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the corresponding fundamental polynomials,

_ n
t.3) A, :%HRHLXH = By =-ii);17\n(X) (n = 1,2,.0,

the Lebesgue functions and the Lebesgue constants of the interpolation,
Here is the sketch of the proof, The detailed proof (about 30
pages) turned out to be quite complicated and several unsuspected dif-

ficulties had to be overcome

. PRELIMINARY RESULTS

In his classical paper [2] G.Faber proved that for any matrix 2

lim ?\n= oo
n=>o

irom where ii follows directly that for every point group there exists

a2 continuous function flf:n , -1%x<1 (shortly fle C), such that

lim | Ln(fl, x|l =00.
n==o00

(lience gyl = gl = max lg(x)] for ge C.) Almost twenty
-1gx gl
jears isier, in 1831, S, Bernstein showed that for every Z for which

(i. 1} hewls there exists an !‘2 « " and X ~lgx g1, such that
(2. 1)

— / | = 00

Iim ]Ln\fz. xo);
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(see [31).



E= { -1+2(k-1) /(n-1)} and the function |[x|

Iim ILn(Itt,E,x)J =00 if xe (-1,1), x#0,
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Then, using the '‘good" Chebyshev matrix

b {xkn = cos ,); w k=12, 05,000 n=1,2,,..},

G. Grilnwald [4] obtained that there exists a function fae C for which

(2.2) im L (f,,T,x) = c0
n 3

for almost all x in [-1,1]. Later he and (independently) J. Mar—
cinkiewicz proved that for a suitable f4eC , (2.2) is true for

every x from [-1,1] (see [5) and (61).
Quite recently A. A. Privalov [7] considered the Jacobi matrices

(%, B) _ [ (& - ¢
(& fo '{’ﬁm’m’ k=1,2,...,m n=1,2,...}, ,p>-1

(see e, g. [8], Part 2), and showed that for a certain fse C

o— (o< p3)
(2.3) lim |Ln(£5,Z P ,X)[=o0  a,e, on [-1,1],

nN-w

where "a.e.'" stands for "almost everywhere'. (He considered some

further point groups, too ,) His proof strongly depends on the properties
of the Jacobi roots xk[;"’f”.

Finally, he proved(2.3) for the whole (-1,1) (see [13]),

3. RESULT
As indicated above, we are going to prove (2.2) for any fixed
point group Z , i.e. we state

THEOREM. For any matrix Z for which (1.1) holds one can
find a function FE&€C such that
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bb l_iE1Ln(F, Z,x)l=00  for almost all x in [-1,1].
n>w

On the other hand, considering the special matrix

b can say that (3, 1) generally is not true for all =xe(-1,1] (see P,
gran [9], Problem III; [i], p.384).

Finally , let us note that the "Im" cannot be replaced by '"lim"
t'lim" . Indeed, as P. Erdbs showed, one can construct a peint
wip 2 that for every feC and every x,€ [-1, 1] there would exist

sequence 0, ( depending on f and Xy} such that

lim L (f,x)=f(x)
k=00 nk 0 0

ee [1], p.384 ).

ON THE PROOF

As we mentioned above, the proof is rather long and quite compli-
ted aithough it uses only elementary techniques, Our aim here is

sketch it, stressing some characteristic considerations and lemmas.,

4,1 The quoted result (2.1} of S Eernstein can be obtained from

e fact that for any matrix Z one <an choose the point x€ [-1,17

¢ which
A (3122.]1. [:&]![)‘{42-4"0{1} In n
s Kl & I — kn*" g T ?
k=1
rinfini tely iy n (see the saume paper, [(3]).
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then obviously

n 2,
Lo(g,%,)" g1 g,(%) Ik(xo):kéi P () =2 (xd .
Le.,
def 1
fx) = £ T g (%)

k=n1,n2,...’ f,ok

then f(x)eC, moreover

L'ni ( qn_’ xo)

= 1
L, (f,x))= Z + — +;
1

1 k<i n,

from where we obtain (2.1) with suitably chosen {¢ }, P, >00-

4,2, In 1958 P.Erdds proved, that for any given A>0 and
£>0 the measure of the set in X ( -w<x<ow) for which }\n(xj..{.A,
nz nO(A,E},hoIds, is less than £, whatever is the matrix Z . From
this we immediately obtain, that

n
(4,1) 1im llkty)lwo for almost all y in [-1,1],
N0 k=1

So, as above, we can obtain an uncountable family of functions

fy( x)eC such that

lim ’Ln(f ,y)| = for almost all y in [-1, 1],
N> y

To prove the original statement (3.1), we shall have to construct the

£

continuous F(x) using the uncountable family of functions £, - But
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is approach does not seem passable. So we choose another method,

vhere we shall have to unite at most countable family of functions.

1, and b4 ==1)

4,3, At first let us suppose that (with x i ™ n+1,n

Frei ke 0

def def
A T d = Ylnn (k=0,1,...,m n=1,2,.,.).

Divide the interval [-1,1] by equidistant points as follows,

I
; F—e— f : {
A Qa, X bz 1
Now, if we condiser, e.g. the expression
XN
| Z )k k+1 | &
(4.2) x < az(-l xk(x1+xk>b2 (-1 1.(x) x€ 1,

it is a simple, but a very important remark that all the terms in
(4,2) have the same sign for any fixed xel. (Indeed if, e.g.
XL8y then

wp(x)

k
gign [(-1) w’(xk)] =S whereS = *1for any k , l<k<n , moreover

x-:rkrﬁ , which means that



wo can expect that we have oo unite ouly ten ' Tunetlons 10 oblain
¥(x) where the intervals [j ate ol posilive measure,

T'his phenomenon in expressed by the following statement,
LEMMA 4,1, Let A>0 be an arbitrary fixed number. Then con-
sidering the arbitrary integer m;mOEA). for any nzn, (m) there

exists the set H < [-1,1] for which (pu,(Han-lfln In m , moreover,

whenever xe[-1, IJ\Hn

(4, 3) E | lknt,xﬂ}{_ln m)1/3>,-2A if nzn (m) .
1£kan
ka'[_j(x), m
Here Ij(x,\ - is the interval containing Xx; Mlees) stands for

the Lebesgue measure,

This lemma proved to be a very important part of the proof. It
is a rather deep generalization of the statement by P,ErdB8s ( quoted
in 4, 1) because in the sum va |lk(le generally even the terms for

which | x-x is "small" are "arge'. In the proof of (4.3) we use

k_r]l
only some basic notions of interpolation theory and combinatorial con-

siderations,
4,4, Using Lemma 4.1, we obtain the finite number of contiruous
functions fi(x) whose Lagrange interpolatory polynomials are big on

the sets Bi . More exactly we get that
lim an(fi,x)izoo on Bi (1gi<s)
N-= 0

where }i}}&(Bi) =2—§>, ?>0 is arbitrary. To combine these fi we use
1:

LEMMA 4,2, If rl(x), rztx)eC , moreover

im [L (r,x)=c0 if xeB,, M(B o,

n-»0o
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lim |L (r),x)|=0 if x€B,, By,
n->m

then any fixed interval (pl, pz) (plz.ﬁz) contains an X such that

Om | L (xr +r
n->o

2,x)t=c:r:a a, e, on B1U132

(2, e. = almost everywhere).

Applying these lemmas and some other considerations we obtain

the theorem.

.5, For the intervals th.k:- c':n , instead of Lemma 4,1, we can
use the following
LEMMA 4.3. Let Ax_> J  (k is fixed , Oskenj. Then for any
fixed 0<q<l/2 we can define the index t = t(k,n) and the set
& 4 iy
hen [xk+1, " xkn] such that ulh > < 4g4x, , moreover
2 d?
x)iz i
11, (x)(>3 if xe [xk+1’n,xkn]\hkn

and nz nquJ.

Finally, by a statement analogous to Lemma 4.2 we can complete
the proof for the case of the long intervals as well

And at last one more problem on Lagrange interpolation which seems
to be quite a difficult one; There is a pointgroup {xkn]] such that for
every continuous f(x}, Ln (f, xU}—a f(xﬂ} holds for at least one X,

for which lim },n(x0)=m(see [1]). This is probably true, but at this

n-»co
moment we cannot prove it (the original "proof'' was incomplete).
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