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SOME ASYMPTOTIC FORMULAS ON GENERALIZED
DIVISOR FUNCTIONS, IV

by
P . ERDŐS and A. SÁRKÖZY

1 . Throughout this paper, we use the following notation : c•1 , c2 , . . ., X0 , X1 , . . .
denote positive absolute constants. We denote the number of elements of the finite
set S by BSI . We write ex =exp (x) . We denote the least prime factor of n by
p(n) . We write pall n if pain but pa+1 f n . v(n) denotes the number of the distinct
prime factors of n, while the number of all the prime factors of n is denoted by
w(n) so that

We write

v (n) = Z 1 and w (n) = f a .
pln

	

p-Iln

v (n, x, y) = f. 1, w (n, x, y) = Z a,
p l n

	

p-lin
x<psy

	

x<psy

v+(n, x) = Z 1 and w+(n, x) = f cc
p l n

	

palin
p>x

	

p>x

(so that v+(n, 1)=v(n, 1, n)=v(n), (o +(n, 1)=w(n, 1, n)=w(n), v(n, x, y)=v+(n, x)-
-v+(n, y) and w(n, x, y)=w+(n, x)-w+(n, y)) . The divisor function is denoted
by d(n)

Let A be a
we write

d(n)=Z1.
d l n

finite or infinite sequence of positive integers

NA(x) = Z 1,
aEA
aax

fA (x) =
1

,,EA a
asx

dA (n) _ Z 1
aEA
ain
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(in other words, dA(n) denotes the number of divisors amongst the a t's) and

DA (x) = lmax dA (x) .

The aim of this series is to investigate the function DA(x) . (See [1], [2] and [3] ;
see also HALL [5] .) Clearly,

Z dA(n) = xfA(x)+O(x)
Ln~x

so that we have DA(x)/fA(x)»1 .
In Part I of this paper we proved that for an infinite sequence A, we have

x lim sup DA (x)/fA(x) _ +-

and we proved some other related results .
In Part II, we sharpened this theorem . In fact, we proved that

lim
x "n fA(x) _ +

implies that
(1)

	

lim sup DA (x)/exp (c 1(log fA (x)) 2 ) _ + ~ .X +-
The proof was based on the fact that

fA (x) > exp ((log log x) 12)

implies that writing y=exp ((log x) 2), we have

DAW eXP (c2 (log fA(x)) 2)

In Part III, we estimated DA (y) in terms of fA(x) for y=x ; in fact, we proved

THEOREM 1 . For all 0>0 and for x>XJQ),

fA(X) > (109 109 x) 20
implies that

DA (x) > QfA (x) .

(In both Parts II and III, we proved also some other related results .)
In this paper, our aim is to seek for a possibly small function y=y(x) such that

fA(x) +- implies that DA(y(x))/f,(x)- +-. In fact, we prove
THEOREM 2 .

that x>X,,
(2)
and
(3)
imply that
(4)

For all

COROLLARY 1 . For
such that x>X2 and
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Q--1, there exist constants c3 =cAQ), X1 =X1(Q) such

fA (x) > C3

[xl-'1VA(x))"' x] A = 0

DA (x) > g2fA(x) •
all S2>0, there exist constants c4 =c4(Q), X2=X2(Q)

fA (x) > C4
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imply that writing y=x1+11(fA(x))1/', we have

(5)

	

DA(Y) ::- g2fA(x)
COROLLARY 2. For all Q- I, there exist constants c 5=c 5(Q), X3=X3(Q) such

that x>X3 ,
(6)

	

fA(x) C5

and

(7)

	

DA(x) '- QfA(x)
imply

NA(x)

	

x1-11(fA (x)) 11s

Section 2 is devoted to the proof of Theorem 2,
Corollaries 1 and 2 from Theorem 2 .

On the other hand, we show that Theorem 2 is
on the left-hand side of (3) by 1- l / cs A(X)

exist absolute constants cs , c•, , C., c9 , c 10 , c11 and X4 such

ponent 1-1/(fA(x))113

THEOREM 3 . There
that for

(8)
and
(9)

there exists a sequence

(10)

(11)
and
(12)

then (4) holds by Theorem 1 .

(13)
Let us put

(14)
and write A in the form
(15)

where A, consists of the integers a such that aEA and there exists an integer
u satisfying
(16)

	

(log x) 3 < u < y112nf-(X)

and u;a, while A2 consists of the integers a such that aEA and ufa for all
u satisfying (16) . We have to distinguish two cases .

x>X4

c s < t < c, log log x,

A satisfying

C8t _< fA(x) < C9 t 9

(x,-,1c,,,-,(x), x,,' I A = 0

D,(x) < c,fA(x) •
We prove this theorem in Section 4 .
Finally, in Section 5, we discuss some other related problems .

2. Proof of Theorem 2. If x is sufficiently large and we have

fA(x) > (log log x) 20

Thus we may assume that

fA (x) 75 (log log x) 2o

y = x11(fA(X»11a

A = Aj UA 2

while in Section 3, we deduce

not true if we replace the ex-
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Case 1 . Assume first that

(17)

	

fAJX) =
a~l _' 2 fA(X) •

For aEA I , write a in the form
a = u (a) b (a)

where u(a) denotes the least integer u such that u satisfies (16) and ula . Then
by (3), for aEA 1 we have b(a)5a-xjy and (log X)3 -.<d(a) so that

fAjX) _ Z 1 = Z
1

aEA I a

	

aEAI u(a)b(a)
_

	

1

	

1

	

1
~

b_xly b aEA u( a)

	

b Zsxly b aEAz

	

1
b(a)- b

	

b(a)b (log X)3

	1	1

	

1	 1	(

	

1

	

1(log x)3 b_xly b a=AI

	

(log x)3
max Z
bSxly aE A I

	

bs-x b
b(a)=b

	

b(a) = b

s	 II max
A
Z

. I
2 log x=	z max

	

1
b(a)=6

	

.
(log X)3 I bSxly a E A I

	

(log X) ~b=xlY aEA I`

	

`

	

b(a)=b

If x and c3 (in (2)) are sufficiently large in terms of 0 then (2), (17) and (18)
yield that

(log x) 2max

	

1

	

fA3 (X)b5xly aEAI

	

2
b(a)=b

0 2x)2
2 fA (X) (log X) 2 Q Z 1+ 1 QfA (x) + 1

nsx n

so that there exists an integer b o for which
(19)

	

1 : bo s x/y
and
(20)

	

~, 1 a QfA (x) + 1 .
aEA I

b(a)=bo
Put s=[QfA(x)] + 1. Then by (20), there exist integers a1 , a2i . . ., a S such that

aEA and ai can be written in the form
a i = bo u(a i) = bo ui

where (with respect to (16))
(21)

	

((log X)3 C)ui <
y112tzfA (x) .

Let
m = bo u l u 2 . . . U.,

Then by (2), (19) and (21), for sufficiently large c 3 we have

(22)

	

m = bpul u2 . . . us 5
x

(Y1i2afA(x))S

	

X
(yil2QfA(x))2nfA(x) = X,

Y

	

Y
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and, obviously, a i =bau ilm and a i =bo u iEA so that

(23)

	

dA (m) -- s = [QfA (x)]+1 - QfA (x) .

(22) and (23) yield (4) and this completes the proof of Theorem 2 in this case .

Case 2 . Assume now that

(24)

	

fAI(x) = a

	

a C 2.ÍA(x) •
I

Then (2), (15) and (24) yield that

(25) fA2 (x) _

	

1

	

1 -

	

1 > fA \x) -
1

fA lx) =
1

fA (x) > C
3

aEA 2 a

	

aEA a aEA I a

	

2

	

2

	

2

Let us write all aEA2 in the form

a = e(a)v(a) where e(a) : (log x)3 and p(v(a)) ? yli2"A (x) .

(Note that if x is sufficiently large in terms of 0 then by (13) we have
y112.QfA (x) = xll212(r(x))9/2 > (log x\3 )

Again, we have to distinguish two cases

	

l
.

Case 2.1 . Let

(26)

	

m
V :5 X

alt' a

	

(a)

	

2log f, (x) .
2 e

v(a) = v

Note that if v(a)=v for some aEA2 then by (3) we have

(27)

	

v = a -- x1y.

We are going to show that (26) implies

(28)

	

max Z 1 QfA (x).
VSXJy aEA2v(a)=v

In fact,

SOME ASYMPTOTIC FORMULAS

Z 1 t QfA (x)aEA2
v(a)=v

implies by (2) that if C3 is sufficiently large in terms of 0 then we have

z 1 .5

	

z

	

1

	

3 109 QfA(x) < 2log fA(x)2
aEA 2 e(a) 1se~l2jA(x) e

	

2
v(a)=v

By (26), this cannot hold for all v, which proves (28) .
But (28) yields that there exists an integer v o such that

Z 1 > QfA(x) •aEA 2v(a)=vv

471
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and

(33)

C
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This implies that writing s=[Qf,(x)]+1, there exist integers e1<e2< . . .<e, such
that voeiE_A 2 and
(29)

	

ei -- (log x) 3
for i=1, 2, . . ., s . Write

h = vo ele 2 . .,

	

e,.
Then by (13), (27) and (29),

(30)

	

h = vo e1 e 2 . . . e,

	

x
((log x) 3 )s

Y

f ( )~„ gyp exp (4Qf, (x) log log x) <
x1 (IoglOgx)2

exp ((log log x) 82) < x
x I( A

and v,ei/A and v oe i EA for i=1, 2, . . .,s so that

(31)

	

dA (h) -- s = [Of, (x)] + 1 > QfA (x) .

(30) and (31) yield (4) and this completes the proof of Theorem 2 in this case .

Case 2.2 . Let

(32)

	

z	 1 s 2log f; (x) for all v -- x/y.
aEA 2 e(a)
v(a) =v

Let us write A 2 in the form
A 2 = A,UA 4

where aEA 3 if and only if aEA 2 and

V+(a y1(2S2fA(x)) = v+(v(a), y'l"fA(x)) - 5 logfA(xW

A 1 - A 2-Á3 .
Then by (25) and (32) we have

fAa (x) = fA2 (x) -J'14(X)

~ 2fA (x) -

	

a ~2

	

a
V+(V(a),Y1)24fA(x))` llogfA(x)

2JA(X) -

	

v~Y

	

a g, U(a)e(a) _
P(v) _ Y 11252f,(x)

	

v(a)=v

V
, (,, Y11 2S2fA(x»_5 log fA(x)

1 {

	

1 ~ 1
- 2JA(x)-

	

- aEA
v_x/Y

	

v v(a)

	

e(a)
P(V)-Y11252 fA (x)

v (v,Y1(2 .Q fA(x))
2
5logf A (x)

2 .ÍA (x) - 2 logfA( .x)

	

G~

	

1V-x

	

v
P(V)>Y 1 1 2'f2 fA(x)

v , (v,y 1j 2S1fA(x» SIogfA(x)
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and with respect to (2), for sufficiently large c 3 we obtain that

2

	

1
vsx

	

v
P(V)-Y1/2Df,,(x)

y + (° .Y1/2S2 fA(x»,5 l og f,l (x)

L 5 log f A(x),

	

+~

	

1T~

a _
f=,

	

Y 1/2PfA (x) <Pi < . . .<Pi 5x a i =1

	

a i .=1 p .i 1 . . . p
ai
i I

~2 IogfA(x)]

	

2
5

	

logf,1(x)~5

	

J1 +

	

l
~~ rr

	

1

	

~r

	

1

	

1

	

log x

f=1

	

J 1' Yl/2~f `° ) < P=x Pa

~

	

~--

	

,~

	

l log
log y112nfA(x)

	

-

[2logf (x)]

	

L2logf (x)], -4

	

1
5= 1+

5
Z

	

ll (log 2Q(fA(x))4/3+c13)i < 1 +

	

z

	

1	 134
I ( 100 Iog.fA(x))~

logfA(x)

	

1

	

]

	

134
1ogfA(x )

[-
<

logf,(x)]
2
logf, (x)

(100
[5

	

!

134
e logfA (x)

15logf,,(x)]

	

14

	

5logf ,,(x)

100

	

1n e
`C14 iogfA(x)

1/2	2

	

< C14(1OgfA(x))1/2 2

[5 109fA(x)1

	

5

2

	

7

=C14(IOgfA(x))1/2(fA(x))5log
2-
e < C14(logfA (x)h/2lfi(x\i91/100 <(fÁ(x))

92/100

(34)

SOME ASYMPTOTIC FORMULAS

By using the Stirling-formula and the well-known formula

+~ 1
= 109 109 u+C12 +o(1)

psua=l P

473

By (2), (33) and (34) yield for sufficiently large c3 that

(35 ) fAa(x) > 2fA(x)- 2(lOgfA(x))(fA(x))92/100 > 2fA(x) - (fA (x)) 93/100

	

fA(x)

Let S denote the set of the integers n such that n-x and n can be written
in the form

(36)

	

n = a u where a E A 3 and w(u, y 1/2f?fA(x) ,y) _ 100 log fA (x) .

For fixed nES, let (p (n) denote the number of representations of n in the form (36) .

9
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Then we have
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(37)

.Z 9 (n)
oZ

	

a Z

	

1
aZ3 usx/a 1

	

usx/a

	

1

w(u,Yl/24fAtx),Y)> Ó99
OlogfA(x)

	

~(u'Y112 .QfA(x),Y)_Q99OlogfA (x) J •
In order to estimate the last sum, we need the following lemma :

LEMMA 1 . Let us write

(38)

	

Q (U) = u-(1 + u) log (1 + u) .

Then for 1 : t, 2t < z - v, 0 - a 1 we have

log z
log t

1 <c15 v exp Q(- 00 log
S

	

1/Pm(n,t,z)5(1-a)
t<p--z

nsv

This lemma is identical with Lemma 2 in [31 ; in fact, it is a consequence of
a result of K . K . NoRTON (see [61 ; see also HALÁsZ [41) .

By using Lemma 1 with yl/ 2S2fA(x) , y, xla and 1/200 in place of t, z, v and a,
respectively (note that 1--t and 2t-z :-5v hold by (2), (3), (13) and (14)), we
obtain for sufficiently large c 3 that

(39)

	

z
usx/a

w(a.Y1/2Pf.(x),Y)5199

	

E

	

1/P
200 Y1/2nfA(x)<P5Y

< c15
á
exp (-10-5 log 20f, (x))

< 4 a

Furthermore, by (2), and with respect to the well-known formula

(40)

	

1 = log log u+cls+o(1),
Psu P

for sufficiently large c 3 (depending on 52) we have

199

	

1

	

199

	

logy

	

-
200 Y112nfZ

)<P =̀Y
P > 200 log log y1/2 .QfA(x) -cl~ -

199	99
200 (log Mf, (x) - c l ,) > 00 logf, (x) .

(39) and (41) yield that

(42)

	

z

	

1,

	

Z

	

1 1 x
usx/a

	

asx/a

	

4 a
W(u,Y1/2 0fA(x),Y)5

99
log f (x)

	

w(u,Y1/2.QfA(x),Y)~
190

	

1/P
100 A

	

200y12"fA(x)~pgy
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logy

	

_1 < c15a exp ~Q - 200 log log y1/20fA(x)



(43)

We obtain from (35), (37) and (42) that

SOME ASYMPTOTIC FORMULAS

	

4 7 5

~+

	

l x _

	

x

	

l x

	

~+ 1 x 1 x _-

	

)nsz
w(n) > a 3 L5 xj

.
1 4 a

	

aEA 3 (l a

	

4 a > oE A 3 ( 2 a 4 a

- 4 XfA3(X) > 16 XfA(X) •

Now we are going to give an upper estimate for ZT(n) . Obviously, for n :x
ns_x

we have
(P (n) -- dA(n) -- DA (X)

hence
(44)

	

Z 9(n) _

	

(p (n)

	

DA (x) _ ISIDA (X) •
n=x

	

nES

	

nES

Thus in order to obtain an upper bound for Z (p(n), we have to estimate IS 1 .
nsx

If nES then by (36) and the definition of the set A, i we have

co(n,y1/2Qf,(x), x) _ ú)(a u,y 1/2f2 f,(x)
,X) _ co(a,y1/2S)f,(x),X)+0)(Uey1/2S)f,,(x), X)

y(a,y1/2Qf,(x), X)+0)(U,y l/2QfA (x),y) =
V+(a,y1/24f,(x))+ C0(U y1/2Qf,(x) ,y)

> 5 logf, (X) + 99 logf,(x) =
1139
00 logf,(X)100

hence
(45a

	

IS1

	

z

	

1 .
nsx

w(n' yl/2nf A(x)'x
)-

100 )09f A(x)

In order to estimate this sum, we need the following

LEMMA 2 . For 1 -- t, 2t<z--v, 0<a-- #< I we have

1/2

1 < C18(P)a- 'v

	

1 ~- exp (Q(a) log logzn

	

;
tsz p

	

log )tw(n,t,z)-(1+a) £ 1/p

	

-p
t-psz

(where Q(u) is defined by (37)) .

This lemma is identical with Lemma 3 in [3] ; in fact, it is a consequence of
a result of K . K . NoRToN (see [6] ; see also HAt,dsz [4]) .

By using Lemma 2 with y112DfA(x), x, x, 30 and 2 in place of t, z, v, a and P,

respectively (note that 1 = t and 2t<z v hold by (2), (13) and (14)), and with
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respect to (2), (14) and (40), we obtain for sufficiently large c 3 that

(46)

	

z

	

1-< c19 x exp 1 )logx
n x Q 30

	

g log Y112QfA (x)

(47)

(48)

c9(n,y 1/ 2 'QfA( x),x)~3

	

i

	

1/p
y4 / 2 r2fA(x) <p_

= cls x exp I Q( 30 ) log log xl
log

f
xA

(x))4 3 = c19 x exp l
Q( 30J log 20(fA (x))4 31

Furthermore, by (2), (14) and (40), we obtain that if c 3 is sufficiently large (in terms
of Q) then

hence

Y. ERDOS AND A . SÁRKÖZY

<c 1,xexp(-5 .10 -4 . 3109fA(1 <x(fA(x))-6
.10-4 .

31

	

1

	

31

	

logx
30 y1/2nf A <p -x p

	

30 (log log y

	

,,(x) + c20) _

_

	

g x

	

-I-30 log logxto(fA(x))4,3 X20)= 30 (1og 2Q (fA(x))°/3+czo)

We obtain from (45), (46) and (47) that

isi=

	

Z

	

1 =

	

Z

	

1
n-x

rU(n 'yl/2
QfA(x) x)

_ 139
10o tag .(A(x)

(43), (44) and (48) yield that

31
134 log j; (x) <

139
log.ÍA (x) .30 100

	

1C0

x(fA (x)) -
6 .10-4

6
xf, (x) < Z ~p (n)

--
I SIDA (x) < x(f,(x)-"" -'

DA (x)
nsx

DVI(A), * 10 -4

A(x)

	

16

	

fA(x) •

If c3 in (2) is sufficiently large in terms of Q then this implies (4) . Thus (4) holds
also in Case 2 .2 and this completes the proof of Theorem 2 .

3. Proof of Corollary 1 . By using Theorem 2 with
we obtain (5) (with v=x1}1/(fA(x))114 ) .

PROOF of Corollary 2 .
Put

(49)

	

cs = max (2c 3 , 3) .

Siudia Scientiarum Mathematicarum Hungarica 15 (1980)

n =x
w („ y1j2Df,(x) x)y 31

	

1

	

1/p
30 Y 1/2nfA (x) <psx

x1}1/(fA(x))"' in place of x,



Then by using Theorem 1 with A (1 [0, x'-'I(JAW)v3] and 20 in place of A and Q,
respectively, we obtain that for sufficiently large x (6) and (7) imply

fA(x1-11(JÁ(=))1 /3) 5 .fA(x)
2

Thus we have

(50)

	

Z

	

1 =fA (x) -fA(x1-11(JA(x))113) ~ fA (x)
x1-11(fA(x))1/3~asx a

	

2

On the other hand,

Let
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x1-11(J,t ( 1/3,a-x Q c XI- 11(f,(X»"3-.,X
x'-11(JA(xl)1i3 =

1

	

z

	

NA (x)
xl-1/(IA(x)) 1 3 x1-11(JA(xW13<atx

1

	

x1- 11(JA (x))1i"

With respect to (6) and (49), (50) and (51) yield that

N,(x)

	

fA(x) x1-11(JA (x) 113 )

	

x1-11U,,(x))v 3
2

which completes the proof of Corollary 2 .

4. Proof of Theorem 3. Assume that (8) and (9) hold, and define

y2 1 = x112

Le .,
(52)

	

y=xl12t+1 .

For j=1, 2, . . ., t, let A; denote the set consisting of the integers a such that

and
x/y2i < a x/y2f-1

P(a)?y".
t

A = U Aj *

1=i

c21 <

	

1
~- C22 .

v-n,vu n
p (n), u2

y by

We are going to show that this sequence A satisfies (10), (11) and (12) (provided
that cs , ca are sufficiently small and c7, c9, C10e ci,, X4 are sufficiently large) .

In order to estimate fA(x), we need the following

LEMMA 3 . There exist absolute constants CU, C22 such that if u~3, v--u 2 then
we have

Studia Scientiarum Mathematicarum Hungarica 15 (1980)
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U = y2i-1 , y = x1/2t+1
> x1/2c7 loe'o"+1

and

hence

(53)

(54)

where, by (53),

(55)
Y

U 2 =
U2
- v
v

P. ERDOS AND A. SÁRKÖZY

This lemma is a consequence of the estimate

C23	
x <

	

1 < C84
x

	

(where 3 --y <x 5/s)
logy

	

nsx

	

logy
P(n)-Y

which can be proved easily by using standard methods of the prime number theory
(see e .g . [7]) .

For 1 ~j ~ t, put v=xly2', u=y2j-1 . Then by (8), (9) and (52), for sufficiently
small c, and sufficiently large X4 we have

_

	

logx- exp ( 2 (lo x)
log - exp ((log x) 1/ 2)

	

3

y 21

	

y2.i+1

	

y 21+i

x/y2! V

	

x	 v =	x

thus Lemma 3 can be applied . We obtain that

C21 < fAj (x) =
a
Z; a

	

x/y2i<á x/Y2í_.1

a
< C22

P(a)>Y 2'
t

C21t -fÁ(X) _ ZfAj(x) < C22 t,i=1

Furthermore, by the construction of the sequence A we have

An (y,x
l
=O

x = x1-1/2t+1 < x1_1/2C211Iq(x)tl < x1_1/ctg(x) .

(54) and (55) yield (11) .
Finally, by the construction of the sequences Aj , if n--x, aEA, and á EA;

then aln, á /n cannot hold simultaneously so that

d,, (n) -- 1 for all 1 j t and n --x,

hence with respect to (53),

d, (n) _

	

dAj(n)

	

1 < t < 1 fA (x) for all n x
j=1

	

J=1

	

C21

which proves (12) and this completes the proof of Theorem 3 .
5. Theorem 2 shows that for relatively small y, DA(y)l fA(x) - + -, while for

y=exp ((log x)2), the proof of Theorem 2 in [2] yields a good (near best possible)
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lower bound for DA(y) (in terms of f,(x)) . One might like to seek for results "mid-
way" these theorems, i .e ., one might like to estimate DA(y) (in terms of fA(x))
e.g. for y= x2 . In fact, the following problems of this type can be raised :

PROBLEM 1 . Find a possibly small function (p(x) such that for all Q2 -O,
x>X5(Q) and

fA (x) (P (x)
imply that

(56)

	

DA(X2) > (log x).Q .

In fact, we can show that (56) follows from fA(x) >(log x)`, x>XJ6, Q) where
s is arbitrary small but fixed positive number (independent of 0) . However, perhaps,
it is sufficient to assume that

fA (x) > exp (c24 ffl) (log log x)112).

Our results in Part II suggest that our assumption for f4 (x) if true cannot be im-
proved very much .

PROBLEM 2. Is it true that for all Q :-0, there exist constants CS8-C 25(Q) and
X7 =X7(Q) such that x ::-X7 and

MX) C25
imply that

DA(X2) > (fA\x))~~
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