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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS
IN SHORT INTERVALS AND ON SOME RELATED
QUESTIONS

By

P. ERD(S, member of the Academy and I. KATAI (Budapest), corresponding member of the
Academy

1. Let (a, b) and [a, b] be the greatest common divisor and the least common
multiple of @ and b, respectively. p, denotes the »n’th prime; p, q, ¢,, ¢s, ... are prime
numbers. A sum > and a product [ denote a summation and a multiplication,

P P
respectively, over primes indicated. The symbol 4+ {...} denotes the number of
elements indicated in the bracket { }. P, is the product of the first u primes.
The aim of this paper is to continue our investigation on the distribution of
the maximal value of additive functions in small intervals.
In the sequel let g(n) be a non-negative strongly additive function,

(1.1) Ju(m)= max g(n+j).
Let
(12) ok, ) = sgg} 4 [n = xlfu(n) > (1 +0)/ O)},
(1.3) 5(ky, &) = sg% s {n = x|3k, k = ko, fu(n) = (1 +6)/ O)},

0k, &) = limjup% 4 {n = x| f,(n) = f,(0)(1 +2)}.
It is obvious that

(1.4) 0(k, ¢) = o(k, #),

and that

(1.5) 0(ky, &) = sup o(k, ).
k=k,

In [1] we tried to determine those additive g(n) for which the relation
(1.6) (kg &) =0 (kg —>e), VYe=0
holds. There we noticed that (1.6) implies

but we could not decide if the condition

a9 24
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258 P. ERDOS AND I. KATAI

were necessary. Now we shall prove this. More exactly, we shall prove the follow-
ing assertion.

THEOREM 1. If

(1.9) 0(k,e) -0 (k —<)
Jor all £=0, then
(1.10) & _

rp P

Jor every r=1.
Let F(x) be the limit distribution function of g(n), the existence of which is
guaranteed by (1.7).

THEOREM 1", Assume that
(1.11) k(1—F(f,(0)(1+¢))) -~ 0
holds for every €=0. Then (1.10) holds for every r=1.

Theorem 1 is an immediate consequence of Theorem 1°. Indeed, (1.11) implies
that the density of integers n, satisfying g(n)=(1+z¢)f,(0) is o(1/k), consequently
(1.9) holds.

Perhaps (1.11) implies that

evalp) _ |
(1.12) P e
P p

for every u=0. We could not give a counter example.

THEOREM 2. If for some constant A=0
(1.13) k(1=F(fi(0)+4)) ~0 (k +<),
thne (1.12) holds for every u=0.

On the other hand, we shall prove that (1.6) does not imply g(p)=0O(1).
This will follow easily from the following

THEOREM 3. Let L(k) be a function on [1, =) tending to infinity arbitrary slowly.
Then there exists a strongly additive non-negative g(n) with im g(p)=<, so that

1

(1.14) sup; # {n = x|3k = ky, fy(n) = LK)} =0 (kg —==2).

x=1

We are interested in the conditions that imply
1
(1.15) sup — 3 {n = x|3k > ko, fu(n) > fu(Q)+ 4} >0 (ko ~<9),
x=1

with some suitable constant 4.

THEOREM 4. If g(p)::;—-, then

(1.16) sup l # {n = x|3k = ko, fy(n) = f[r(0)+ 4} = 0 (ko =),

x=1 X

where J,=3[(log log k).
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 259
THEOREM 5. If g(p)=1/p°, 0<d<1, ¢=0 being an arbitrary constant, then
1
(1.17) lim lm:l — 4 {n = x{fy(n) = £ (0)+(log k)t —?—¢} = 1.

koo x=0co

By somewhat more trouble we could prove that

1
(1.18) sup — 3 {n = x|3k > ko, fi(n) < fi(0) +(log k)!=?-¢} 0,
x=1

as ku—*om
Let F;(x), F,(x) denote the l_imit distribution functions corresponding to
g(p)=1/p’, g(p)=(ogp)~7, respectively; Gs(x)=1—F;(x), G,(x)=1—F,(x).

We shall consider G(x) for large x(=0).

THEOREM 6. We have for d=1:

2

1 T—a -T
(1.19) Iog]oga-(—rj =e¢ ctie ",

where a=y— Z’ Z’ k, y being Euler's constant, ¢ denotes a suitable constant.
k=2 p
Furthermore, if 0-:541,

(1.20) log G:(r} = (rlog )= (1+0(og)™) (r=1),
and
(1.21) log —G—l-(—;)— = t(log )" "' — ¢y 1(log 7)7,

¥

¢, being a positive constant depending on j.

REMARK. It is easy to see that the previous inequalities are quite sharp. Indeed,
if g is monotonically decreasing on the set of primes p, then for P,=k<P,,, we
have

|

|- F(g(B)) = 5= .

Hence, after some simple computation, we have the following inequalities for 7=>1:

= e ?+0(e?), B being an arbitrary but fixed number;

1
i) loglo
(i) log gGM(T)

(i) log G ](T) = (tlog V/=9(1+0((log7)™), if 0<d=<1;
]

(iii) log-G—l(T) = 7(log 7)" 1 (1+0((log 1) ™).
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260 P. ERDOS AND 1. KATAl

Let now
g __. g _
12 FEP = 2R
_ v 8.
(1.23) Ax—gx o
(1.24) () = ;§ g(p),
(1.25) Fi(n) = max {g(n+j)—4,:;}-

THEOREM 7. Let 0=<t(x) monotonically tend to zero in [1, =), let g(n) be strongly
additive defined for primes p by g(p)=t(p). If (1.22) holds, then for every fixed k,
P, =k<P, ,, we have

(]'26) Fk(n) = !!I(Plu)-}'Alogk_sk

for every but O(8,x) of n=x; -0, 6,—~0 as k—eo.
Suppose, in addition, that
(1.27) lim ﬂ)ﬂ— =
Feepi(et”)
for every 6=0, and that
t*(p)
(1.28) 2 o 1*(y) (loglog y)” (y »<=)

p=y

Jor a suitable y=0. Then

\

(1.29) lim sup A 4 {n = x|3k = ky,

ky—=oo x=1

41—;}‘(%_11 =£}=0,

for every &=0.

2. Asymptotic of distribution functions for large values. Let g(m)=0 be
strongly additive. Then for every u=0

e (P ]
2.1 Z_'e“g("’éx ]][l-l-T].
As it is well known - =

1 o w e“a(p) _ |
(2.2) —Ze*”—*K(H)»—H[l-I—“-p—],

X n=x P

if the infinite product on the right hand side converges. Let F(t) be the distribution
function of g(n). Then

(2.3) I—F(t)=Kwe™™ (0 <=u=<eoo).

By choosing u appropriately, we shall use (2.3) to give an upper estimate for G(1)=
=1—F(r) for some special additive functions.
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 261

Let #(x), x€[l, =), tend to zero monotonically, g(p)=t(p) for primes p,
Y(y)= 2 t(p). Suppose that t(x) is differentiable.

p=y
Let the values 1y, f; be defined by the relations

(2.4) ut(ty) = logto+ H; ut(ty) =logt;—H,
where H=1. Let
K(u) = KJ.(“)Kz(u)Ka(“)-

where in K;(1) (i=1, 2, 3) the product is extended over the primes in the intervals
(1, Itl}]v (ty, Ir1]: (tn o), respectively.
For pe(l, t,) we use the inequality

eta(p) 1 e19(p)
log(l - ] <log > +e~u®) p = yg(p)—logp+e 1,
and deduce
2.5) log K (u) < uj(to)— > log p+ > pe~"®.
=ty =t,
Since ’ .
g(p)

+_el;-_1 gl_l+eﬂ'{ eH-l-l
, P P
in p€(ty, t;], therefore
(2.6) log K, (u) < (H+1)(n(t,) —n(ty)).

Furthermore
P A A |
(2.7) log Ky(u) < ¥ S
=1

We shall give an upper estimate for the right hand side of the last inequality when
1(x)=x7? (0<6=1); t(x)=(log x)~?. For this we use the prime number theorem
in the form

n(x) =lix+R(x), |R(x)| = c;x(logx)C,

where c; is a large constant. Let

t(x) __
2.8) fag=1
Then
eﬂy(p}_[ B f(x) B o
27~ hth b= [igete b= [f@aRE,

For the estimation of I, we integrate by parts:

(2.9) I, = R(x)f(x)
Suppose that

— f R(x)f"(x) dx.

h K

e (ut’ (x)x—1)+1
x2

fi(x) =
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262 P. ERDOS AND I. KATAI

changes its sign in [#;, =) at most once, for example at z,. Then, by integrating
by parts, we have

oo SR el
f w}' (Jc)is‘i'x‘—i—c2 f ﬁz)-gx—)‘;f (x)dx| <

1)
=S Gog e (log: ¥ f Tog

So, observing that

[ IR@IIS ) dx = ¢,

—-H
e " h— "
fy=—2}—=e",

we get

(2.10) I, <e "

To estimate I;, we write

6,4 .
(logt) " (log st !

e | =ut T ()
2.11 L= —dl= D — di = #(g; logty).

logt, * logry

For the integral
J(y, b= [ Ae*di
we have 7
J(y,h) = y"e?+hJ(y, h—1).
Let now t(p)=p~% (0<é=1). Then
e t(ei)k B il e—-jat - e—tilclm;r1
di T—di= . 5 daL—J(éklogrl,—l)ﬁm,

logt, logty

and so
1 ca (ut ﬂ)k
[p"’ logtl] = Z k!'kdélogt, *
Since ut;°=log t,— H, we have

H
2.12) deh

h = Sog )y
if H-c:%log %,

Let now t¢(p)=(logp)~?, (y=0). Then, from (2.11),
#((logp)~7; logty) = 2 = f Ak=1g) =

logty
(u(log #,)~7)* (logt,—H)* _ 4e "y

= & K G+D & RtD = ylogy

. 1
if H{ilog 1.
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 263

So for t(p)=p~? (0<6=1)
t

= -g___"1
(2.13) log K3(u) = Be (log 1,2’
while for t(p)=(logp)~7 (y=0)
= Be-u_N
log K;(u) = Be T

B being a constant.

For the sake of brevity we shall write u,=log u, u,=logu,, uy=log u,.

Let us first consider the case #(p)=p~'. By choosing H=1, and collecting
our inequalities we have

log K(4) < u 2i~r|,+o( fo ]

P=ty lﬁg tu
where
s u e u
® T logty+1’ ' logfy—1°

Since, from the prime number theorem

b > log log ty+a+0(ur?),
P=ty
where

1
a=7y— _—
¥ k=2 %i kP*
(y being Euler’s constant), and observing that
U, i u =
loglogt, = uz—u—+0(u2u1 ), lp= —tI—-+O(uur3m1 ),
1 1

we get
u,+1

uy

log K(u) <u [uz +a— ] +O(uuzui®).

So, from (2.3),

Uy +1

log(1—F(x)) = u [ua-i-a—t— ]+0(uu§u;2).

1

Let u be chosen according to the equation
T = uy+a—uur’.
Then, by an easy calculation, we get

log (1— F(1)) = —-3~+0(uu§u1"2),
1
P 1oy log—— = 4, — 4+ O
g g I—F(T) - 41 u2 uaul *
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264 P. ERDOS AND I. KATAl

Since

—ay U2 u3
=€ 4= =¢"" H— 24+0|2|| = e+ u,+0 —],
I'.!l I25% u 1751

we have P =e"—ct?e” ", that is (1.19) holds.
Now we consider the case t(p)=p~9% 0<d&<1. By choosing H=1, we have

5 u u

I == ] 5’
" = Togty+1  Togt,—1 i

and so t/ty=¢%. Consequently, by (2.3)

log s JIF() = tu—uy (ty) +1,+0(t,/(log t,)).

V)= 3 1/p*=—’—'*—"’—[1+0[;]],

ot (1—90) logt, log t,

and u=tg(log t,+1), we have

Since

O A |
and so !
e __m—ir+o(r,r(1ogr)).
1 —F(7) ] =5 o ¢

By choosing ¢, to satisfy
%

T =d)logt,’

= b ]_ 1/(1—8) [ 1 ]
_IU-I-O[lOgtD = (tlog1) 1+0 logz))’

we have

log— L
E1-FQ

and so (1.20) holds.
To prove (1.21), we observe that

uty Cylp
(logt)'*'  logt, "

log l_;_() = tu—logK(u) = ut+1,

By choosing u=(log 7)’*!, we have

1 = y+1
log I_—P,(T) =T (log T) = clr(log T)?

and this proves (1.21).
Now we shall prove Theorem 4. Let g(p)=1/p,

gy(n) = Zl’g(p); g(y; n) = g(n)—g,(n).

p=y
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 265

Then
e 1 = - uH(to) +4) il
La =+ #n=xlge(n) = Y (1) +4} = e VC+2 JT 1+T )
p=ty
where u=u,, is defined according to (2.4), i.e. u,,=t,(log#+H). By using (2.5),
we get
1y
log¥#, <—Adu—t +O[ c]+ e~ u/p,
e " O\oe ) T 2,7

where ¢ is an arbitrary large constant. Since

2
2 Pe—ufp - y:rr(y) e WY = ]oJ;y e~y

¥y
— -
2 p=y

. t
by choosing y=y,‘=5i—(k:0,1,2,...), we have

2 5—uft —H
3 pestr B _ oMty
rsty logt, log ¢,

By choosing H=cloglogt,, with a fixed ¢,

(2.14) log¥#, < — Auy,— to+ B—2—

(log to)°’
B being a constant.
Let u,=t, (log t;—H). Then, by choosing H=cloglogt,,

L = = = ;)
(2.15) = -#{u._xlg(tl,n)-?:R}=exp[ Ru, + Tog 1"
Let

ty=1; = (log k)'*%, & = logloglogk ,

loglogk °’
[P ) = max g,(n+)); fi® ()= max g(te; n+j).
Let
def — 1 _logloglogk [ 1 ]
H= Y (t)—logk = 1Ug(l+B")-i-o[ioglog k] ~ loglogk +0 loglogk)
Let k be so large that H,<2e,. Then, by (2.14),
(2.16) a(x, k, 2g,) & i # {n = x|fP(n) = Y (log k)+2¢,} =

[1+ k]xfk 4 {n = x+klgi,(n) = Y (1)} =

[th

[l+£]kexp[ ty+ B———| = [1+£] k-loslogk e
x x

( gfa)‘] B
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266 P. ERDOS AND I. KATAI

¢ being a constant. Similarly, from (2.15),

.17 b(x, k, &) = % #{h=xlfPMm=eg}=

= k [ f ] -.[ _!c_] —loglogk
_[1+—;]kexp[ g, +0 Tog by ] = 1+x i R,

So for k=x we have
1
(2.18) = # {n = x|fi(n) > Y (log k) + 3¢} < 1/k?,

if k is large. For k=x, n=x we have

[ (0) = fi(n) = f,4:(0) = Y (logk)+0 [ﬁ] *

Hence it follows immediately that

1
% i {n = 3|3k > ko, fu(n) = ¥/ (log k) +36) < 3.

By this, Theorem 4 has been proved.

3. Proof of Theorem 7. Suppose that the conditions of Theorem 7 are satis-
fied. Let g(n) be strongly additive defined for primes by

5 ( _[g(p) if p>p,
P =1 o i P= Dy

It is obvious that g(P,m)=g(P,)+g(m). From the Turin—Kubilius inequality

s e X 5 850
mé%;“{g(m) A} ng:%; p 3

if P,<x; A'=Ayp,—A,, . Hence we get immediately

G.1) M, 2 #{msi £®)

=8}«
PB* =%, P

If g§(m)—A’=—B, then

g(P,m) =y (p)+g(m) = y(p)+4 —B
So for Pu(m—l){n-::P_um we get

(3.2) FP,, (n) = E(P;;m)_'f‘i(mu;r,, = \f’(Pp) +Ax,rP,._A{m+ l]P,._Ap,._B'

Let now x—oco. For m=}x we have
1) IR
Ay, — Agmiyp, <€ [Z ?] (2 iéﬂ] ~0 (x—oo),
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 267

where the summation is over the primes in [(m+ Dp,, %] By choosing
m

2 1/4
5,=5=( 3 £0)
r>p, P

we obtain (1.26) immediately for k=P,.

Let now P,<k<P,,,. To prove (1.26) it is enough to observe that F,(n)=
=Fp,(n), and that Ay, —A4, -0 (k—).

Now we assume that (1.27), (1.28) hold. If P,=k<P,,, then, Y (logk)=
=y (pw)(1+o(1))=¢(p,+)(1+0(1)) and Fp , (M)=F,(n)=Fp (n), and so it is
enough to prove (1.29) for k=P,. From (1.28) we have

X
P, B

From the monotonicity of t we have

My < t*(p,)(loglogp,)’.

2P _ )2
V) = 1/p?,

so by choosing B=Ay(p,), 0<i,<1, we have

x (log log p)?
Poas U2 ’
Let x=P2. In the interval n€[1, x] we drop the n’s for which n=x"2Ob-
serving that Ap"=a(l,b(pn)), and that 4,—A4,.=0(1) (O<a<l), from (3.2) we

get that

ot " Fp,(n) = (1-22)¥(p,)
for all but Lﬁ%-gﬂ— of n=x, if 4, tends to zero sufficiently slowly. Let x<P;.
Then, for every ni‘:”- X,

Mp <

Fp,(n) :j;}"?"xp (g(n+j)—Au4)) = Y(P)—Axip,-

I 1/2 tg(p‘) 1/2
Ap —A -a-:[ -—-] [ ———-) <
*Pu Pu p”-:p-:ZPF-i-x p 99‘21:“ P

Since

< 1(p,) (loglog p,y (log p,)' < % (log log p,)"(log p)"2 = o(¥(p,),
therefore
FP,‘ (”) = (I 7 2'1,1)'|b (pp)

holds for every n if p is large. Applying this argument for the sequence x=2', we
get the relation:

Ye=0: lim sup—l # {n = x|3k > ky, Fy(n) < (1—&)y(logk)} = 0.

kg—=~oe x=1 X
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268 P. ERDOS AND I. KATAI

To prove the second half of (1.29) we choose loglog t,=pj, where 0<d<y
(see (1.27), (1.28)), and define g(ty, n), g,(n) to be strongly additive satisfying

0 if p=t,,
glp), if p=t,
g, (n) = g(n)—g(ty; n).

g(to: p) = {

Let A'?=A4,—A,,. For every u=0 we have

def _ 40 eralp) _ ]
D(x, u): Z eu(s(r.n) A0 = x H [l+—};__ e—ug(p),l’p,

n=x Ly<p=x

whence it follows that

—_— 2
L {n=xlgty, n) =4} = exp[—du.i_uz > 8 (P)],
* p=tg P
if u= 2:21‘ X Let A=n,y(p,), n,~0 slowly. Then, from (1.27)
0
_ . ¥(p)
Au=u 2¢(1,) 4p,

if u is large. Furthermore, from (1.28)

g 2 g = owion = =)

since dy<1. Consequently
(3.3) # {n = x|g(t; n) = n¥(p)} < x/P}.

Let C,(x) be the number of those n=x, that have at least r prime factors in
[1, 7,]. We have by Stirling’s formula,

1 1y r
Ci(x)= x'F[ 2‘5—] = xexp (—rloge(—pi_'_—-omj+0(logr)].

p=ty

Let r=[(1+4¢)u], ¢ being a small positive constant. Then,

r
?‘logw‘—l)—) = (1 +4Q)(] —26)pn = (1 +2Q)pﬂ,

if & is small enough. Consequently

C.(x) =< o a

1+¢
Pﬂ

Let n be a such number that has s(=py) prime factors in [, #)]. From the mo-
notonicity of #(y) we get

) = 8(p1-2) = W2+ 6= 010 = (1) ¥ p).
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 269
So, if g,(n)=(1+40)y(p,), then s=r. Consequently

(3.4) # {n = xlg,,(n) > (1+49)¥ (p)} < 5157
From (3.3) and (3.4) we get immediately that

P1+p

X
#{n=x| max g(n+j) > (1+50¥ (P} = 55>
if Py=x.
For P,>=x we have
Fp,(m)= max g(n) =y (p.+1) =¥ (p)+o(l).

Applying this estimation for x=2" (v=1,2,...) and summing up for u=p,,
we have

1
SUP- {n = X130 > o, Fp, () > (1+50)¥ (p0)} < 3¢

x=1
By this we proved (1.29).
4. Proof of Theorem 1’ and Theorem 2. To prove Theorem 1” we suppose that
(1.11) holds. From the existence of the distribution function F(x),
> min (1, g(p)) _
P P
Let 6=0 be fixed, 2, be the set of those primes p, for which

(1+0)/u(0) = g(p) = (146) £ (0)

holds. Then
Z ”p{m!
pE-‘?;,
if fi(0)#0. Let b(m)=(n+1)...(n+k); R= ][] p.
€D,
From (1.11), ’
2 1= (1-gx,

(b, Rp=1
if k=ko(3,¢). Since 1—F(f£,(0))=1/k for every k, from (1.11) it follows that

fu©) = (1+8)f(0)

for every fixed v, if k is large. So f,(0)=0(k*) and for pc?, we have plk— e
(k- o). Consequently
)
l——|=1—¢,
pgk[ r
and

2 X < 2e,
pe#, P
if k is sufficiently large.
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270 P. ERDOS AND 1. KATAlL

So we have
glpy _ e(l +6):f;.(0) - Zi: —_—
ap=A+an0 P 2=k, 2 2
and Theorem 1” has been proved.

The proof of Theorem 2 is almost the same. We need to observe only that
from (1.13)

(4.1) £x(0) = o(log k)
follows. Since for fixed v
vk(1—F(f.(0) = 1,

vk(1=F(f,(0)+A4)) ~0 (k =),
therefore [, (0)<f,(0)+A if k is large, that implies (4.1).

5. Proof of Theorem 3. Let L(k) < be given. We can give L,(k)/ e, so
that L,(k)=L(k), L(k+k*)=2L,(k), L (k) has integer values with jump 1. It is
enough to prove our theorem for L,(k) instead of L(k).

Let #={q,<q¢,<...} be a rare sequence of primes. We shall define g(n) so
that g(g,) /<, and g(p)=0 for p¢ 2.

Let B, be a sequence tending to infinity monotonically, 2 be so rare and the
increase of g(g;) so slow that

and

; 8(q) _ B
& Za "k
Gi) e(J1 a) = 5 Lo

hold for every k=1.
So f,.(0) é% L,(k) for every k=1. Let g,(n), gs(n) be strongly additive de-

fined for primes as
0, p=>k,

g“”)z{g(p). p=k

It is obvious that

AV =8( 1T 9) =7 Lk

Furthermore

SIOmsk 3 amsk 3@k,
n=x n=x+k G~k q;

and so for x=k,

1 1 k g(q) 2B,
k] ls— SfOm=2— 539 25 o
: mﬂ% c G 'é‘ft da G ﬂ'ﬁ"z;‘ 9 G Ao
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Let C,=— L(k) B,‘— -VL,(k). Then g,=(VL, (k)™

Since, for kzx, n=x,
1 1 1
£ = fi420) = 7 Lik+3) = 7 LK) = - LK)

Since fi (M= (n)+/ 2 (n), therefore
1 1
sup +{n = xlfy(n) = 3 Lk} = o

Let now k, be fixed, the sequence k;<k,<... be defined by

= min k.
y Ly(k)=2L,(k, _,)
It is clear that

A k — 5 —__(:,
( 0) v;; Qko = VLl(k“)
Ake) =0 (ko— <=).
Applying this argument for x=2* (u=0,1, 2,...) we deduce that
sup-}l? {n = x|3v: £ (n) = . L (k)} = A(ky).

x=1

Let now n be such a number for which f;v(n){ Li(k,) (v=0,1,2,...) holds.
Then for every k€(k,_,, k,),

Sn) =i, 0) = 5 L (k) = (k) = LK)

This finishes the proof of Theorem 3.

6. Proof of Theorem 5. Let £>0 and ¢ be glven 2y, éﬁ’a, ?; be the set of
primes in the intervals [1, (1—e)t], (1—e)t,1,] (1, (1+&)t,] P; be the product of
the elements 2,, i.e.

Pi= ][ p.

PEF

Let r, s be natural numbers. In this section b,, b9, j=1, 2, ..., denote a number
that is a product of r distinct elements of 2,. Similarily c,, ¢/V, ¢/®, ... denote such
numbers that are the product of s distinct primes from 2,. Let H and K be the
number of elements in 2,, and in 2,, respectively.

Then the number of &)s is [f], and the number of ¢s is [Is(]

From the prime number theorem

ot t et !
(6.1) H= logt +0[(logt)2]’ R= logr +O((10g r)2]'
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. P.
Let o/ be the set of those integers that have the form n=-2m, where

b,
(m, Py)=1, and that contains at least s prime factors from £,. Let
Fimy= 21,
cglm

if n€o/, and F(n)=0 otherwise.

Let 0=d=<1, r=[t?], s=[cr], ¢c=1 being a constant.

To prove our theorem we shall deduce a Turan—Kubilius’ type inequality
for the sum

6.1) e() = [_2 F(n+i)— Al
where n .

For the sake of simplicity we shall assume that r, s, f are large but tem-
porarily fixed numbers, y-—- <o,
Let

(6.3) S, i) = 2 F(n) F(n+1i).
n=y

Squaring out (6.1) we get easily that

(6:4) () = 2 2(Py=i)S(y, )+ Py 2 F*(n)—24Py 2 F(n)+
n=y n=y
+ A2y +O(PLy 1) =

= SW 4P, 3@ 24P, 3+ 42y +O(P}y1).
We shall use Eratosthenian sieve for some primes in %,. We note that

-1 = 1+olg) ¢

if y(p) is bounded by an absolute constant.

Then
H@H= 3 1=z [ (-1p+0Q").
n=z PEPy
(m, P3)=1

Consequently

65 Z®=3 3 Zi= 21{[2&]: ;,2 [1+0[l = ]]Ay+0(;),

T m=-t—

Py
(m, Py=1

where ¢ in the order term denotes that the constant involved may depend on 1.
We shall give an upper estimate for >'®. We have

(6.6) =3 > > 1-B~(2b)

b, 1 o b,y
L Py {c(ll c(zil
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where

1
(6.7) B= ZW
Let ¢, be a fixed product of u prime factors from 2,. The equation &,=

=(c!V, ¢/*) has
G [

solutions. For all of them [¢{", ¢{P]=¢*"* holds. &, can be chosen [i] times
Consequently

(6.8) B gé; (u-as [f: ] [zfé :i)] [2?_—;:)]_

Furthermore it is obvious that

H
b=t [ , ]

So by the Stirling formula

tHY

( r'f) =exp((2—9)rlogt+0(r)).
Similarly, from (6.8),

B 5 Kﬁs—.ll 5
<“§; 125—;1“!(5._“)]2 ;Z' T(S ,u)” = exp(—sé lng"rO(}'))

Consequently
6.9) 2= P, P ([(2—8)r—ds] log t40O(r)).

Now we estimate 4. Counting the b,’s and ¢,’s we have

a (f] ==z ()(5)

ar (1)

r r!’

Since

from the Stirling formula we deduce ecasily that

logd = (r— s)logr+rlogH+O( ]+910gK+0[ ]—rlogr—slogs-l—O(r),
and so by (6.1) that
(6.10) log A = [2r—(r+s)d] log t+0(rloglogt).
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We choose ¢ (s=[cr]) so that

(6.11) «=2—(l4+c)c=0.
This guarantees that A>1.
Let now consider the sum
bV p

where
Py(cfV, c?)
BRI
The condition A=P, implies that (c!¥, e®)=[pV, b*].
Let d;, &, be fixed, where the index denotes the number of its prime divisors,
and consider  those bV, 6@, ¢M, ¢® for which §,=(M, b?), &,=(cP, ). I
A=P,, then

{A+e)t) = {(1—e)t}>,

L.e.
l o U . e -+,
(1—8)2'_”""‘” o (l—-s)&" i =t
whence
1= [(1—g)er—¢+m,
ie I+p=2r.

For fixed / and g the number of b1, b®, ¢V, ¢® that satisfy o((6V, b))=1,
([, cPD=p is

(NG ) e O350 = rope o

_ hLV pi®
Since ﬁ,—..r“’ s and H<t, K<t, therefore
ol
2(r—s) it ' r—s+1l
(6.13) Dyt > <t .

I+u=2r I (r—!‘)!""u!(s__ﬂ)!.’.
Consider now

i IR |
(6.14) 2= (2B, b)) [2 W] :

Arguing as before, we have

. <% (HY SO (K LS
ZC_{H 2 I(r :)PH;E. p!{s—p)w}_zm 2

By Stirling’s formula

1
e = exp(—g(D+0(logr)),
where
g(l) = llogl+2(r—1)log (r—1)—2r+L
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By differentiating, we see that the smallest value is achieved at /=1/,, where /, is
the solution of /,=(r—1/)> We have easily that

g(ly) = rlog ly,—r+0(Vr) = rélog t—r+0(V7).
Since H'(t/H)'=1t",
>® < exp (r(1—8)logt—r+0(Vr)).
We have similarly that

2@ < exp(—sdlog t+0(sloglog 1)).
Consequently
(6.15) Dc=exp([r—38(r+s)logr+0(sloglogr)).

Let now consider the sum S(y, ). This is equal to the number of solutions
of the equation
P,

s (1)
b & U pm G =5

P,
(6.16) 5

(.'.m P))=1; in variable 5, 6™, D, e u,v. Let b, e (j=1,2) be fixed;
=M, b®); g=(cV), c®); ED. FD. 4 (j=1,2) be defined by

_ Py

B, 57

If (6.16) has a solution, then A|i. Let i=4i;. Dividing by 4 we reduce (6.16) to

(6.17) EDfN (OO gy =i, (uo, PY=1.

It has a solution if and only if (i;, &®EV)=1. The solutions u, v are of the forms
u=ug+IE®@ fO p =g+ I1ED B (1=0,1,2,...).

To enumerate the /’s for which (uv, P,)=1, we sieve for primes p€ 2,. Since the
number y(p) of the solution of ww=0(modp) is 1 or 2, we get

pgg[ _%) - ]+0[log1]

On the previous assumptions (6.16) has

P (b, b®)
Pale, @] |1 70

¢ = gDy 5D = pD: 4 (D), ),

+0.(1)

£

log ¢

solutions. O, denotes that the constant involved by the order term may depend on ¢.
Hence we have

618) >+ [ [ 5 (b0, b®)
619 372 S50 -2 1+0(2)| 2 Bk 3, 1+,
(iy 'éfll él!l)=1
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Since
P, r :
iy =Pod = 0, if 4=P,,
(ipg(l}g(l))=l
and T et as t—o, we have
t logt
= volgi e 2avol )
> P, [ +0 = ](A 2p)+0 P 2el+0.(1),
i.e.
619 3= (1+0( L) 40 (4 (Zer Z0) +ou.
Py P,
Similarly, for the sum
(6.20) S 2 iS(y, i)
we have -
. [ ]] GO, b®)
>3 “E[ L log ¢ 2 [, ] { :1.;;;4 >
(l ﬁ[l):(%)) 1
Since

=5 [1+0(2))+o (%)
fl:j%“ i = EYD [I+Ot +0 =

(i, £V gy =1

for A=P,, we have, as earlier

ol —[ +0|5 ]] A2+ 0(Y(Z s+ 3))+0.(1).

Consequently for > defined in (6.4) we have

620 30 =2, 3~ 37) =5 [140(12)] 4400 Za+ S +o0
So, by (6.21) and (6.5) we have

é(y) = B, 1 ARy + By (Zp+ 2c)+0(P 2 2)+0.(1),
where B,, B, are absolute constants. Now by (6.10), (6.13), (6.15) we get

=4, Fp<l
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From (6.9) P, >, < Ae°", and so from (6.10), (6.11),

A0 <5 42
log ¢

Consequently

(6.22) &(y) = B—

logt

A*y+0,(1).

277

Let M(y) be the number of n=y, for which no one of n+1,...,n+P, is

belonging to &/. Then, from (6.22)

&
(6.23) M(y) = BTEg_? y+0,(1).

Since
{Pi(n+1), ..., Ps(n+Py)} E {Pin+1, ..., Pin+P P},

we have immediately the following assertion.

THEOREM 8. Let &¢=0, 0<d<1, ¢ be fixed so that

def
= 2-(14+¢)6=0,

t a large constant; r=[t’], s=[ct’]. Let & be the set of those integers n for which

there exist b, and ¢, so that

n= O[mod PLPz Cs]
Let '
N =#{n=xl{n+1,...,n+P,P} %= o}
T hen
lim N(x)éBL,
= X log ¢

where B is an absolute constant.
Py P,

Hence we deduce easily Theorem 5. Indeed, if n=0 [— c,] , then

b,
g(n) = g(P, Py)+g(c;)—g(b,).

Let g(p)=p~2. By choosing r=[t"], s=[ct"], y=<1,

C

g (ca-) =% (br)

— L r =% R P, <Y F
SFor =9 ' d{1+s I—s} Byt

(¢; = 0 constant)

if & is sufficiently small.

Let Pl P2=P1‘..P“§k{P] Pzpﬂ+1. Then ﬁ‘(o)=g(P1P3) Ir we ]Jl.lt t=p3‘-,

we get immediately Theorem 5.
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