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In this paper we prove (in a rather more precise form) two conjectures of P.
Erdos about the maximum and minimum values of the divisor function on inter-
vals of length k.

INTRODUCTION

In this paper we prove two conjectures of P. Erdds concerning the divisor
function 7(n). These are

CoNJECTURE A. For each fixed integer k, we have

Y max{r(n), r(n 4 1),..., 7(n + k — 1)} ~ kx log x.
CONIECTURE B. For each fixed integer k, there exists a By <1, such that
lim(B;.: k— o0) =log 2, and such that for every € > 0 and x > x,(e, k), we have

x(log x)* ™ < ¥ min{r(n), 7(n + 1),..., 7(n + k — 1)} < x(log x)**.

n<x

In each case we prove slightly more—it turns out that B is much more
difficult than A.

THEOREM 1. Conjecture A is true. Moreover, the formula holds for k — o
as x — oo, provided

k = of(log x)* 2@,
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THEOREM 2. Conjecture B is true. More precisely, let k be fixed,
oy = k(2% — 1).

Then for sufficiently large x,

Gilk) x(log x)* o B )
(loglog x)1** s “z;'z min{r(n),..., 7(n + k — 1)} < Cy(k) x(log x)™.

Remarks. 1t would be of interest to know how large k may be, as a
function of x, for the formula in Theorem 1 to be valid.

The 11k* appearing in Theorem 2 is not the best that could be obtained
from the present technique, but the exponent of loglog x certainly tends to
infinity with k. It seems possible that no power of loglog x is needed, so that
the sum is determined to within constants: this would need a new idea, and
of course an asymptotic formula would be much better.

Before embarking on the proofs we establish several lemmas. Lemma 9,
which is rather too technical to be comprehensible standing alone, appears
in the middle of the proof of Theorem 2.

0-Constants, and those implied by <, are independent of all variables. The
constants 4; and B in Lemma 9 depend on k. Constants C,(k) also depend,
at most, on k. The usual symbols for arithmetical functions are used: thus
v(n) and w(n) stand for the number of distinct, and the total number of
prime, factors of n. The least common multiple of 4&,,..., d,_, will be
denoted by [d, ,..., d;._4].

LemMmA 1. For all positive integers o and k, we have

| 4 2% 4 3UE oo/ >

% _T_ 0 oo 4 1)ME,

Proof. For positive integers k£ and 8, we have
1:4% 1
(1 + R—) >1+5.
Hence

{k + 14 kB — D} BH* = kB(B + 1)V/*

and

Bk > o (BB + s — (B — 1) B,

We sum this for B = 1, 2, 3,..., a.
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LeMMA 2. Let fi(n) be the multiplicative function generated by
Sil(p?) = (a+ IM* — otk fi(l) =1.

Then for all positive integers n, we have

LA@logd < 27 %A@,

Proof. Letn = pyipyt - pyr, and set

g(s) = H (1 +fk(p‘) S fa(p.)) =f'}(f)-

i=1

We have to show that

But the left-hand side is

Uk — 1) 4 2(31/% — 2UF) oo - of (o 4 1)UF — o/
Z (o -+ 1)F )IUSP
piln

- / i + 21,’k _i_ 31}&: + e _+,, al;’k

a ; (l - oo A 1)H/E )alogp,

Plin
A log n
SE+T pozn.. alogp =77

using the inequality proved in Lemma 1.

LemmA 3. For all positive integers k and n, we have

fr < k+1 Y fild.

ajn,d<nl/

Proof. We have
{r(mp*x =3 fi(d).

din
But
. logd
X (fldrd >0y < kd,zn fldiss
<t PO

by Lemma 2. The result follows.
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LEMMA 4. For each k, there exist a Cy(k) such that for all x,

Y {r(m) (n + 1) - 7(n + k — 1)}M* < Cy(k) x(log x)™.

n<x

Proof. Put y* = x + k. By Lemma 3, we have
{th +)E<k+1) Y fuld).

d|(n+i),d<y

Hence the sum above does not exceed
k4 1D* Y - Y fldy) - fildiy) card{n < x:d; | (n + j) Vj}

ki "ezﬁ' Z [;,if’:(:,:)’ dy {k(f!;;l)ﬂ

We have
dodidy *++ diy < [dy, dy ..., di 4] H (d; , d;)

i<y

and we note that if the congruences n + j = 0 (modd};) have a solution, then
(d;, dj) | (j — i) for every i <j. If we write

Gk = [I G-
0gi<i<k
then the sum above does not exceed
d k
ik + 1 x (T 24D)

a<y

< Gk + 1 x T (14 Ik;i) y’%gﬂ 4 o)

Py

< Gk)(k + 1)k x exp (k(2”" -DX » l 1)

Py

< Co(k) x(log y)™.

We may assume that x > k, as otherwise our result is trivial. Thus y* < 2x,
and the result follows.

LEMMA 5. For each integer k and all x, we have

Y (ot vt + by < 20

n<e

x(log x)*.

This is proved in a similar manner to Lemma 4.



180 ERDOS AND HALL

LeMMA 6. For any real numbers x; = 0 (0 < j < k) we have

max x; > Z x;— Y, (xaxs) e,
i<

Proof. Let x, be the maximum. Plainly

Y X < Y (xR
0<i

Lemma 7. For positive integers k, t, and for all positive x,
¥ Jmax {wi(n 4+ )} <€ k(tD)(x 4+ k)(loglog(x + k))t.
n<y

Proof. For each fixed y, < 2, we have

Y o™ < C(yo) x(log x)v,

<

for 0<< y << y,. Put y, = 3/2, and for sufficiently large x, log y = 1/loglog x.
Then

Z (w(n))* Z yoim £ x.

t! (loglog x)! S =

Hence

Y 2 (w4 ) L k(e!)(x + k)(loglog(x + k)t

0gi<k n<e”

and the result follows.

Lemma 8. Let 7y(n) denote the number of divisors of n which have no
prime factor exceeding k. Then

k=1
L [T {mln + )it < (e + k)tk)™.

Proof. Write n = gm, where the prime factors of ¢ and m are, respec-
tively, <k, and >k. Then

Y ()t < Y (rl@)t Y < x Z (""k('%]'))t

n<e q<x macf-z

gxﬂ(l+§+;+—--).

Pk
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But
(oc—l— 1)t (u+2)‘ .
3.;1 -[ o = 2} (f) 4= (log p)r**

< 241 Z (r )!<2t;l<tt

=0

using the fact that log p > 1/2. So we have

Y (m(m)t < xt'®.

n<E

The result now follows from Holder’s inequality.
Proof of Theorem 1. We have

Y. max{r(n), 7(n + 1),..., 1 + k — 1}

Nz

k-1

<Y Y mn+))

j=0 n<z

< kixlog x + 2y — Dx} + O(k* log x + kx'/?).

Next, we apply Lemma 6, with x; = 7(n 4 j). We have to estimate, from
above,

Y, X {r(n + 1) 7(n i+ P2

i<i n<z

and, by Lemma 5, this is

<Yy "(f U= (log )" < kex(log )",

i<j

We therefore have

Y. max{r(n), 7(n + 1),..., (n + k — 1)}

n<e
= kx log x + O(k®*x(log x)**) ~ kx log x
provided
k = o((log x)3-2"?),

This is the result stated.
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Proof of Theorem 2. The upper bound is an immediate deduction from
Lemma 4, since

min{r(n), 7(n + 1),..., 7(n + k — D} < [] {r(n + )P/~
0gi<k

It remains to prove the lower bound. Let us define
Ti(x,v) = card{n < x: min =(n -} j) = 2%}
0<j<k
Then for each o,

¥ m}n{f(n + )} = 2°Tu(x, v).

n<y
Let M < x'/® be squarefree, v(M) = kv, and suppose mgm, *=* m_; = M,
v(m;) = v for all j. There exists N, 0 < N < M, such that N = —j (mod m;)
for each j, and we put N -+ j = mya; . For / + 1 < x/M put

4 = q(1) = (M[m)l + a;

so that g;m; = Ml + N -+ j, for each j. Plainly n = MI -+ N is counted by
Ti(x, v).

Let wy(n) denote the total number of prime factors of n which exceed k.
We restrict / so that

[l a®] <r

O<i<k

W

indeed, we denote by S,(x;m,,m,,..., m;_,) the number of /, 1 <I <
(x/M) — 1 for which this inequality is satisfied. We have

Z Z Sr(x; My 5 My 5eeey ”Ik—l) g— Z’ R(H)
M (my) n<a

where Y’ is restricted to numbers n contributing to T(x, v) and R(n) denotes
the number of times n is repeated in our construction. Let us write

n+j=gqm; =q;q'm;,

where the prime factors of g;~, g;* are, respectively, <, >k; moreover,
w(q;*) = 5. The number of ways of writing n - j in this way is

w(n +j ))

< mln +) ()
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and so
k-1 k-1 .
RO <mnt+i) ¥ (")
i=0 Sgtate et gr i=0 i

< (IT 7atn +) gma, folo +

=0
Moreover, for any t > 1 we have
1/t
Y Y Sdx;mg,my ..., myy) < (Tilx, o))t/ (Z R‘(ﬂ)) :
M {my) n<x

By Lemmas 7 and 8, and the Schwarz inequality, we have
1/2t

(T Re)" < (2 T it + 1) ™ (5 max ot + )

n<x n<x j=0 n<e
< xM2tk) kM 24(2rt loglog x)'.
We set ¢ = [loglog x]. For this ¢, we have

Y Y Six; mg, my ey My)

M (mj)

€ B(Ty(x, V) 1/{(2K)¥(2r) (loglog x)*+r.
We require a lower bound for S,(x), and we employ the Selberg sieve, in the
lower bound form given by Ankeny and Onishi [1], and set out in Halberstam
and Richert [2], Chapter 7. We do not attempt to give the best result which

could be obtained from a weighted sieve procedure, since this would not
affect our final result.

LEMMA 9. In the above notation, we have
Six; my, my, My ..., M) = Cy(k)(x/M)(log x)~%,
where Cy(k) = 0 depends only on k, provided only
| (M) = 1, M = x5, (M) = kv, v = O(loglog x), r = 5k=2.

Proof. Set

) = 1:[1 (Ml + ay),

Jul)
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A={f():1<I<X}
B ={p:k <p}
P=Pk,z)=][][(pk <p <2).

We seek a lower bound for
S(A,B,z) =card{l: 1 =1=X, (f(), P) = 1}.

We follow the notation of Halberstam and Richert [2]. Let p( p) denote the
number of solutions of the congruence f(!) = 0 (mod p). Now by definition,
agm; — a;m; = j — i, and so we have

(Ml + a;, Ml +a)) | (j — 1)

and

(m; , a)l(j — i)
Thus

(M;,a;,P)=1.

It follows that the solutions of the congruences M,/ + a; = 0 (mod p) are
distinct, for p > k, and that each congruence has precisely 0 or 1 solutions
according as p | M; or not. Thus
wp) 1

and Halberstam and Richert’s condition £2, is satisfied, with 4, =k -+ 1.
Since M is squarefree, p | M; for at most one j, and so for p > k, we have
p(p) =k — 1 or k according as p | M or not. When p = k, we just have
0 < p(p) <p. Thus for 2 < w < y, we have (condition Q,(k, L)):

klogZ—L< ¥ Mﬁklogl+Ag,
w we Py w

where

4, = Y logp + O(1) = O(k),

p<k

fe y SBEgy “%£=0((u+k)1ogk),.

pispsk P p<k
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as v(M) = vk. Next, let d be a squarefree number all of whose prime factors
exceed k. (We can write this in the form (d, B) = 1.) Set

Ry = card{l: 1 <1< X, f(l) = 0 (mod d)} — XHB%Q_
pld

Then
| Ra| < [] p(p) < k¥,

pld
and
YAl (@) 3@ | Ry |:d < y, (d, B) = 1}
< Y Bky < y(log yy**-.
a<y

Hence Halberstam and Richert’s condition R(k, «) is satisfied (cf. [2, p. 219]),
with « = 1, A, = 4k, A; = 0(1). We may therefore apply their Theorem 7.4,
and we have (note the misprint!):

SA,B,2) > X [] ([—M),l — e (

k<p<z p

log X (loglog X)?*+2
log z ) 8 log X i

where B = B(A, , A, , Ay, 45) = B(k), provided
z* = X(log X)*.

Here 7, is related to the function G;, of Ankeny and Onishi [1]: it is strictly
decreasing, and 1 — n(w) > 0 for u > v, . It is known that »; < 3k for
positive integers k [2, p. 221]. Let assume v = O(loglog X), and put X = z%*,
Then we have

S(A, B, 2) = Cy(k)X(log X)~* (X > Xk)),

where Cy(k) > 0, and depends on k only. Moreover, the prime factors of
f(), for I counted by S(A, B, z), are either <k or ==z, and we have

MFQ) = [T (MI+ N+ ) < (MOX+ 1) + RF < MKX + 21,

j=0

provided M = k. In fact this is automatic, as M has kv distinct prime
factors. It follows that

klog(M(X +2)) _ 5, log(M(X +2))

wn(f) < B T
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In the application to S,(x; mg , My ,..., M), we set X = (x/M)-1 > x2/3-1,
and so M < x'3 < (1 + X)'/2 and

log(M(X +2)) _

3 log X =

for X > X, . Provided k is fixed and x — o0, this condition, and the condition
X > X,(k), are automatically satisfied. We therefore have w,(f(I)) = r as
required.

We now return to the proof of our theorem. We have

_x 1 1/t 1-1/t K

Cﬁ(k) (log I)k %M {ﬂ;‘] l < X (Tk(xs U)) (IOglog x) ]

where K = k? 4 2r = 11k%, t = [loglog x]. Given M, there are
(ko) (v !) ¥k

different choices of m, , my ,..., m;_; ; moreover we find that

Y Es (loglog x + O()y*”

o (ko)!
Thus
Cull) ragsye (2B A < sy, w1/ oglog ).
We choose
v = [2Y*loglog x + 1]
and we have

1-1/t

x / evk
Cﬁ(k) (log I)k > ? < (Tk(x, v))l_”t(IOglog x)x‘
Since ¢ = [loglog x], this gives
Cok) i——5 (I )k < 2°Tilx, v)(loglog x)¥

and so for this v,

2°T(x, v) > Cy(k) x(log x)*(loglog x)~11*".

This gives the result stated.
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