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Existence of
Complementary Graphs with
Specified Independence Numbers
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ABSTRACT

G. Chartrand and S. Schuster established inequalities of
the Nordhaus-Gaddum type for the independence and edge-indepen-
dence numbers. This paper considers the existence of comple-
mentary graphs that realize the independence and edge-indepen-
dence numbers in the ranges permitted by the Chartrand-Schuster

results.

L Introduction.

A set of vertices (edges) is independent if no two vertices
(edges) in the set are adjacent. The independence-number R(G)
of a graph G is the maximum number of elements in an indepen-
dent set of vertices of G; the edge-independence number
Sl(G) is the maximum number of elements in an independent set
of edges of G. As is usual, V(G) will denote the set of
vertices of G, E(G) the set of edges of G , G the complement
of G, Kn the complete graph of order n, and Pn the path
of order n.

Chartrand and Schuster [1] established inequalities of the
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Nordhaus-Gaddum type for the parameters £ and Bl by deter-
mining best possible upper and lower bounds for

B(G) + B(G) , B(E) - B(B), 8,(6) + 8,(), and B (G) - B,(C).
Here, we consider the question of the existence of complemen-
tary graphs that realize the independence and edge-independence
numbers in the ranges permitted by the Chartrand-Schuster

results,

2. Edge-Independence.

The Nordhaus-Gaddum inequalities for Bl established in
[1] are
(p/21<8,(C) + 8, (@) <2[p/2] and 0<8 (C) - 8,(® < [p/21%, (D)
which hold for every graph G of order p > 3.

We begin by showing that Bl(G) and Bl(E) cannot both
be "small", simultaneously.

Theorem 1. 1If G is any graph of order p, then
nax(g, (©) , 8, @) >[ 23+ ]

Proof. We confine attention to the case in which
p =0 (mod 3) , and proceed by induction.

The theorem obviously holds for p = 3. We assume that
it holds for all graphs of order 3k, and consider G to be
an arbitrary graph of order 3k + 3. Clearly, the theorem is
true if G = K3k+3 or G = E3k+3 , So we exclude these cases
from further consideration. Having done this, we assert that
G contains three vertices VsV, and v, such that the

3

induced subgraph {vl > Vo » Vg ) 1is either P3 or Pl U P2 .

Deleting v and v, from G, we obtain G' =G - {vl,

v
1* "Z
vz,v3} , which is a graph to which the induction hypothesis
applies; i.e., max{ Bl(G') , Bl(E'_)] > k/3. But the deletion
of ViV, and V4 removed at least one independent edge

from both G and G. Hence, Bl(G) >k/3+1 or



Proceedings-Fourth International Graph Theory Conference 345

BI(E) > k/3+ 1, completing the induction.
The very same type of argument proves the theorem for the
cases in which p =1,2 (mod 3) . »
We now ask: 1f ﬁl(G] =m, what values can BI(E)
assume? A moment's reflection shows that Bl(G) is not
restricted on the upper end, except by the upper bounds in (1)
and the obvious condition that Bl(E) < [p/2] . 1Indeed, if the
graph H of order p whose edge set consists of m indepen-
dent edges, then Bl(ﬁ) = [p/2] . Therefore, the question to
ask is: How small can Bl(G) be if Bl(G) =m?

We begin investigating this question, again for the case
p =0 (mod 3). Since the roles of G and G can be inter-
changed, we assume, without loss of generality, that it is Bl(G)
that is at least p/3; more precisely, we assume that
Bl(G) =p/3+r, where 0 <r < [p/2] - p/3, and we shall
seek graphs G with this edge-independence number but with
aa-1V2g» 2 = Lo Ha e wn
p/3 + r, be independent edges. Call A = {vl’VZ""’vz(p!3+r)}

al(E) as small as possible. Let v

and B the set of remaining p/3 - 2r vertices of G. If
(A), the subgraph induced by the vertices of A, is
K2(pf3+r} , then Bl(E) <p/3 - 2r, for the largest number of
independent edges of G would be attained by having each vertex
of B joined (in E) to a vertex of A, forming p/3 - 2r

independent edges. If (A) =K and, in addition, all

2(p/3+4r)
the vertices of A are adjacent to a single vertex of B (in
which case KZ (p/3+1)+1 C_G) , then
B,(G) <p/3-2r-1. (2)
Our claim is that inequality in (2) is never possible; that
is, there is no graph G of order p > 3 for which
el(E) < p/3 - 2r - 1. For suppose there exists a graph G

such that BI(G) =p/3 +r and ﬁl(E) =p/3 -2r -2. As
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before, let Voi1Vai ,i=1,2,...,2(p/3+1r), be indepen-

dent edges, A = {vl,vz,...,vchf3+r)} and B thg_;et of_
remaining vertices of G . Consider the subgraph H of G
whose vertices are all the vertices of G and whose edges are
those that join, in E-, vertices of A to vertices of B.
That is, V(H) = V(G) = V(G) and E(H) = {vjv

A,v. € B,

B klvy e k
ViV € E(G)} . The graph H is bipartite, so we may invoke
Kénig's Theorem, which states that the number of edges in a
maximum matching equals the number of vertices in a minimum
covering. The number of edges in a maximum matching in V(H)
is at most Bl(E) =p/3 - 2r - 2, while a minimum cover of
E(H) can be taken from B, which contains p/3 - 2r ver-
tices. This implies that two vertices of B are not part of
the cover, which means that these two vertices are adjacent in
G to every vertex in A. It follows that G has p/3 +r + 1
independent edges, contradicting the fact that B{(G) = p/3 + r.
Thus, our claim is established. 4

The minimum value for sl(E) is attained by the graph
G = K2(pf3+r)+1 U Kpf3—2r~1 . It is easy to see that judicious
removal of edges from this graph without reducing
B,(6) = p/3 +r will result in increasing 81(6) until it
reaches [p/2].

Completely analogous analyses produce the companion results
in the cases in which p = 1,2 (mod 3). One needs only to
note that base number for Bl(G) - that number being drawn from
Theorem 1-is different in the twe remaining cases. For
p =1 (mod 3), take Bl(G) [p/3] + *; and for
p =2 (mod 3), take Bl(G) {p/3} + r.

We summarize the results for the three cases in the fol-

lowing.

Theorem 2. For all integers p,r,n with p > 3,



Proceedings-Fourth International Graph Theory Conference 347

Oiri[%]—[; ] d[B———:l-Zr—l<n<g-_‘, there
exists a graph G such that (G) = I_P—3~—] + r and
81 (G) = n. Conversely, if G is any graph of order p >3

o (2O (2P Jees w0 s[4]-[24)

then [B*-g—;] -2r-1c¢< B EE{L [P-] .

Note. Our Theorem 1 contradicts, and therefore indicates
an error in, the last sentence of Theorem 1 of [1]. Our Theorem

2 provides a complete correction of that error.

3. Vertex Independence.

The question of existence of complementary graphs with
specified independence numbers is answered by some simple obser-
vations concerning the results in [1]. We therefore begin by
reviewing the pertinent parts of that paper.

For m,n > 2, the Ramsey nwnber r(m,n) is the least
integer p such that for every graph G of order p, either
G contains the subgraph Km or G contains Kn . For each
positive integer p, let

P.p = {(m,n) |r(m,n) > pl},
and let o and up denote, respectively, the minima of
(m-1) + (n=1) and (m-1) + (n-1) for (m,n) in Rp'
The following Nordhaus-Gaddum type inequalities were proved in

[1]. For every graph G of order p,
-~ — + -
o <B®+8@ <p+l and u 8@ - 8@ [2F[(EFH,  ®
where all four bounds are best possible.
Thus, we look at the table of Ramsey numbers for the solu-

tion to our problem. Within the table, we define the cone with

vertex (m,n) as the set

C(m,n) = {(m',n')|m' >m and n' > n}
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and observe that if (m,n) is in Rp , then C(m,n) is a sub-

set of R_. We say that (m,n) is a cornerpoint of Rp if
(m,n) lies in Rp but neither (m-1,n) nor (m,n-1) 1is in
Rp . Then R_ is the union of those cones each of whose ver-
tices is a cornerpoint of Rp A Then o and up R the minima

of the respective functions o= (m-1) + (n-1) and
p=(m-1) - (n-1) for (m,n) in Rp , are attained at cor-
nerpoints of Rp .

TABLE OF RAMSEY NUMBERS

B 21 3 1 4 51 6 7 8! 9 j 10|
n i ' | | !
2 2 i3 4 |5 6 7 8 9 10
3 51 & 09 14 138 ) o8 i
J
4 4 9 |18
s |15 14 5
6 6 |18 | S !
' ; 1
7 7 123 l '!
8 8 | ! i !
| . | t
] H i
9 9 | ! !
10 || 10 o

We now turn attention to our problem of existence. Let
(m,n) be any cornerpoint of Rp . Since r(m,n) > p, there
exists a graph G of order p with B(G) <n and B(G) < m.
Neither (m,n-1) nor (m-1l,n) lies in Rp , 80 B(G) £n-1
and B(G) £ m - 1. Therefore, B(G) =n-1 and B(G) =m-1.
Now, by judiciously adding edges to G without reducing B(G) ,
we can increase B(G) until reaching the upper bound for

B(G) + B(G), namely p + 1. Thus, if s(i,j) is the square
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in row i and column j of the table of Ramsey numbers, then
there is a graph G of order p having B(G) = j and

B(E) =41 4if s(i,j) =abuts the region Rp . Conversely, sup-
pose s(i,j) neither belongs to the region defined by RP nor
abuts Rp , then (i+1,j+1) does not lie in Rp' This
implies that r(i+1,j+1) < p, which means that if G is
any graph of order p, then B(G) > j +1 or 8(G) = 140
i.e., there exists no graph G of order p having B(G) = j
and B(G) = i.

We summarize our discussion in the following theorem.

Theorem 3. There exists a graph G of order p having
B(G) = j and B(G) = i if and only if (i+1,j+1) Llies in
Rp , but (i,j) does not.
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