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the Lebesgue functions and the Lebes e constants of the interpolation

Here is the sketch of the proof . The detailed proof (about 30

pages) turned out to be quite complicated and several unsuspected dif-

ficulties had to be overcome

2. PRELIMINARY RESULTS
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Then, using the "good" Chebyshev matrix
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G. Grünwald [4] obtained that there exists a function f i b C for which

Um 1 Ln(f3' T, x ) = co

for almost all x in [-1, 11 . Later he and (independently) J. Mar-
cinkiewicz proved that for a suitable f4 6 C , (2.2) is true for
every x from E-1,11 (see [5] and

	

[6]) .
Quite recently A . A. Privalov [7] considered the Jacobi matt-ices
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a. e, on (-1, 1],
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where "a, e . " stands for "almost everywhere ". ( He considered some
further point groups, too .) His proof strongly depends on the properties
of the Jacobi roots

Finally, he proved (2 . 3) for the whole ( -1, 1) (see

3. RESULT

As indicated above, we are going to prove ( 2. 2) for any fixed
point group Z , i, e. we state

THEOREM. For any matrix Z for which Q .1) holds one can
find a function F E C such that
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that for a certain f 5 6 C
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On the other hand, considering the special matrix

I can say that (3, i) generally is not true for all xE

	

1] (see P,
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Finally , let us note that the "fm" cannot be replaced by "lim"

°lim" . Indeed, as P. hrd8s shouted, one can construct a point

rpt,;r so that for every fEC and every x
0
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sequence nk (depending on f and x0 1, suc?. that

ON THE PROOF

?s we mentioned above, the proof 's rather long and quite compli-

ted aithough it uses only elementary techniqueo, Our aim here is

sketch it, stressing some chat •acteratíc considerations and lemmas .
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from where we obtain (2 . 1) with suitably chosen {~Pn

	

Wn-spa .

4, 2 . In 1958 P. Erdős proved, that for any given A > 0 and
E>0 the measure of the set in x ( - oo<x<oo) for which A (x), A,
n>, n 0 (A, E), holds, is less than C , whatever is the matrix Z . From
this we immediately obtain, that

n
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So, as above, we can obtain an uncountable family of functions
f
y
(x)GC such that
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lim 1 Ln(fy, y) 1 = o0

n->co
for almost all y in (-1, i],

To prove the original statement (3 . 1), we shall have to construct the
continuous F(x) using the uncountable family of functions fV . But



.As approach does not seem passable . So we choose another method,

shere we shall have to unite at most countable family of functions .
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it is a simple, but a very important remark that all the terms in

(4.2) have the same sign for any fixed
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F(x) where the i11(e1 •v als I I ai •c ul' positive measure.

This phcuonlcnou in exprrssvd by the following statement.

LEMMA 4. 1. Let A>0 be an arbitrary fixed number. Then con-
sidering the arbitrary integer m,m Q(A), for any n.n 0 (m) there

exists the set H n c 1-1, 1] for which ~t(Hn ),1/ln in m
whenever x e [-1, 1] \ Hn

(4.3)
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moreover,

Here I1. (x)

	

is the interval containing x;

	

stands for, m
the Lebesgue measure.

This lemma proved to be a very important part of the proof . It
is a rather deep generalization n of the statement by P.Erdds (quoted
in 4. 1) because in the sum 7- 1 lk(x) I generally even the terms for

which I
x-xkn I

is "small" are "large". In the proof of (4. 3) we use
only some basic notions of interpolation theory and combinatorial con-
siderations .

4.4. Using Lemma 4 .1, we obtain the finite number of continuous
functions fi (x) whose Lagrange interpolatory polynomials are big on
the sets B .i . More exactly we get that
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(a, e. = almost everywhere) .

Applying these lemmas and some other considerations we obtain

the theorem .

4.5. For the intervals Lxk > ó n , instead of Lemma 4. 1, we can

use the following

LEMMA 4. 3. Let Axkn> Jn ( k is fixed , O,k~n ) . Then for any

fixed 04gc1f2 we can define the index t = t(k,n) and the set

hkn
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Finally, by a statement analogous to Lemma 4.2 we can complete

the proof for the case of the long intervals as well .

And at last one more problem on Lagrange interpolation which seems

to be quite a difficult one ; There is a pointgroup fxknJ such that for

every continuous f ( x ; , Ln f~ xJ1-á f (x~

	

holds for at least one x0

for which lim

	

n ( xp) =cr (see [13) . This is probably true, but at this
nom-

moment the cannot prove it (the original "proof" was incomplete) .

i-' . Lrd6s . Problem= a..d results on the theory of interpolation . 1 .
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