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Hajés conjectured that every s-chromatic graph contains a subdivision of K, the complete
graph on s vertices. Catlin disproved this conjecture. We prove that almost all graphs are counter-
examles in a very strong sense.

Let G=G(n) be a graph of n vertices. Let y=x(G) denote its chromatic
number and o=0c(G) the largest integer / so that G contains a subdivision of K;
i.e. o(G)=I is the largest integer such that G contains a subgraph homeomorphic

with complete graph of / vertices. Let us put H (G)=§E—8 and H(n) =max H(G(n))

Hajés [10] conjectured that H(n)=1 and Catlin, [2] recently disproved
the conjecture.
We shall prove that there are arbitrarily large graphs G with H(G)=

__Vm
T Rlogn—1)%7"
the lower bounds for Ramsey numbers R (n, n) established in [6] by the probabilistic
method. By a slightly more complicated method we shall prove that there is an
absolute constant C such that

Vn

(1 Hn)=C Den

The proof is a simple consequence of Turdn’s Theorem and

and in fact our proof yields that (1) holds for almost all graphs G(n), i.e. (1) holds

true for all but 0(2(:)) labelled graphs of n vertices. By a slight modification of the
proof of Theorem 2 one can obtain a simpler proof of an easier fact, namely that
the Hajos conjecture fails for almost all graphs.

It is difficult to guess whether probabilistic methods can be applied to dis-
prove the Conjecture of Hadwiger. In fact — perhaps this conjecture is true after
all. Various relationships between the Hajdés conjecture, the Four colour Theorem
and the Hadwiger Conjecture are discussed in [11].
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Catlin pointed out to the second author that graphs described in [8] in a much
more complicated manner are isomorphic to some of his counterexamples to the
Hajés Conjecture.

Let « and @ denote respectively the independence and the clique number.

Theorem 1. H(G):-% If %

Lemma. If G contains no q-element complete subgraphs K, then ¢(G)<Yy2(g—1)n.

Proof. Since G contains a subgraph homeomorphic to K,, there is a o-element set
SCS G such that every two vertices of G are joined by mutually internally disjoint

paths. Since G contains no K, by Turdn’s Theorem S has at most 2??—_21) a*
edges, and thus it has at least ﬁ=6(62_ D mzz?—_zl—)- o® missing edges. Since the

endpoints of a missing edge are joined by a path of length at least two, G has at
least f+¢ vertices (if all internal vertices of a connecting path are in S one needs
even more additional paths). Thus

a(c—1) _ g=2 .
n= 3 q=1D o' +o
i.e.

l—o’-rr n
2(g—1)

which proves the Lemma. |}
Theorem | now follows from the Lemma since y=nfx. [}
Theorem 2. There are arbitrarily large graphs G such that

Vn/2
HG)= (2logn—1)2"
Proof. By Erdés’ Theorem, ([6], p. 292) for every k=3 there are graphs G with
more than 2%? vertices, containing no K, nor any k-element independent sets.

Hence, both the clique and the independence number of G are smaller than 2 log n—1.
Thus, Theorem 2 follows from Theorem 1. [§

Theorem 3. There is a constant C such that for almost all graphs G,

Vn

Bf)j=C logn”

Proof, It is known, [5] that for almost all graphs G on n vertices we have

n
logn’

(2 1G>G
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Thus to prove the theorem it is enough to show that for almost all graphs
G(n), we have

3 a(G) < Cy¥n.

From the Central Limit Theorem (or an elementary combinatorial computa-
tion) it follows that the number of graphs of 7 vertices which have more than

_3% [ ; ] edges is less than 2@) «e~°", Hence the number of graphs on n vertices which

; 2 :
have a subgraph of t=Cj,log n vertices which has more than 3 [;] edges is less than

(1) e < e - o)

Thus, almost all graphs on n vertices have the property that for every
. . 1(¢
t=>Cylogn, every subgraph of ¢ vertices misses at least —5(2] edges. Hence, by

the same argument as in the Lemma we have that all but 0(2(5)) graphs have
(G)<C,Vn, which together with (2) proves the theorem. [f
The proof of Theorem 3 could be easily improved to show that for almost

all graphs G (n) we have
a(G(n)) < 2+o())n'2.

We also conjecture that
1/2

n
H(ﬂ)’:cm,

i.e. that our theorem is best possible apart from the value of the constant.
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