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In this short survey I mainly discuss some recent problems which occupied me and
my colleagues and collaborators for the last few years. I will not give proofs but
will either give references to the original papers or to the other survey papers.

I hope I will be able to convince the reader that the subject is "alive and well"

with many interesting, challenging and not hopeless problems. Development in geo-
metry of the kind which Euclid surely would recognize as geometry was perhaps not

very significant - one very striking theorem was proved about 75 years ago by Morley
which states that if one trisects the angles a, B, y of a triangle the pairs of tri-
sectors of the angles meet in an equilateral triangle. Surely a striking and unex-
pected result of great beauty. In fact because the trisection can not be carried out
by ruler and compass it is not quite sure if Euclid would recognize this as legitimate
(if and when I meet him [soon?] I plan to ask him).

On the other hand, many new results have been found on geometric inequalities -

I won't deal with them in this paper and state only one of them, the so called Erdos-
Mordell inequality (which was one of my first conjectures - I conjectured it in

1932 - two years later Mordell found the first proof). Let A, B, C be any triangle,
0 a point in its interior, OX is perpendicular to AB, OY to BC and 92 to AC. Then,

OA + OB + OC > 2(0X + OY + 02)

equality only if ABC is equilateral and O is the center.

I first of all give references to some earlier papers and books which deal with
similar or related questions:

P. Erdos, "On Some Problems of Elementary and Combinational Geometry," Annali di
Mat., Ser IV, V 103 (1975), p. 99-108. We will refer to this paper as I.

Very interesting problems and results are in the monograph of B. Griinbaum,
"Arrangements and Spreads,' Conference Board on Math. Sciences, Amer, Math. Soc.,
No.10. This monograph has a very extensive and useful bibliography.

The book of Hadwiger, Debrunner and Klee, Combinatorial Geometry in the Plane,
Holt, Rinehart and Winston, New York, 1964, contains much interesting information
about geometric and combinational results. It can be used as a textbook to learn the
subject but contains few unsolved problems.

Assoc. Sympoe. Pure Math., Vol.7 (Convexity), 1963, contains many papers on
related problems - in particular the beautiful papers of Danzer, Griinbaum and Klee
are relevant to our subject matter.
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Very interesting geometric questions of a related but somewhat different kind
are in the books of L. Fejes-Toth, Lagerimigen in der Ebene, auf der Kugel wnd im
Raum, Springer-Verlag, Berlin 1953, and Regular Figures, Pergamon Press Macmillan
Co., New York, 1964.

G. Purdy and I plan to write a book on some of the questions and their extensions
which we considered in our joint papers - if we live - the book should appear some-
time in the next decade.

I apologize to the reader and to the authors for the many references which I omit-
ted here, these omissions are partly due to limitations of time and space and partly

to ignorance.

1. Let fk (n) be the largest integer so that there are n distinct points z,,...,
z, in k-dimensional Euclidean space E, so that there are fk (n) pairs 5 with

d(z, '1}] = 1. (dx ,::’,) denotes the distance between x; and z ). gg(n) is the

largest integer so that for every such choice of n points in E} there are at least
gy (n) distinct numbers among the d(:.} ' ). These problems are extensively studied
in I, here I just state the outstanding open problems (we restrict ourselves to
k= 2).

1+¢/1 logn
% /log log
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Whereas f-z (n) <¢C 't is very s.imple the seemingly slight improvement (due to

E. Szemerédi is very difficult). I conjecture that the lower bound in (1) gives the

right order of magnitude and I offer 250 dollars for a proof or disproof. I give
1+4e

100 dollars for a proof of f,(n) <n .

Perhaps the following stronger conjecture holds: There always is an x; so that

there are at most o(n") {“ﬁlns lox ¥ 7) % 's equidistant from it.
2
Glﬂ“ <g,(n) <e, "_nl'f-i— (2)
" (logn)

The lower bound in (2) is due to L. Moser. I believe that the upper bound gives

the correct order of magnitude and I offer 250 dollars for a proof or disproof and
1+e

100 dollars for g, n) > e . (This would of course be implied by fz m) <n ).
I conjectured and Altman proved that if the x, are the vertices of a convex n-gon

then g, (n) = [%] I also conjectured that there is an z, so that there are at least

[%] distinct distances amongst the d(z ,xf), J=1,...n, j#i. This problem is still

open. I also conjectured that there is an z; which does not have three other z's
equidistant from it. This was disproved by Danzer (unpublished), but perhaps there

is always an x; which does not have four other vertices equidistant from it.

Szemeredi made the pretty conjecture that Altman's g, (n) = [%] remains true if
n
we only assume that no three of the x, are on a line, but he only proved g, (n) = [3] )
in this case.
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L. Moser and I conjectured that if the z, are the vertices of a convex polygon
then f, (n) < (n. It is annoying that no progress was made with this elementary con-
jecture. We have a simple example which shows fz (5n+1) > 3n and as far as I know
this is all that is known.

G. Purdy and I observed that if no three of the z, are on a line then f: (n) >
enlogn is possible, this follows easily by a method of Kdrteszi. We have no idea
for the exact order of magnitude of fz (n) in this case.

Most of the results stated in this Chapter are referenced in I,

REFERENCES

$. Jozsa and E, Szemerédi, "The Number of Unit Distances in the Plane," Coll. Math.
Soc. Janos Bolyai, Finite and Infinite Sets, Keszthely, Hungary, 1973, p. 939-
950, North Holland.

P. Erdos and G. Purdy, "Some Extremal Problems in Geometry," IV Assoc. Seventh
Southeastern Conference on Combinations Graph Theory and Computing, 1976, p.307-
322, (Congress Numerantium XVII). (For related problems see our paper III and
V, same conference, 1975 and 1977, p. 291-308 and p. 569-578).

2. An old problem of E. Klein (Mrs. Szekeres) states: Let H(n) be the smallest
integer so that every set of H(n) points in the plane, no three on a line, contains
the vertices of a convex m-gon (it is not at all obvious that H(n) exists for every
n). She proved H(4) = 5 and Szekeres conjectured H(n) = 2"_2 + 1. Makai and Turan
proved H(5) = 9 and Szekeres and I proved

352 e 5 {(33)

All this is in I (See Introduction). Recently I found the following interesting modi-
fication of this problem: Let M be the smallest integer so that every set of M
points no three on a line always contains the vertices of a convex n-gon which con-
tains no &, in its interior. Trivially M, =5, and Ehrenfeucht proved that M exists,
Harborth proved M, = 10. It is not at all clear that M exists and at present it is
possible that even M‘S does not exist (in other words, for every m there are m points
in the plane no three on a line so that every convex hexagon determined by these
points contains at least one other point in its interior).

REFERENCES

H. Harborth, "Kon\r&xe Funfeck in Ebenen Punktmengen," Elemente der Math. 33 (1978),
116-118.

3. Let there be given n points in the plane not all on a line. Is it true that

there always is a line which goes through precisely two of the points? Such a line
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is called an ordinary line. This beautiful result was conjectured by Sylvester in
1893. I rediscovered the conjecture in 1933 and a few days later T. Gallai found a
proof. The first proof was published by Melchior who rediscovered it quite indepen-
dently in 1940. Extensive references and the history of this problem can be found
in II and I and in a paper of Motzkin. Here I only state a few recent results and
problems. Denote by th{") the largest integer for which there is a set of n points
in the plane for which there are t, (1) lines containing exactly k of the points.
ts(n} Has been studied for more than 150 years. The sharpest results on ta(n} are
due to Burr, Grimbaum and Sloane. They conjecture that

tj(n} =1+ [n(n-3)/6] for n # 7, 11, 16, 19, (1)

They prove ( ] ¥ [ is the least integer 2 x)

e PR < < () -1 )]
Croft and I prove that for every k 2 3
t (n) > cknz (2)

e, is an absolute constant. The simple proof of (2) is given in II., The best pos-

s;ble value of ¢, in (2) is not known. Denote by £, '(n) the largest integer for
which there is a set of »n points in the plane no k+1 of them on a line for which
there are £, '(n) lines containing exactly k of the points., I conjectured that for
k>3, t'Mn) = o[nl) and could not even prove . '(n)/n = =. Karteszi proved

1+1/ k-2

t'(n) > ¢ n log n and Griinbaum showed that ¢ '(n) > cn Further problem:

1/2

Assume k = [en = ]. Determine or estimate tk‘(n}. It is true that

1/2

/e

' () >

where a is independent of n and e?

Let z ,..., &, be n points in E,. Join every two of them. Prove (or disprove)
that one gets at least ekn distinct lines where ¢ is an absolute constant independent
of n and k. This (and more) was proved by Kelly and Moser if k < c‘nuz :

Let x,..., =, ben points in the plane not all on a line and let L ,..., L be
the set of lines determined by these points. Graham conjectured that if S is a sub-
set of {:3,..., :n} so that every line I, intersects 5, then for at least one ,

Li c 5. This conjecture was recently proved by Rabin and Motzkin.

I then asked the following question: Does there exist for every k a finite set
S of points in the plane so that if one colors the points of S by two colors in an
arbitrary way, there always should be a line which contains at least k points and all
whose points are of the same color. Graham and Selfridge gave an affirmative answer
for k = 3, but the cases k > 3 seem to be open.

Finally, I want to call attention to a nearly forgotten problem of Serre: Let
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A, be the projective n space over the complex numbers. A finite subset is a Sylvester-
Gallai configuration if every line through two of its points also goes through a third.
Characterize all planar Gallai-Sylvester configurations. Is there a non-planar Gallai-
Sylvester configuration?

For generalization of the Gallai-Sylvester theorem to matroids, see, e.g. the
book of D.J.A. Welsh, Matroid Theory, p. 286-297, Academic Press, 1976.

For a generalization of different nature, see, e.g., M. Edelstein, "Generaliza-
tions of the Sylvester Problem," Math. Magazine, 43 (1970), p. 250-254, and M.
Edelstein, F. Herzog, and L.M. Kelly, "A Further Theorem of the Sylvester Type,"

Proe. Amer. Math. Soe., 14 (1963), p. 359-363.

REFERENCES

T.S. Motzkin, "The Lines and Planes Connecting the Points of a Finite Set, " Trans.
Amer. Math. Soe., 70 (1951), p. 451-464,

S.A. Burr, B. Grimbaum, and N.J.A. Sloane, "The Orchard Problem," Geometriae Dedicata,
2 (1974), p. 397-424. (This paper contains an extensive bibliography and many
interesting historical remarks.)

J.T. Serre, "Problem 5359," Amer. Math. Monthly, 73 (1966), p. 89.

B. Grimbaum, '"New Views on 0ld Questions of Combinatorial Geometry," Teoriae
Combinatorie, 1, ( ) p. 451-478,

4, 1In this last Chapter I state a few miscellaneous problems. Recently 'we'
(Graham, Montgomery, Rothschild, Spencer, Straus and I) published several papers on
a subject which we called Euclidean Ramsey theorems. A subset 5 of Em is called Ramsey
if for every k there is an m, so that if we decompose Emk into k subsets, E“x = rgl %
at least one q has a subset congruent to S, We prove that every brick (i.e., rec-
tangular parallelepiped) is Ramsey and that every S which is Ramsey is inscribed in
a sphere. The most striking open problems are: Is the regular pentagon Ramsey? Is
there an obtuse angled triangle which is Ramsey? Are in fact all obtuse angled tri-
angles Ramsey?

Let S1 u S; be the plane. Is it true that if T is any triangle (with the pos-
sible exception of equilateral triangles of one fixed height) then either 5 or 5,
contains the vertices of a triangle congruent to I? Many special cases of this star-
tling conjecture have been proved by us and Schader but so far the general case eluded
us. There surely will be interesting generalizations for higher dimensions but these
have not yet been investigated.

Let S be a set of points in the plane no two points of § are at distance one. We
conjectured that the complement of S contains the vertices of a unit square. This
conjecture was proved by R, Juhdsz. She in fact showed that if X, X, X,, X, are
any set of four points then the complement of 5 contains a congruent copy. It is not
known at present if this remains true for 5 points; she showed that there is a k so

that it fails for k points.
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Clearly many more problems can be stated here, and in fact many have been stated
in our papers. I hope more people will work on this subject in the future and our
results will soon become obsolete.

The following problem is due to Hadwiger and Nelson: Join two points of r-dimen-
sional space if their distance is one. Denote by a, the chromatic number of this
graph. Is it true that a, = 4?7 Tt is known that 4 <o, < 7. I am sure that a, > 4
but cannot prove it. By a well known theorem of the Bruijn and myself if a, > 4 then
there is a finite set of points &, ,...,x, in the plane so that the graph whose edges
are (:cf ' ), d{:‘." ,a:j) = 1 has chromatic number greater than four. The determination
of such a graph may not be easy since perhaps n must be very large.

a, for large r was first studied by Lavman and Rogers. The sharpest known result
is due to P. Frankl, a, > r® for every ¢ if r > ro(e). It seems certain that there
is a fixed € > 0 so that a, > (1+ e). (o, < 3" is proved by Lavman and Rogers.)
This conjecture would easily follow from the following purely combinatorial conjec-
ture (which perhaps is very hard). Let |S| = n, 4 €5, 1<% <u bea family of
<i, <u, lA’l n .'i,3 | # [%]. Then there is

subsets of S satisfying for every 1 < 1:1

an € > 0 independent of n for which
n
max ¥, < (2 - €) (e8]

(1) no doubt remains true if the assumption |.4(1 n 4, | # [-}] is replaced by:
There is a £, nm < £ < (15- n)n so that |A,1 n 4, | # ¢ for every 1 sil <1, Su,
only here € will depend on n. At present no proof seems to be in sight.

Let z ,...,x, be n distinct points in the plane. Denote by C(z;,...,%,) the num-
ber of distinct circles of radius one which go through at least three of the z;,. Put

F(n) = max C(z,,...,%,) (2)

where the maximum in (2) is taken for all possible choices of distinct points z,...,

z. I conjectured more than two years ago that
P)/n’ 0 , Fin)/n + (3)

It seems that (3) is trivial but I could not prove it and I have no idea about
the true order of magnitude of F(n), probably F(n) <n'* for everye>0, if n>n, (g).
Let T aeena® be n points in E’r satisfying d(:l:i ”"j) > 1, Determine or estimate

D (n) = min max d(.ri ,x}}
§ 1€i<j <n

where the minimum is taken over all choices of z,,...,%, in E satisfying d(z, ,z!)z 1.

The exact value of D (n) is known only for very few values of r and n. A classical

result of Thue states
. 2 \V2
lim D, (n)/n"" = ( 23! )

m
n=
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The value of lim D, [rx]/‘n":3 is not known and is an outstanding open problem in
h=w

the geometry of numbers.

Let LI RERTEA be n points in the plane. Denote by .r.l ,...,Lm the set of lines
determined by these points. Denote by Y the number of points on L, . u, 24, 2 ...

>u,. Clearly

1G)-6) ©

Let {4 } be a set of integers satisfying (4). It would be of interest to obtain
nontrivial conditions on the u, which would assure that there is a set of points in
the plane for which there are ¥, points on L[ . Perhaps there is no simple necessary
and sufficient condition. Denote by f(n) the number of distinct sequences u; 2 ...
2 u, (m is also a variable) for which there is a set of points Ty yee sy with %

points on L, . It is easy to see that

exple,n'’] < f(n) < exple,n’” ] (5)

I expect that the lower bound gives the correct order of magnitude in (5), but I
had not the slightest success in proving this.

One can formulate this problem in a more combinatorial way. Let |8] = n,

41 <S5, 1<1<mare subsets of S (|A!| > 2). Assume that every pair z,y of ele-
ments of S are contained in exactly one 4, . Put |4 | =%, u 2u, > ... 2u, . Clear-
ly (4) holds here too. Denote by F(n) the number of possible choices for the u's.

[t is not hard to prove that (5) holds for F(n) too, but here I expect that the upper
hound gives the correct order of magnitude, but again I had no success. (F(n) > f(n)
easily follows since by Gallai-Sylvester u, = 2 in the geometric case.)

A well known theorem of de Bruijn and myself states that (unless [Al| = n) we must
have m > n. This easily implies that there are clnw 4, 's of the same size. I be-
lieve that this is best possible, in other words: There is a system of subsets
4L esSm> 1, every pair of elements of 5 is contained in exactly one 4 and there are
at most czn“ values of 7 for which the 4, are of the same size. Perhaps it is not
hard to construct such a design and my lack of success was due to lack of experience
with construction of block designs.

Assume u < (.'nm . Purdy and I recently obtained fairly accurate asymptotic for-

1
mulas in the general combinatorial case for

st (" iy

in terms of “. On the other hand, we had no success in the geometric case (i.e.,

when the z; are points in the plane and the I, are lines). We conjectured that if

2
4y <e rt” then
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where g, =0, (1:2'1 j
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