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In this short survey I mainly discuss some recent problems which occupied me and

my colleagues and collaborators for the last few years . I will not give proofs but

will either give references to the original papers or to the other survey papers .

I hope I will be able to convince the reader that the subject is "alive and well"

with many interesting, challenging and not hopeless problems . Development in geo-

__ry of the kind whic ;a Eucli~'• su ely

	

recognize as gecr:etr, wars perhaps Oct

very significant - one very striking theorem was proved about 75 years ago by Morley

which states that if one trisects the angles a, s, y of a triangle the pairs of tri-

sectors of the angles meet in an equilateral triangle . Surely a striking and unex-

pected result of great beauty . In fact because the trisection can not be carried out

by ruler and compass it is not quite sure if Euclid would recognize this as legitimate

(if and when I meet him [soon?] I plan to ask him) .

On the other hand, many new results have been found on geometric inequalities -

I won't deal with them in this paper and state only one of them, the so called Erd6s-

Mordell inequality (which was one of my first conjectures - I conjectured it in

1932 - two years later Mordell found the first proof) . Let A, B, C be any triangle,

0 a point in its interior, OX is perpendicular

OA +OB+OC> 2(OX+0Y+OZ)

to AB, OY to BC and OZ to AC . Then,

equality only if ABC is equilateral and 0 is the center .

I first of all give references to some earlier papers and books which deal with

similar or related questions :

P . Erdős, "On Some Problems of Elementary and Combinational Geometry," AnnaZi di

Mat . Ser IV, V 103 (1975), p . 99-108 . We will refer to this paper as I .

Very interesting problems and results are in the monograph of B . Grünbaum,

"Arrangements and Spreads," Conference Board on Math . Sciences, Amer . Math . Soc .,

No .10 . This monograph has a very extensive and useful bibliography .

The book of Hadwiger, Debrunner and Klee, Combinatorial Geometry in the PZane,

flolt, Rinehart and Winston, New York, 1964, contains much interesting information

about geometric and combinational results . It can be used as a textbook to learn the

subject but contains few unsolved problems .

Assoc. Sympos. Pure Mkth ., Vol .7 (Convexity), 1963, contains many papers on

related problems - in particular the beautiful papers of Danzer, Grünbaum and Klee

are relevant to our subject matter .
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Very interesting geometric questions of a related but somewhat different kind

are in the books of L . Fejes-Toth, Lagerungen in der Ebene, auf der KugeZ and im

Raven, Springer-Verlag, Berlin 1953, and ReguZar Figures, Pergamon Press Macmillan

Co ., New York, 1964 .

G . Purdy and I plan to write a book on some of the questions and their extensions

which we considered in our joint papers - if we live - the book should appear some-

time in the next decade .

I apologize to the reader and to the authors for the many references which I omit-

ted here, these omissions are partly due to limitations of time and space and partly

to ignorance .

1 . Let fk (n) be the largest integer so that there are n distinct points x,, . . .,

xn in k-dimensional Euclidean space Ek so that there are fk (n) pairs x , x with

d(x,x) = 1 . (d(x ,x) denotes the distance between x and x/ ) . g k (n) is the

largest integer so that for e-er r ch choice of n points in Ek there are at least

c k (n) distinct numbers among the d(x.,x
1
.) . These problems are extensively studied

in I, here I just state the outstanding open problems (we restrict ourselves to

k = 2) .

n
1+c/log log n

< f2 (n) = o(n3/2 )

	

(1)

Whereas f2 (n) < C n
312

is very simple the seemingly slight improvement (due to

E . Szemerédi is very difficult) . I conjecture that the lower bound in (1) gives the

right order of magnitude and I offer 250 dollars for a proof or disproof . I give

100 dollars for a proof of f2(n) < n1+
` .

Perhaps the following stronger conjecture holds : There always is an x. so that

there are at most o(n`) (nc/log lo g n 9) x. I s equidistant from it .

CIn2/3 < g2 (n ) < C2	n 112

	

(2)(loge)

The lower bound in (2) is due to L . Moser . I believe that the upper bound gives

the correct order of magnitude and I offer 250 dollars for a proof or disproof and

100 dollars for 92 (n) > n 1-e . ( This would of course be implied by f2 (n) < n1+
`)

I conjectured and Altman proved that if the x . are the vertices of a convex n-gon

then g2 (n) _ [3] . I also conjectured that there is an x so that there are at least
rn
L2 distinct distances amongst the d(x , x ), j=l . . . .n, jai . This problem is still

open . I also conjectured that there is an x which does not have three other x's

equidistant from it . This was disproved by Danzer (unpublished), but perhaps there

is always an x1 which does not have four other vertices equidistant from it .

Szemerédi made the pretty conjecture that Altman's 92 (n) = L11
remains true if

we only assume that no three of the x are on a line, but he only proved g2 (n) >_ [3,
in this case .
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L . Moser and I conjectured that if the x I. are the vertices of a convex polygon

then ft (n) < Cn . It is annoying that no progress was made with this elementary con-

jecture . We have a simple example which shows fz (Sn+l) >_ 3n and as far as I know

this is all that is known .

G . Purdy and I observed that if no three of the xi are on a line then f2 (n) >

cnlogn is possible, this follows easily by a method of Kárteszi . We have no idea

for the exact order of magnitude of f 2 (n) in this case .

Most of the results stated in this Chapter are referenced in I,

REFERENCES

S. Jozsa and E . Szemerédi, "The Number of Unit Distances in the Plane," Coll . Math .
Soc . Janos Bolyai, Finite and Infinite Sets, Keszthely, Hungary, 1973, p . 939-
950, North Holland .

P. Erdos and G . Purdy, "Some Extremal Problems in Geometry," IV Assoc . Seventh
Southeastern Conference on Combinations Graph Theory and Computing, 1976, p .307-
322 . (Congress Numerantium XVII) . (For related problems see our paper III and
V, same conference, 1975 and 1977, p . 291-308 and p . 569-578) .

2 . An old problem of E . Klein (Mrs . Szekeres) states : Let H(n) be the smallest

integer so that every set of H(n) points in the plane, no three on a line, contains

the vertices of a convex n-gon (it is not at all obvious that H(n) exists for every

n) . She proved H(4) = 5 and Szekeres conjectured H(n) = 2
n-z

+ 1 . Makai and Turan

proved H(S) = 9 and Szekeres and I proved

2 n- 2 ,+ 1 5 H(n) < C2n-41
n-2)

All this is in I (See Introduction) . Recently I found the following interesting modi-

fication of this problem : Let

	

be the smallest integer so that every set of n
points no three on a line always contains the vertices of a convex n-gon which con-

tains no xi in its interior . Trivially M4 = 5, and Ehrenfeucht proved that 5 exists,

Harborth proved MS = 10 . It is not at all clear that n exists and at present it is

possible that even M6 does not exist (in other words, for every m there are m points

in the plane no three on a line so that every convex hexagon determined by these

points contains at least one other point in its interior) .

REFERENCES

H . Harborth, "Konvexe Funfeck in Ebenen Punktmengen," Elemente der Math. 33 (1978),

116-118 .

3. Let there be given n points in the plane not all on a line . Is it true that

there always is a line which goes through precisely two of the points? Such a line



is called an ordinary line . This beautiful result was conjectured by Sylvester in

1893 . I rediscovered the conjecture in 1933 and a few days later T . Gallai found a

proof. The first proof was published by Melchior who rediscovered it quite indepen-

dently in 1940. Extensive references and the history of this problem can be found

in II and I and in a paper of Motzkin . Here I only state a few recent results and

problems . Denote by tk (n) the largest integer for which there is a set of n points

in the plane for which there are tk (n) lines containing exactly k of the points .

t 3 (n) fias been studied for more than 150 years . The sharpest results on t3 (n) are

(1)

(2)

due to Burr, Grünbaum and Sloane . They conjecture that

t3 (n) = 1 + [n(n-3)/6]

	

for n # 7, 11, 16, 19 .

They prove ( ] x [ is the least integer >_ x)

1 +
1n(6 3) J < t z ( n) <

~l\2i
- ] 37 [~/3J

Croft and I prove that for every k Z 3

tk (n) > ck nz

ek is an absolute constant . The simple proof of (2) is given in II . The best pos-

sible value of ck in (2) is not known . Denote by tk '(n) the largest integer for

which there is a set of n points in the plane no k+l of them on a line for which
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there are tk '(n) lines containing exactly k of the points . I conjectured that

k > 3, tk '(n) = o(n
z

) and could not even prove tk '(n)/n -+ W . Karteszi proved
l+ilk-z

tk '(n) > ek n log n and Grünbaum showed that tk '(n) > en

	

_ Further problem :

Assume k = [cn11z ] . Determine or estimate tk '(n)t

tk ' ( n) > an
112

/c

It is

Join every two of them .

true that

for

where a is independent of n and c?

Let xl, . . ., n be n points in Ez .

that one gets at least ekn distinct lines where a is an absolute constant independent

of n and k . This (and more) was proved by Kelly and Moser if k < c,n112
.

Let xl , . . ., n be n points in the plane not all on a line and let L I , . . ., Lm be

the set of lines determined by these points . Graham conjectured that if S is a sub-

set of {xl . . . . I xn} so that every line L, intersects S, then for at

LI, c:S. This conjecture was recently proved by Rabin and Motzkin .

I then asked the following question : Does there exist for every k a finite set

S of points in the plane so that if one colors the points of S by two colors in an

Prove (or disprove)

least one i,

arbitrary way, there always should be a line which contains at least k points

whose points are of the same color . Graham and Selfridge gave an affirmative answer

for k = 3, but the cases k > 3 seem to be open .

Finally, I want to call attention to a nearly forgotten problem of Serre : Let

and all
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A,, be the projective n space over the complex numbers . A finite subset is a Sylvester-

Gallai configuration if every line through two of its points also goes through a third .

Characterize all planar Gallai-Sylvester configurations . Is there a non-planar Gallai-

Sylvester configuration?

For generalization of the Gallai-Sylvester theorem to matroids, see, e .g . the

book of D .J .A . Welsh, Matroid Theory, p . 286-297, Academic Press, 1976 .

For a generalization of different nature, see, e .g ., M. Edelstein, "Generaliza-

tions of the Sylvester Problem," Math . Magazine, 43 (1970), p . 250-254, and M .

Edelstein, F . Herzog, and L .M . Kelly, "A Further Theorem of the Sylvester Type,"

Proc . Amer. Math . Soc ., 14 (1963), p . 359-363 .

REFERENCES

T .S . Motzkin, "The Lines and Planes Connecting the Points of a Finite Set, " Trans .
Amer. Math . Soc., 70 (1951), p . 451-464 .

S .A . Burr, B . Grinbaum, and N .J .A . Sloane, "The Orchard Problem," Ceometriae Aedieata,
2 (1974), p . 397-424 . (This paper contains an extensive bibliography and many
interesting historical remarks .)

J .T . Serre, "Problem 5359," Amer . Math. Monthly, 73 (1966), p . 89 .

B . Grünbaum, "New Views on Old Questions of Combinatorial Geometry," Teoriae
Combinatorie, 1, (

	

) p. 451-478 .

4 . In this last Chapter I state a few miscellaneous problems . Recently "we"

(Graham, Montgomery, Rothschild, Spencer, Straus and I) published several papers on

a subject which we called Euclidean Ramsey theorems . A subset S of Em is called Ramsey
k

if for every k there is an mk so that if we decompose E,nk into k subsets, E,,, k = 1U , S,
at least one S, has a subset congruent to S . We prove that every brick (i .e ., rec-

tangular parallelepiped) is Ramsey and that every S which is Ramsey is inscribed in

a sphere . The most striking open problems are : Is the regular pentagon Ramsey? Is

there an obtuse angled triangle which is Ramsey? Are in fact all obtuse angled tri-

angles Ramsey?

Let SI U S2 be the plane . Is it true that if T is any triangle (with the pos-

sible exception of equilateral triangles of one fixed height) then either S I or S2

contains the vertices of a triangle congruent to T? Many special cases of this star-

tling conjecture have been proved by us and Schader but so far the general case eluded

us . There surely will be interesting generalizations for higher dimensions but these

have not yet been investigated .

Let S be a set of points in the plane no two points of S are at distance one . We

conjectured that the complement of S contains the vertices of a unit square . This

conjecture was proved by R . Juhász . She in fact showed that if X1 , X2 , X3 , X4 , are

any set of four points then the complement of S contains a congruent copy . It is not

known at present if this remains true for S points ; she showed that there is a k so

that it fails for k points .
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Clearly many more problems can be stated here, and in fact many have been stated

in our papers . I hope more people will work on this subject in the future and our

results will soon become obsolete .

The following problem is due to Hadwiger and Nelson : Join two points of r-dimen-

sional space if their distance is one . Denote by a . the chromatic number of this

graph . Is it true that a2 = 4? It is known that 4 <_ a2 < 7 . I am sure that a2 > 4

but cannot prove it . By a well known theorem of the Bruijn and myself if a 2 > 4 then

there is a finite set of points x,, . . .,x, in the plane so that the graph whose edges

are (xr ,x ), d(x,,x ) = 1 has chromatic number greater than four . The determination

of such a graph may not be easy since perhaps n must be very large .

a, for large r was first studied by Lavman and Rogers . The sharpest known result

is due to P . Frankl, a . > r` for every a if r > ro (e) . It seems certain that there

is a fixed e > 0 so that a,. > (1+ e)' . (a, < 3' is proved by Lavman and Rogers .)

This conjecture would easily follow from the following purely combinatorial conjec-

ture (which perhaps is very hard) . Let IS I = n, At

	

S, 1 S i <_ un be a family of

subsets of S satisfying for every 1 <_ i t < i2 <_ u, JAtl n Ate I # (ál . Then there is

an e > 0 independent of n for which

max un < (2 - e)n

F(n)/n 2 + 0 , F(n)/n +

(1)

(1) no doubt remains true if the assumption JAt l n Ai l # Iál is replaced by :

There is a t, nn < t < ( 21-- n)n so that JAtl fl Ate 1 # t for every 1 S i t < i 2 <_
n

,

only here a will depend on n . At present no proof seems to be in sight .

Let xl , . . .,xn be n distinct points in the plane . Denote by C(xl, . . .,xn) the num-

ber of distinct circles of radius one which go through at least three of the xi . Put

F(n) = max C(xl, . . .,xn)

	

(2)

where the maximum in (2) is taken for all possible choices of distinct points x l . . . . ,

xn . I conjectured more than two years ago that

(3)

It seems that (3) is trivial but I could not prove it and I have no idea about

the true order of magnitude of F(n), probably F(n) < n2+e for every e > 0, if n > no (e) .

Let xl , . . .,xn be n points in E satisfying d(x.,x) >_ 1 . Determine or estimate

D (n) = min max d(xr x. )
1<t<1<_n

where the minimum is taken over all choices of xl , . . .,xn in E satisfying d(x,,x) 2 1 .

The exact value of D (n) is known only for very few values of r and n . A classical

result of Thue states
2 `1 /2

l im D2 (n)/nut =
	 2	

/
1
1~

n=
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The value of lim D3(n)/n 113 is,not known and is an outstanding open problem in
n=W

the geometry of numbers .

Letxl,be n points in the plane . Denote by L1,.-.,Lm the set of lines

determined by these points . Denote by ui the number of points on Li . ul >_ u 2 >_ . . .

um . Clearly

(4)

Let {ui } be a set of integers satisfying (4) . It would be of interest to obtain

nontrivial conditions on the ui which would assure that there is a set of points in

the plane for which there are ui points on Li . Perhaps there is no simple necessary

and sufficient condition . Denote by f(n) the number of distinct sequences u l ? . . .

> um (m is also a variable) for which there is a set of points x l , . . .,n with ui

points on Li . It is easy to see that

exp [c l nut l < f (n) < exp [c2nu2 1 (5)

I expect that the lower bound gives the correct order of magnitude in (5), but I

had not the slightest success in proving this .

One can formulate this problem in a more combinatorial way. Let ISI = n,

4
1

c S, 1 <_ i < m are subsets of S ( J A, J >_ 2) . Assume that every pair x,y of ele-

ments of S are contained in exactly one A, . Put
l

Ai
l

= ui , u l > u2 > . . . > um . Clear-

ly (4) holds here too . Denote by F(n) the number of possible choices for the u's .

[t is not hard to prove that (5) holds for F(n) too, but here I expect that the upper

hound gives the correct order of magnitude, but again I had no success . (F(n) > f(n)

easily follows since by Gallai-Sylvester um = 2 in the geometric case .)

A well known theorem of de Bruijn and myself states that (unless JA1 1 = n) we must

have m > n. This easily implies that there are c,nu 2 V s of the same size . I be-

lieve that this is best possible, in other words : There is a system of subsets

4 i c S m > 1, every pair of elements of S is contained in exactly one A i and there are

at most c 2 nu2 values of i for which the Ai are of the same size . Perhaps it is not

hard to construct such a design and my lack of success was due to lack of experience

with construction of block designs .

Assume ul < OnV2 . Purdy and I recently obtained fairly accurate asymptotic for-

mulas in the general combinatorial case for

max I (
3i)

in terms of ul . On the other hand, we had no success in the geometric case (i .e .,

when the x i are points in the plane and the Li are lines) . We conjectured that if

ul < cl nut
then
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312
G (3i) <cz n

where cz = ez (c l ) .
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