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SOME ASYMPTOTIC FORMULAS ON GENERALIZED
DIVISOR FUNCTIONS, 1V

by
P. ERDOS and A.SARKOZY

1. Throughout this paper, we use the following notation: ¢, cs, ..., Xy, X1, ...
denote positive absolute constants. We denote the number of elements of the finite
set § by |S|. We write e*=exp (x). We denote the least prime factor of n by
p(n). We write p*|ln if p*n but p**fn. v(n) denotes the number of the distinct
prime factors of #, while the number of all the prime factors of n is denoted by
w(n) so that

v(n) = ;’1 and o) = 2 w«
pin P=lin
We write

v(n, x,y) = g 1, onx,y= 2 o

p=in

x<p=y x=psy

vi(n, x) = %’1 and ot(n,x)= Ja
P paiin
p=x pP=x

(so that v*(n, 1)=v(n, 1, n)=v(n), ot(n, )=w(n, 1, N)=w(n), v(n, x, y)=v*(n, x)—
—v*(n,y) and w(n, x, y)=w*(n, x)—w*(n, y)). The divisor function is denoted

by d(n):
din)= > 1.
(n) %’
Let 4 be a finite or infinite sequence of positive integers a,<a,=.... Then
we write
N(x)= 21,
ac A

1
‘j:l{xo = nég;';;’

a=x

d,(n) = EZ; 1

aln

1980 Mathematics Subject Classifieation. Primary 10H25.
Key words and phrases. Sets of integers, divisor functions.

Studia Sclentiarum Mathematicarum Hungarica 15 (1950)



468 P. ERDOS AND A. SARKOZY

(in other words, d,(n) denotes the number of divisors amongst the a;’s) and

D,(x) = max d,(x).
The aim of this series is to investigate the function D ,(x). (See [1], [2] and [3];

see also HALL [5].) Clearly,
2 du(n) = xf4(x)+0(x)

l=n=x

so that we have D, (x)/fi(x)=1.
In Part I of this paper we proved that for an infinite sequence 4, we have

im_ sup Dy (x)/fi () =+

and we proved some other related results.
In Part 11, we sharpened this theorem. In fact, we proved that

x!jfflw Jalx) = +o
implies that
(1 Jim_sup D, (x)/exp (¢, (log £, (x))*) = + ==
The proof was based on the fact that
fa(x) = exp ((log log x)¥/2)
implies that writing y=exp ((log x)?), we have
D,(y) = exp (Cz (log £, (x))?).
In Part ITI, we estimated D,(y) in terms of f,(x) for y=x; in fact, we proved
THEOREM 1. For all Q=0 and for x=Xy(Q),

J4(x) > (loglog x)*

D (x) = Qf 4 (x).

(In both Parts II and III, we proved also some other related results.)
In this paper, our aim is to seek for a possibly small function y=y(x) such that
JSa(x)>+o= implies that D ,(y(x))[f4(x)~+ <. In fact, we prove

implies that

THEOREM 2. For all Q=1, there exist constants cy=cy(Q), X1=X(Q) such
that x=X,,

2 Jfa(x)=cy

and

(3) [x' U AENY2 X]1NA =0
imply that

C)) D, (x) = Qf4(x).

COROLLARY 1. For all Q=0, there exist constants c;=c,(Q), Xo=Xy(Q)
such that x=X, and
Ja(x) =¢y
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SOME ASYMPTOTIC FORMULAS 469

imply that writing y=x"*Ya0M e have

©) D4(y) = Qf4(x).

COROLLARY 2. For all Q=1, there exist constants c;=c5(Q), X3=X3(Q) such
that x=X,,

©) Ja(x) = ¢5
and

M Dy(x) = Qf4(x)
imply

N, (x) = x1=U(f 03,
Section 2 is devoted to the proof of Theorem 2, while in Section 3, we deduce
Corollaries 1 and 2 from Theorem 2.
On the other hand, we show that Theorem 2 is not true if we replace the ex-
ponent 1 —1/(f4(x))"”® on the left-hand side of (3) by 1—1/c§ 4™

THEOREM 3. There exist absolute constants cg, €7, Cgy Cgs Cro» €11 Gnd Xy such
that for

(8) x =X,

and

) ¢ =t = c;loglog x,
there exists a sequence A satisfying

(10) cgl = f1(x) < cq,
(11) [x1~1,rc{ﬂ.|(x), x]ﬂA =0
and

(12) D 4(x) < en f4(x).

We prove this theorem in Section 4.
Finally, in Section 5, we discuss some other related problems.

2. Proof of Theorem 2. If x is sufficiently large and we have

fa(x) > (loglog x)*
then (4) holds by Theorem 1. Thus we may assume that

(13) fa(x) = (log log x)™.
Let us put

(14) y = xlf(f_‘(x]}t!s

and write A in the form

(15) A=A,UA,

where A, consists of the integers a such that a€A4 and there exists an integer
u satisfying

(16) (log x)? < u < yH2 =

and wu|a, while A, consists of the integers @ such that a€4 and ufa for all
u satisfying (16). We have to distinguish two cases.
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470 P. ERDOS AND A. SARKOZY

Case 1. Assume first that
1
17) Sa(x) = =
agd, a
For acA,, write @ in the form
a = u(a)b(a)
where u(a) denotes the least integer u such that u satisfies (16) and u|a. Then
by (3), for ac 4, we have b(@)=a=x|y and (log x)*<d(a) so that

1 1
fax)= 2 —= ZA'W=

at A, a aEA,

Nil-n

Jax).

1 1 1
- bﬁzx;r b atZA' ”(a) i"'f-z'b'-_w nEZA' “—-1"'“ =
(18) ba)=" - bay=p (log x)?
1 1 1 1
= (logx)p? nﬁzx;y b :(% btk (logx)“[ﬂ% b.;% 1] ,E_FZ;T{ =

1 2
= ﬁog x)® [J‘;i,’,‘, aez,; 1] Alogs = (logx)zv [bn;% BEZA: l]°
b(a)=b b(a)=
If x and ¢ (in (2)) are sufficiently large in terms of Q then (2), (17) and (18)
yield that

max > 1> (logx)gfm( ) =

b=xly ofA

b(a)=h
= (8 i) = (og = 0 3 2+ 1= Q) +1

so that there exists an integer b, for which

(19) 1=by=xly

and

(20) 2 1> Qf,(x)+1.
ba)= é

Put s=[Qf,(x)]+1. Then by (20), there exist integers a,, a;, ..., a, such that
a€A and a; can be written in the form
a; = bou(a;) = boy
where (with respect to (16))
(21) ((log x)® <)u; < y"* 4™,
Let
m= bguluz...us
Then by (2), (19) and (21), for sufficiently large ¢, we have

(22) m = bouyu, ... u; = %(y”mf.a{")-‘ < %(ylfmf,a(-“))m&("’ = X,
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SOME ASYMPTOTIC FORMULAS 471

and, obviously, a;=byu;/m and a;=byu;€ A so that
(23) dy(m)=s=[Qf,(0)]+1 = Q2f,(x).
(22) and (23) yield (4) and this completes the proof of Theorem 2 in this case.

Case 2. Assume now that

(9 fu = 3 =<7 £

at A,
Then (2), (15) and (24) yield that

) fu® = == 1= 3~ fi() = ful) = 2ﬁ(x)[ ]
acd d g4, a

afA,
Let us write all a€ 4, in the form
a = e(ayp(a) where e(a) = (logx)* and p(v(a)) = y/** 4™,
(Note that if x is sufficiently large in terms of @ then by (13) we have
YURRS (&) = 122D > (log x)3.)

Again, we have to distinguish two cases.

Case 2.1. Let
1
(26) e “ZA! 7o = 2log f,(x).
vla)y=v

Note that if »(a)=v for some acA, then by (3) we have

(27) v=a = x|y
We are going to show that (26) implies
(28) max 2> 1=>Qf,(x).
v=x|y a(A
via)= %

In fact,

2 1=Qf,(x)

l}a(::-}i’u

implies by (2) that if ¢ is sufficiently large in terms of Q then we have

1 3
ac A, E{G) = 1535‘92_:' (:)? = E !og Qf/l(x) = 210gfd(x)

By (26), this cannot hold for all », which proves (28).
But (28) yields that there exists an integer w», such that

Z 1= Qf().

l-'{a)“ vy
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This implies that writing s=[Q/f,(x)]+1, there exist integers e,<e,<...<e, such
that ve;€ 4, and
(29) e; = (log x)?
for i=1,2,...,s5. Write
h =uv,e.e,...e.
Then by (13), (27) and (29),

(30) h=vge.e,...e; = = ((logx)*f =

‘-«:lk

x x 2
= e €XP (4Qf4(x) loglog x) <= ~iTtiseiog s €XP ((loglog x)*) = x

and wvye/4 and vecd for i=1,2,...,5 so that
(31 dyh) =5 =[Qf(x)]+1 = Qf(x).
(30) and (31) yield (4) and this completes the proof of Theorem 2 in this case.

Case 2.2. Let

1 , i
(32) 1(:2;2 @ = 2log f,(x) for all v = x/y.
via)=wv

Let us write A4, in the form

Ag = A3U A-I
where ac 4, if and only if ac4, and
v+ (a, YOI = v (o(a), RSA0) = 2 logf ()

and
Ay = Ay—A,.
Then by (25) and (32) we have

Say (%) = L () —Fu (%) =

I . 1
> = fa(x)— A i
2 ac A3 a
S 2
r+(u(a)_y1."29f4(x‘)f_-’-glong(x)
1. 1
= = f,(x)— —
2];1 v=X[y ac Ay v(a)e{a}
poy=y1/22S (x) v(a)=u
(33) IJ+(V,y”mf,q(‘J)é—:long(x)
L i & 4
= 5 fa(x)— — afA =
ZJA( v=xly v U‘Eu)=2p e(a)
p(r)=yl/220 4 (x)
v"(v,y]”ﬂfaf‘”}-'_i—ilog NED ]
1 |
= E‘fa(x)—z log f,4(x) Z =

v=x
p)=y /22 40
vt (v,ylfzﬂfn(x])é-élagf_,(r)
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SOME ASYMPTOTIC FORMULAS 473

By using the Stirling-formula and the well-known formula

=1
Z 2 o = loglogu+¢;p+o0(1)

and with respect to (2), for sufficiently large ¢, we obtain that

2’ i =
G4 = v

P(o)=yl/2RS 4(%)
M ,.(x))-_s.; logf 4(x)
[%Iogfd(x)] Ji5 e l
=1+ 2 > 2 ==
Fase’ YIRS 4(x) g <o<piExG =1 =1 p:‘l pc;j;

2 2

[;long{x)] 1 . [—glog!Ali
_ 1y _ 1 log x .
=14 > F[ = —-;] =1+ =z —[l anfAU‘?] ==

j=1 yl-llmfd(:)_:péx P Jj=1 J!
[Froes.0] [Feera®] | (134 /
=kt é_; j—!(log 20(f40) 3 +eyg)f < 1+ éll 1 U100 log f4 (x)]
1 134 Zlogf ,(x)
< log £33 —5———— ({55 loefu¥ )][5 ]
2 . . (100
[‘5— logf,l(x)] :
134 Ziog s (0 14 Ziogf 40
To5 ¢ loe /i) [sroe7.9] T
‘1"-"14([08f4 (x))”z = CM(IngA(x))” T =
[g log (x)] 5

01,,,

—"-'1.1(109fA (x))”‘*(f,,(x}) = "-':4(]09f.4 (x))m(f (x))mnun f (x))ﬂq“m
By (2), (33) and (34) yield for sufficiently large ¢; that

(39) 1209 = /a0~ 2108 [u (N SuCO)™9 > ()~ (£ ()% > - £, x)

Let § denote the set of the integers n such that n=x and n can be written
in the form

(36) n = au where a€A, and o(u, y"*7 a5 y) =~ %long (x).

For fixed n€S, let ¢(n) denote the number of representations of » in the form (36).
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474 P. ERDOS AND A. SARKOZY

Then we have

(37

2 e = 2 2 1= 2( 21— 2 L)

ns=x HEA‘, au=x i ac As u=xla u=xla i
w(u,ylfzn-r«l"").)’) >‘i'ﬁ]°sf4(x} w(u,y1’29f4{-“),y)émlogfd(x)

In order to estimate the last sum, we need the following lemma:
LeMMA 1. Let us write
(38) O(u) = u—(1+u)log (1+u).

Then for 1=t, 2t<z=v,0=a=1 we have

log z
,é:r l<cy5vexp [Q(-—cz) log loi : ] .
omr)=(1-a) I 1/p
t=p=:z

This lemma is identical with Lemma 2 in [3]; in fact, it is a consequence of
a result of K. K. NorTtoN (see [6]; see also HALAsZ [4]).

By using Lemma 1 with p"2*/ 4™y x/a and 1/200 in place of ¢, z,v and o,
respectively (note that 1=t and 2r<z=w» hold by (2), (3), (13) and (14)), we
obtain for sufficiently large ¢; that

= 1 log y
= _ 199 199 3
o(uyl/2 ), )= 200 y1/20r (x)<p= =l'”p
X exp(—10-3 <
= Cy5 a Cxp( 10 IOg ZQfA(x}) “4a

Furthermore, by (2), and with respect to the well-known formula

(40) Z — = loglog u+¢5+0(1),

p=u P

for sufficiently large ¢; (depending on Q) we have

199 1199 [ log y _ ]__

an 200 pefSo_,=, P 200 log y' 2 45 17
199 99

= a5 (108 2204 (¥) —¢17) = {55 log £a(¥)-

(39) and (41) yield that
42) > 1= > {c1Z

u=xfa = xlra 4 d

1201 4(%), )= 22 1120 4(x) y) =19 ;
@(uy 4, )= ggtos () oluyll )= auu ir‘mutli{psyup
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SOME ASYMPTOTIC FORMULAS 475

We obtain from (35), (37) and (42) that

Zow -2 (2 -79- 2 ([E-39- 2 EE-33)-

(43
= LX) = 1 ).

Now we are going to give an upper estimate for > ¢(n). Obviously, for n=x

we have =
p(n) =du(n) =D,(x)
hence
(44) Z o(n) = Z pn) = ZDA(X) [S1D 4(x).

Thus in order to obtain an upper bound for > ¢(n), we have to estimate |S|.

n=x

If neS then by (36) and the definition of the set 4;, we have
w(n‘ylizﬂf_d.{.v)‘ _\.) = w(au'ylﬂﬂfd(xj, X) sy m(a’ylfmfA(x}, x)-+—a)(u,y”mf.4m, x) =
= v(a ylf«ﬂf (x) , X)+o(u, ylbnf,,(x] J—’) = v*‘(a yifzﬂfA(x))+m(u ylgzan(x) }’)

2 99 139
= -5-10ng (x)+ mlogf‘,(x) = mlogfd(x)

hence
(45) S|

16}

1.

n=x

m(n‘ylfznfd{x)lx)>;%:-]og J 4(x)

In order to estimate this sum, we need the following

LEMMA 2. For 1=t 2t=z=v, O<a=f<1 we have

“% 1 < C]g(ﬁ)a-—lt’[ > _;']—112 - [Q(a) log!i{:)i;]

w(ntz)=(1 +_aJ I 1/p f<p=2
1<=p=:z

(where Q(u) is defined by (37)).

This lemma is identical with Lemma 3 in [3]; in fact, it is a consequence of
a result of K. K. NORTON (see [6]; see also HALAszZ [4]).

By using Lemma 2 with p'/*/.(®) x x| % and % in place of ¢, z, v, a and §,

respectively (note that 1=¢ and 2t<z=wv hold by (2), (13) and (14)), and with
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respect to (2), (14) and (40), we obtain for sufficiently large ¢, that

o 1 log x
“6) - TR [Q () EW] =

m(n_yllr“ﬂfA(x) x)= =‘- X 1/p

30 17900 (2 pen

1 log x 1
= g X €XP [Q[ﬁ] log Tog xum%h{xa);fs ] = Cj9 X €Xp [Q[E] log 2Q( 14 (-Y))m] =

cc‘lgxexp(—S- 10'4-—:—10ng()€)] < %(f ).

Furthermore, by (2), (14) and (40), we obtain that if ¢, is sufficiently large (in terms
of Q) then

3_1 i - ﬂ 10 .__.—.logx +C =
30 yiper®op=x P 30 [ & Tog y L m] a
31 log x 31 i
47 =35 [logm+cmjz 30 [log 20(f 4(x))3+ czo] =
31 134 139
30 100 ogf4 (x) = 1c0 ———log {4 (x).
We obtain from (45), (46) and (47) that
|S]|= Z 1= ;’r 1<
m{ﬂ,}'l'fzgf.-l(x),x]>%losf_4(x} <ri(n.,v”2g‘}f.4(x].x)'-_=%J.u'enj"{“:—r}‘;pﬁxup

(48)
S

(43), (44) and (48) yield that

TS = Z o) = [SIDL() = K@) DA

n=

hence

(falx }}“ il

D,(x) = Ja(x).

If ¢y in (2) is sufficiently large in terms of @ then this implies (4). Thus (4) holds
also in Case 2.2 and this completes the proof of Theorem 2.

3. Proof of Corollary 1. By using Theorem 2 with x'+Y(/.)Y jn place of x,
we obtain (5) (with y=xt+V( 40

Proor of Corollary 2.
Put
(49) ¢g = max (2¢,, 3).
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Then by using Theorem 1 with A N[0, x}-Y( 4&)"*] and 2Q in place of 4 and Q,
respectively, we obtain that for sufficiently large x (6) and (7) imply

1/3 X
St = HT AN / )= f_,i_g__}_ )

Thus we have
! E sy = fu(X)
(50) 7 SR8 Ny =l

S S e <asx 4

On the other hand,
1

LT 78—

1
% — =
g ;YL GNE_g=y 4 % B V0 €3) L
(51)
1 1= N®
- = = - ;
K- (ephes xl—l,f(fAfo))“"qu x! 1!(}’4{;})1‘&

With respect to (6) and (49), (50) and (51) yield that

N, (x) = f__,.éx). =AM o A1/ (e

which completes the proof of Corollary 2.

4. Proof of Theorem 3. Assume that (8) and (9) hold, and define y by
y2 = X2,
Le.,

(52) y=liE,

For j=1,2,...,t, let 4; denote the set consisting of the integers a such that

x/y¥ =a = x/y¥?
and
p(a) > y¥.
Let
4
A= A;.
jL=J1 4

We are going to show that this sequence A satisfies (10), (11) and (12) (provided
that ¢4, ¢ are sufficiently small and ¢;, ¢y, ¢19, €11, Xy are sufficiently large).
In order to estimate f,(x), we need the following

LEMMA 3. There exist absolute constants cu,, ¢y, Such that if u=3, v=u* then
we have

1
< 2 — <Cp.
Vn=vu
p(m)=u2
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This lemma is a consequence of the estimate

Cag

- i =y /6
e 'é; 1 <cg“logy (where 3= y<x5)
p(n)=y
which can be proved easily by using standard methods of the prime number theory
(see e.g. [7]).
For 1=j=1t, put »=x/y¥, u=y*"". Then by (8), (9) and (52), for sufficiently
small ¢; and sufficiently large X, we have

" - e _loglog =+ log x
= y2:—1 = g XU o 12 ploglogx+l exp [m;gc—)“m] = exp ((log x)lfz) =3
and ol
S 24+ 2t +1
ﬂgzu—gﬂz y2 v = Y D= Y VL=
v x/y¥ x x i

thus Lemma 3 can be applied. We obtain that

1 1
c %)= — = — <
21 {fAJ( ) HEZALG x!yw-qéx!yy_l 4 = Cogg
" p(@)=y*
ence
T

(53) el < fu(x) = _Zl'f:!;(x) = Caal.

Jj=

Furthermore, by the construction of the sequence 4 we have

(54) AN [% ,x] =9
where, by (53),
(55) X gr-tenr a0 x’-'””{a“m.

(54) and (55) yield (11).
Finally, by the construction of the sequences A4;, if n=x, ac4; and a'c4;
then afn, a’/n cannot hold simultaneously so that

dgym=1 forall 1=j=1¢ and n=x,

hence with respect to (53),
t t
A= Sd, ()= Sl<t=lfi) forall n=x
j=1 i=1 Ca1

which proves (12) and this completes the proof of Theorem 3.

5. Theorem 2 shows that for relatively small p, D,(»)/fi(x)—~ + =, while for
y=exp ((log x)*), the proof of Theorem 2 in [2] yields a good (near best possible)

Siudia Scientiarum Mathematicarum Hungarica 15 (1980)



SOME ASYMPTOTIC FORMULAS 479

lower bound for D ,(y) (in terms of f,(x)). One might like to seek for results “mid-
way” these theorems, i.e., one might like to estimate D (y) (in terms of f,(x))
e.g. for y=x2 In fact, the following problems of this type can be raised:

ProBLEM 1. Find a possibly small function ¢(x) such that for all Q=0,
x=X;(Q) and
, Sa(x) = ¢(x)
imply that
(56) D ,(x*) > (log x)°.

In fact, we can show that (56) follows from f,(x)=(log x)*, x=X,(e, 2) where
¢ is arbitrary small but fixed positive number (independent of Q). However, perhaps,
it is sufficient to assume that

Sa(x) =exp (C 24(Q) (log log x)m)-

Our results in Part II suggest that our assumption for f,(x) if true cannot be im-
proved very much.

ProBLEM 2. Is it true that for all Q=0, there exist constants c,;=c,;(2) and
X;=X,(Q) such that x=X, and

Ja(x) = cs5
D,4(x*) = (f4(x))??

imply that
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