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For a graph G with n vertices and average valency #, Turdn’s theorem yields the inequality
a=nf(r+1) where x denotes the maximum size of an independent set in G. We improve this bound
for graphs containing no large cliques.

0. Notation

n=n(G)=number of vertices of the graph G

e=e(G)=number of edges of G

h=h(G)=number of triangles in G

deg (P)=valency (degree) of the vertex P

deg; (P)=triangle-valency of P=number of triangles in G adjacent to P

:=t(G)=ni;'deg (P)=2e/n=average valency in G (we will tacitly assume r=1)

T=T(G)=maximum valency in G
a=0(G)=maximum size of independent set of vertices
(independence or stability number)
K, =shorthand for p-clique
log x=max {1, In x}
ty, C15 C2, ... are absolute constants
when speaking of union, difference or partition of graphs, we work with the vertex-sets

1. Introduction
Let G be a graph of n vertices and e edges with average valency t=2¢e/n.
It is an easy consequence of the celebrated Turdn’s theorem [6] (and can easily be

proved directly) that G contains an independent set of size n/(t+1), i.e.

(D a=nf(t+1).
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This estimation is best possible, as shown by the Turdn graph: n/(r+1)
cliques of size 7+1. This extreme graph is very stable, graphs which are not that
crowded locally have a much higher independence number. This idea of Szemerédi
has been formulated by Ajtai, Komlés and Szemerédi in [2] and [3] as follows:

Theorem 1. If G is trianglefree then (1) can be improved to
2) a > 0.01(n/r) logt
(2) is best possible up to constant multiple.

Denote by f(m, t, p) the largest integer such that every graph of n vertices
and average valency ¢ that contains no K, satisfies

a = f(n, t, p).
Theorem 1 states that

29 fn, t,3) = c(n/t) log t.
It is possible that for every fixed p we have
3 f(n, 1, p) > c,(n/t) log .

Perhaps (3) is too optimistic, but we feel that it is an interesting and chal-
lenging question. Here we make a modest but perhaps not quite insignificant con-
tribution by proving that for any fixed p, f(n, t, p) tends to infinity with n and ¢
faster than nft, i.e. the exclusion of K, improves Turdn’s bound (1) significantly.

More precisely, we prove the following estimation.

Theorem 2. There is an absolute constant ¢, such that

(€)) fn, t, p) = c,(nft) log A,
where A=(log t)/p.

Thus the exclusion of X, improves on Turdn’s bound as long as p=o(log ).
Theorem 2 gives no new information for p=logt. There are two obvious gaps
here in our knowledge. The first one is that p=o(log ¢) can perhaps be replaced
by p=o(t*). The second gap is that we cannot decide whether (3) is true or not
even in the case p=4.

The same questions can be asked for hypergraphs. Consider an r-graph
with n vertices and e edges. Set t=f, to be the (r—1)-st of the average valency,
i.e. re=nt"-1. The probabilistic method shows (Spencer [5]) that a=cn/t, ie. G
contains cn/t independent vertices. Ajtai, Komlés, Pintz, Spencer and Szemerédi
[1, 4] improved this “Turdn bound” by a factor (log t)"-" by forbidding certain
small subgraphs (the assumption is that the hypergraph G contains no cycles of
length =4). Both this latter result and Theorem | proved to be essential tools in
several applications.

Let us now assume that our r-graph G contains no K (p) for some p=>r.
Does that improve the bound a>c¢n/t? In particular, is it true that there is a func-
tion g(t)—e= such that if G contains no K®(4) then «(G)=c(n/t)g(t)? This is
not even known if we exclude K®(4; 3).

This is perhaps the third big gap in this fascinating subject.
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2. A sharper version of Theorem 1

A crucial point in the proof of Theorem 2 will be the application of the follow-
ing sharper form of Theorem 1:

Theorem 1°. If the number h of triangles in G is less than ent®, where e=1/(log 1),
then

(5 o > co(nft) log 1/e.
In other words, for any graph G
a = ¢,(n/r) min {log (nt*/h); logt}.

Joel Spencer remarked that Theorem 1’ is best possible up to constant factor,
His example starts from a trianglefree graph G” on »n” points with average valency ¢,
10<¢’<(n")'?, and independence number

o < ec(n’/t) logt.

(That such a graph exists is mentioned in [3] — take a random graph and delete
the few vertices in triangles.) Now fix a number s=exp ¢’ and blow up each point
to an s-clique. Connecting the vertices of two s-cliques if and only if the original
two points were connected in G’, we get a graph G with n=sn’, t=st’. The number
of triangles in G is at most

S’ +s3n't" < 2snt = /)nt ELenr?, & = 21"

On the other hand,
a=ao <c(n’/t)]logt’ < 2c(n/t) logl/e
and e>1/log t’.

3. Sparse Subgraph Lemma

Lemma. Let p=2, 0<d<1/2 be arbitrary. If a graph H contains no K, then it
contains a (spanned) subgraph H’ with

n(H') = (28)"=*n(H), e(H’) < d(n*(H"))".

Indeed, for p=2 the lemma is trivial. Apply induction on p: If e(H)<
<d(n*(H))*, choose H'=H. If e(H)=0n*(H) then there is a point P with
deg (P)=20n(H); let H’ be the neighbourhood of P. It contains no K,_, and
n(H")=>26n(H), thus the induction applies.

The above lemma implies the following

Lemma®*. If H contains no K, then it can be partitioned to H=H,UH,UH,... in
such a way that

n(H) = 6°-n(H), e(H)<on*(H), i=1,2, ...

and for the leftover H,
n(H,) < én(H).
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Indeed, apply the lemma with §/2 to get H” with
n(H) = 6"*n(H), e(H") < (5/2)n*(H").
Take a subgraph H, of H’ with
n(H) = 6*~'n(H), e(Hy < dn*(H,)

(there is such an H, since, for any k, the average of e(H“')/ ["('gﬁ)] over all sub-

graphs H” of H’ with n(H")=k, is equal to e(‘!‘:”)/(n(iJY ))-c26). Then repeat
this for H—H,, etc., until we get H, with
n(H,) < én(H).

4. Proof of Theorem 2

The proof will use induction on n. We consider two cases according to the
maximal valency.

If T=>t+10t/(log t), we pull out a vertex P with valency T and apply induc-
tion on on G—{P}. Since

v = t(G—{P)) < (nt—2t-20¢t/(log 1))/(n—1)
we have with A"=(log t")/p
2(G) = a(G—{P}) > ¢,((n—1)/t") log A" > ¢,(n/t) log A.

Thus we can assume
(6) T = t+10¢/(log 1).

We will partition the vertices of G to subsets ¥V, Vs, ... of size T. Select the
point P with the largest triangle-valency deg, (P). ¥, will consist of this point, its neigh-
bourhood, and arbitrarily chosen other vertices so that ¥; will have exactly T points.
Now in the remaining graph select the vertex with the largest triangle-degree (within
this remainin graph), and let ¥, consist of this vertex, its neighbourhood, and some
other vertices so that |V,|=T, etc. We get a partition V,, Vi, ..., V,,, m~n/T.

Let us have a closer look to what happens after ¥,,,,, when half the vertices
have already been partitioned. At the next step we select from the other half of
vertices the one with the largest triangle-degree H (within this half). Set e=A-3%/e,
There are two possibilities:

Case I. H<eT?

Case II. H=eT*

In Case I the number of triangles within the second half of vertices is less than
(n/2)eT?, thus by Theorem 1”

o > ¢y;(n/2T) log (1/e)
and we get (3) directly.
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So we only have to consider Case II. Then at every step up to the mj/2-th
we pulled out a vertex with at least eT triangles, i.e. each V;, 1=i=m/2, contained
at least T2 edges. Thus there are at most (1—e)n7/2 edges between the classes

Vis ooy Ve
Set §=¢/10 and subdivide each class V; to Vy, Vi, Vi, ... according to

Lemma* and delete all vertices of ¥V, i=1,2, ....
Now |V;;|=87-*|V}|, thus by taking average, we see that there is a choice

function j; such that the number of edges between the subclasses V;;,, i=1,2, ..., 1s
at most 0%?-%(1—e)nT/2. The number of edges within a class ¥;; is at most

] -E’P'Z[V,[E:%éﬂp-* T*, thus the number of edges in the graph G’ whose vertex
setis (J ¥, is less than (1—0.8¢) 6%P=2nT)2.
Since
n’ =n(G) > (1-96)6""1n(G).
we have

¢ = 1(G’) < (1—0.8) 6%~ *n(G) T/n(G")
< (1-0.7€)87-£(G) (1 +10/log t(G)) < (1—0.66) 8211,
Applying induction, we have (4’=(log t")/p).

[Iog t—(p—1) log(l/é)—ﬂ.ﬁs] .
P

a(G) = a(G") = ¢ (n’/t") log A" = ¢; (1 +¢/2)(n/t) log

= c;(nft)logd for ¢, < c,/10.

References

[1] M. Asrar, J. Komios, J. Pintz, J. SpeNcEr and E. Szemerepi, Extremal uncrowded hyper-

graphs, in manuscript.

[2] M. Astal, J. Komros and E. Szemerépi, A dense infinite Sidon sequence, European Journal

., of Combinatorics, 2 (1981) 1—11.

[3] M. Astal, J. KomLds and E. SzemerEDpi, A note on Ramsey numbers, Journal of Combinatorial
Theory A 29 (1980), 354—360.

[4] J. KomLos, J. PinTz and E. Szemerepi, A lower bound for Heilbronn’s problem, Journal of
the London Math. Soc., to appear.

[5] J. SeeNceR, Turan's theorem for k-graphs, Discrete Marh. 2 (1972), 183—186.

[6] P. TurAN, Egy grifelméleti szélsGértékfeladatrol, Mar. Fiz. Lapok 48 (1941), 436—452; see
also: On the Theory of Graphs, Collog. Math. 3 (1954), 19—30.



	page 1
	page 2
	page 3
	page 4
	page 5

