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ABSTRACT

G . Chartrand and S . Schuster established inequalities of

the Nordhaus-Gaddum type for the independence and edge-indepen-

dence numbers . This paper considers the existence of comple-

mentary graphs that realize the independence and edge-indepen-

dence numbers in the ranges permitted by the Chartrand-Schuster

results .

1 .

	

Introduction .

A set of vertices (edges) is independent if no two vertices

(edges) in the set are adjacent . The independence-number S(G)

of a graph G is the maximum number of elements in an indepen-

dent set of vertices of G ; the edge-independence number

S1 (G) is the maximum number of elements in an independent set

of edges of G . As is usual, V(G) will denote the set of

vertices of G , E(G) the set of edges of G , G the complement

of G, Kn
the complete graph of order n , and Pn the path

of order n .

Chartrand and Schuster [1] established inequalities of the
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Nordhaus-Gaddum type for the parameters a and S1 by deter-

mining best possible upper and lower bounds for

S(G) + B(G) , R(G) • R(G) , B1
(G) + A1 (G) , and sl (G)

	

sl (G) .

Here, we consider the question of the existence of complemen-

tary graphs that realize the independence and edge-independence

numbers in the ranges permitted by the Chartrand-Schuster

results .

2 .

	

Edge-Independence .

The Nordhaus-Gaddum inequalities for S1
established in

[1] are

[p/2] < S l (G) + S1 (G) <2[p/21 and 0<S 1 (G) ~ l (G) < [P/2] 2 ,

	

(1)

which hold for every graph G of order p > 3 .

We begin by showing that S1 (G) and S1 (G) cannot both

be "small", simultaneously .

Theorem 1 . If G is any graph of order p, then

max{ S1 (G) S1 (G) } >
L

	 p 31 ~.

Proof. We confine attention to the case in which

p

	

0 (mod 3) , and proceed by induction .

The theorem obviously holds for p = 3 . We assume that

it holds for all graphs of order 3k , and consider G to be

an arbitrary graph of order 3k + 3

	

Clearly, the theorem is

true if G = K3k+3 or G = K3k+3 ' so we exclude these cases

from further consideration . Having done this, we assert that

G contains three vertices v l v 2 and v3 such that the

induced subgraph (vi , v2 , v3 ) is either P3 or P1 U P2 .
Deleting vl , v2 and v3 from G, we obtain G' = G - {vl ,

v2 , v 3 }, which is a graph to which the induction hypothesis

applies ; i e ., max{sl(G') R1 (G')} > k/3 .

	

But the deletion

of vi ,v2 and v3 removed at least one independent edge

from both G and G . Hence, S1 (G) > k/3 + 1 or



Proceedings-Fourth International Graph Theory Conference

	

345

SI (G) > k/3 + 1, completing the induction .

The very same type of argument proves the theorem for the

cases in which p = 1 ,2 (mod 3)

	

∎

We now ask :

	

If ~I (G) = m , what values can R l (G)

assume? A moment's reflection shows that a1 (G) is not
restricted on the upper end, except by the upper bounds in (1)

and the obvious condition that a 1 (G) < [p/2]

	

Indeed, if the

graph H of order p whose edge set consists of m indepen-

dent edges, then sI (H) _ [p/2) .

	

Therefore, the question to

ask is : How small can ~ I (G) be if SI (G) = m ?

We begin investigating this question, again for the case

p - 0 (mod 3) . Since the roles of G and G can be inter-

changed, we assume, without loss of generality, that it is S 1 (G)

that is at least p/3 ; more precisely, we assume that

aI (G) = p/3 + r , where 0 < r < [p/2J - p/3 , and we shall

seek graphs G with this edge-independence number but with

SI (G) as small as possible . Let v2i-lv2i' i = 1, 2, ,

p/3 + r,

	

be independent edges . Call A = fvl,v2' . . .,v2(p/3+r)}
and B the set of remaining p/3 - 2r vertices of G . If

(A), the subgraph induced by the vertices of A, is

K2(p/3+r) ' then S1 (G) < p/3 - 2r , for the largest number of

independent edges of G would be attained by having each vertex

of B joined (in G) to a vertex of A, forming p/3 - 2r

independent edges . If (A) = K2(p/3+r) and, in addition, all

the vertices of A are adjacent to a single vertex of B (in

which case K2(p/3+r)+l

	

G) , then

~1 (G) < P/3 - 2r - 1 .

	

(2)

our claim is that inequality in (2) is never possible ; that

is, there is no graph G of order p > 3 for which

SI (G) < p/3 - 2r - 1 . For suppose there exists a graph G

such that SI (G) = p/3 + r and SI (G) = p/3 - 2r - 2 . As
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before, let v2i-lv2i ' i = 1 , 2 , . . . , 2 (p/3 + r) ,

	

be indepen-

dent edges, A = {vl ,v2"'" v2(p/3+r)} and B the set of

remaining vertices of G . Consider the subgraph H of G

whose vertices are all the vertices of G and whose edges are

those that join, in G , vertices of A to vertices of B .

That is, V(H) = V(G) = V(G) and E(H) _ {vj vk lv j e A , vk e B

vj vk s E(G)} . The graph H

König's Theorem, which states that the number of edges in a

maximum matching equals the number of vertices in a minimum

covering . The number of edges in a maximum matching in V(H)

is at most a1 (G) = p/3 - 2r - 2,

E(H) can be taken from B, which contains p/3 - 2r ver-

tices . This implies that two vertices of B are not part of

the cover, which means that these two vertices are adjacent in

G to every vertex in A . It follows that G has p/3 + r + 1

independent edges, contradicting the fact that S(G) = p/3 + r

Thus, our claim is established .

	

∎

The minimum value for S1 (G) is attained by the graph

is bipartite, so we may invoke

while a minimum cover of

G - K2 (p/3+r)+l U Kp/3-2r-1
removal of edges from this graph without reducing

It is easy to see that judicious

Sl(G) = p/3 + r will result in increasing
S1 (G) until it

reaches [p/2] .

Completely analogous analyses produce the companion results

in the cases in which p - 1 , 2 (mod 3) . One needs only to

note that base number for S (G) - that number being drawn from

Theorem 1 - is different in the two remaining cases . For
p=-1 (mod 3), take S (G) _ [p/3] + r ;

p - 2 (mod 3) ,

	

take S (G) _ {p/3} + r .

We summarize the results for the three cases in the fol-

lowing .

Theorem 2 . For all integers p , r , n with p > 3 ,

and for



Proceedings-Fourth International Graph Theory Conference

0 < r <[~]-r p
3

1
J

and [ p 3 1-]- 2r- 1 < n < [ E
exists a graph

L
G such that S1 (G) _ ~p311 + r and

S1 (G) = n . Conversely, if G is any graph of

and

	

~1 (G))1
Sl (G)f = C p 3 1 J

+ r, wíth 0< r< [—p- p 3

Rl (G)~ < ~~~ ,
r51 (G)J

Note . Our Theorem 1 contradicts, and therefore indicates

an error in, the last sentence of Theorem 1 of [1] . Our Theorem

2 provides a complete correction of that error .

3 .

	

Vertex Independence .

The question of existence of complementary graphs with

specified independence numbers is answered by some simple obser-

vations concerning the results in [1] . We therefore begin by

reviewing the pertinent parts of that paper .

For m, n > 2 , the Ramsey number r(m,n) is the least

integer p such that for every graph G of order p , either

G contains the subgraph Km or G contains Kn

	

For each

positive integer

and let op and

(m- 1) + (n- 1)

then

ín Rp .

The following Nordhaus-Gaddum type inequalities were proved

rp+1~
L 3

[1] . For every graph G

o < ~(G)+ S (G) <p+1 and
p -
where all four bounds are

Thus, we look at the

tíon to our problem .

2r-1

p ,

	

let

Rp = ((m,n)Ir(m,n) > p) ,

P
p

denote, respectively, the

and (M-I) • (n- 1)

Within

of order p,

for (m,n)

order p > 3

minima of

there

347

ín

up < S(G) S(G) <`p 21]ip	 311
,

	

(3)

best possible .

table of Ramsey numbers for the solu-

the table, we define the cone with

vertex (m,n) as the set

C(m,n) _ {(m',n')Im' > m and n' > nl
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and observe that if (m,n) is in Rp , then C(m,n) is a sub-

set of Rp . We say that (m,n) is a cornerpoint of RP if

(m,n) lies in Rp but neither (m- 1,n) nor (m,n - 1) is in

R

	

Then R is the union of those cones each of whose ver-
P

	

P
tices is a cornerpoint of R P

	

Then ap and
pP

	

the minima

of the respective functions a = (m - 1) + (n - 1) and

u = (m - 1) • (n - 1) for (m,n) in RP

	

are attained at cor-

nerpoints of R
P

.

3 14 18

	

23

5

	

14

7

8

9

10

23

M

2

3

4

5

6

7

8

9

10

n

TABLE OF RAMSEY NUMBERS

4 9 f 10

We now turn attention to our problem of existence . Let

(m,n) be any cornerpoínt of Rp .

	

Since r(m,n) > p , there

exists a graph G of order p with S(G) < n and ~(G) < m .

Neither (m,n- 1) nor (m- l,n) lies in RP ,

	

so S(G) ~ n - 1

and S(G) ~ m - 1

	

Therefore, S(G) =n-1 and S(G)=m-l .

Now, by judiciously adding edges to G without reducing S(G) ,

we can increase S(G) until reaching the upper bound for

R(G) + S(G), namely p + 1 .

	

Thus, if s(i,j) is the square
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in row i and column j of the table of Ramsey numbers, then

there is a graph G of order p having a(G) = j and

((G) = i if s(i,j) abuts the region RP

	

Conversely, sup-

pose s(i,j) neither belongs to the region defined by R p nor

abuts Rp , then (i+ l, j +1) does not lie in Rp . This

implies that r(i + l,j + 1) < p, which means that if G is

any graph of order p ,

	

then S(G) > j + 1 or R(G) > i + 1 ;

í .e ., there exists no graph G of order p having S(G) = j

and R(G) = i .

We summarize our discussion in the following theorem .

Theorem 3 . There exists a graph G of order p having

~(G) = j and ~(G) = i if and only if (í+l,j +l) lies in

R ,

	

but (í,j) does not .
P
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