x=<(4+1)p,
so that t <p. Then we have

(41) s= Y Bmign)=Y ¥ Bilsph/pispl),

2En=x i=k =g
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Now B(sp})=B(s)+ B(pl) =s+p =1 +p, <2p, and B,(sp}) = p}, which gives

$=% ¥ ph2p)= Y t.pi*fizp.‘.tz% Y (xph—1)pt

=k =1, i=k =k

=2 Y Up+0O (E p:'")af log log x+ o(x log log x),
zisk =k 2

since

Y 1llp=loglog x+O(1) and E P = alx log log x).

p=E =k
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