ON THE CHROMATIC NUMBER OF GEOMETHIC GRAPHS
P. Erdls and M. Simonovits
Abstract

Let 5 be a finite or infinite set In the Euclidean
‘space Ih ., He defince the graph G(5) on the
vertex-set 5§ by jolning =,y ¢ § 1ff plx,v) /[ =
their discance /[ is 1. In this paper we inveatigate

various chromatic properties and the dimension of

h
= will ba defined

as thesasimis t sudh that i " = 0(8) , s =2,

such grapha. Thus, for example, Ly

then one can omit n(nzl edges so that the remaining
b
graph be 5 t-chromatiec. The dependence of x.tt )

on h will be investigated among cther related gquestions.

1. Introduction. Let 5 hbe a finite or infinite matric apace. We
define the graph G{5) as follows: the vertex set is 5 and x,y £ 5
are jointed 1ff their distance op(x,¥) = 1. Many interesting questions
can be asked and were Investigated in connection with the graph theoret-
ical properties of much graphs. The results of this type can be
interesting in themaelves and on the other hand they give information on
the metric of §. In the introduction we list some of the known results
and open problems but first we fix a few standard notations.

The graphs considered here will have no leops or multiple edges.
¢", u", ... will denote graphs with n vertices, and if € is a graph,

E(G), e(5), V(G) and w(GC) will demote the set of edgen, number of edges,
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set of vertices, number of vertices respectively. The chromatic number

of & 18 -¥x{(G). Kg iz a complete p-graph, Kpinl,...,np} is the

complete p-partite graph with n, vertices In 1cts ith class.

Problem 1. Let Eh be the h-dimensional Euclidean space, and 5 ¢ Eh

be an n-element set. How large can e(G{5)) be (as a function of n)?
Erdia gave sufficiently sharp answer to Froblem 1 if h = &, but che

results for h = 2,3 are far from being satisfactory. For example, if

h =2, Erdis [4] proved that
3

2,
(1 e(G(s)) = 0([s|")
and it took great efforts for Jézsa and Szemerédl [12] to push this

estimate down to
3

) e(6(s)) = o(|81H)  (Is]+=)
while probably even

14
alG(s)) = ofls| )

holds for every e > 0 .

For a metric apace 'S x{G(5)) will be abbreviated by x(5).
Hadwiger [11] and Welson (see [11]), independently asked for the deter-
mination of x'tl‘.'.h}.
Froblem ?. How large is x{ﬁih}?
{By the de Bruijn-ErdHs theorem, [3], 'x'l:Ehj = max (x(8): § :Eh, 5 1is
Einite} !j.

Klee proved the finiteness of x{Eh} for each h (easy!}, Larman

and Rogers [16] proved that

(1 KEY < (3o)® ().



It was comjectured that

h
(4) x@" 2 (1+c)
for some constant ¢ > 0 but the bast lower bound {due to P, Frankl [10]}

ig much weaker. It states that for every ¥
h ¥
(5 #(EJ/RT = @ (hee),

It is surprising that even for h =2 xl:Eh]- is unknown. Hadwiger [11],

L. and W. Moser [15] and Woedall [17] proved that
2
(63 b= xET) £ 7.

Another notion connected with geomeeric graphs is the dimension
(dim(G)) of a graph G, introduced by Erdds, Harary and Tutce [9]. The
dimension of ¢ 15 the minimum h suwuch that G can be embedded into
Eh 50 that for each edpge the two end points have distance 1. One can

easily see [9] that
(7 dim{G) = 2x(G}.

To prove (7) we may choose a Kd(m,..,,m} 2 6 for d= x(G) and prove

(7) for this graph:
*
(73 dim(K, (m, ... m)) = 2d.
E %
Indeed, (7 ) immediately implies (7). To prove (7 } put

(8) € = {lkseeiskyy) 1 x5, 20 =%, x, =0 4F §420-1, 24},

B
Cleasrly, if x e Gi, b Gj’ then po{x,¥} = 1, i.e., putting m vertices
tof Kﬂ{m.---,mﬂ onto ci we enbedded Kd(m,..”,rn} inta E?'d'. We

shall refer to this embedding as to Lenz' comstructiom [5].
Before turning to the new results we would like to show that in some

gense the problems poged sbove cover more than what one would think.

m



First of all, 4f & = 0 dis-a small positive constant and Shﬂ_l is the

sphere of diameter 1 + = im I[-.'.hI s then a famous theorem of Borsuk [2]
ggserts exactly that

»(8) =h + 1.
Arother fguestion was the longatanding Eneser conjecture, finally proved
by Lovdsz [14] (whose proof was simplified by Bdrdny [1]).

¥neser conjecture [13]. Lat CN be a graph, the vertices of which are

the {zr:-i} = N n-tuples of a (2eekl)-element set U and two vertcices

(= np~tuples) A =1, BeU are jointed if A n B =@, Prove that
x(c“) - F 2.
Tf we consider all the n-tuples of U (|U|= Zn+e) and introduce

—2‘35 |6¢A,B) |, where &(A,B) is the symmetric

the metric o(A.B) =
difference, |A(A,B)| 18 its cardinality, then Lovdsz Theorem asserts that

for the asbove metric spece S of ¥ points x(8) = & + 2.

2. Maim Results. As wa stated in the previous chapter, 1if G can be
embedded into the plane IE:2, then (&) = 7. 'On the other hand, there are
graphs G dio the plane with x({G) > 4. The next theorem shows that the

high chromatic number is not typical in lEz. not even in EE.ﬁl

THEOREM 1. Let & E.EE‘; ba asat off n points, G = Gi5). One ean
?

gLt (}ran adges fisom ' g0 that the sbtatned graph e bipartite.

The above theorsm motivates the following definicion:

Definition 1. TIf U is'a metric space with infinitely many points,
:.;E{U] = the "essential chromatic number™ of U is the minimm t such
that for any n-element subset S € U we can omit b{nz} edges from  G{5)

g0 that the obtained graph 6" is £t chromatic (as n + =),



Remark 1. As we mentioned, xfEh} < = gnd ohviously,
(93 x, (U) < x(0),

thus }{E*Ihl < m, On the other hand, we have seep in the introduction
2d

that Kd{ g e % } can be embedded dinte E™ . Obviously, one must
n.‘Z

omit at least = —5 edges from K, (% '.i..”.{ 1} te decrease its chromatic
d

mmber, thus ¥ (E") 2 [B] = d. This shows that x (") + =as h - =,

THEOREM 2. For h = 4, xaﬁE’hJ 2 h- 2

Remark 2. By Theorem 1 :icECEqJ = 2. Theorem 3 (below) implies that
3 2 1
foE } = 1, while xE'EE y o= ::E«CE: ) =1 4s trivial.

Conjecture 1. There -exiats a comstant g > 1 such that

by, . h
X,ED =g

We shall give the motivations of this conjecture later,

To formulate our next theorem we need the following definition,

partly motivated by the Lenz comstruction.

Definition 2. Let F Pm be Z-dimensional subspaces of Eh ¥

ll-'-l
i.e: planes going through the origin. Let E{Pl.“..?m} be the graph

whose vertices are P.i...;P and P_ and P are joined iff P, L P_ .
1 m i 1 1 i

A
The orthegonal chromatic number xJCEh) is defined as max x{ﬂ{Pl,n -PmJ}I

for all possaible finite collectione Fl. B e 'Fm'

- ;E'h i i }
THEOREM 3. If z 2, then x, .3 J =%, _:'. Burther, 1f O = G(5)
for some Ek then we amn omit ﬁE:-: F' adges from & so that ths

shtagined F ig = xLEiE‘hJ—ahmmf:ﬁc.



4
Remark 3. Obviously, xil:lE ) = 2, thus Theorem 3 is 3 generalization of
Theorem 1. It is essy to see, that anEh} £ xaﬂEh]'. Indeed, assume that
~
ngEh} = t. Fix the planes Py,...,P 3 0, 5o that y(B(P),...,P)) = t.

Let ¢, = {xet. 1 Jxl =-!;]. Fixing = =
i S VT g ~m

pointe on each €, we cbtain a

t-chromatic graph G, since each xeC and ye {‘.j have distance 1
1R L (e if (1,7) & Ecﬁrpl....

one must omit 7 Ei" edges, or more to turn &" into a (t=l})-chromatic
m
h
graph., Here m is fixed, n + =, thus xeCEh} = £ =‘.u'.lﬂE .

"Pm”' It is easy to see that

Az a matcer of fact, we shall prove a sharpening of Theorem 3 as

wall:
THEDREM 4. Let & = Gf5) For o n=clement get § & E'h. We oan eub-
diwvide & Ante I-'*, [r'j,...,?r’q’a eo that

1 1

-

(£} Jng I A [&n -[ fwhere [ 2] denotes the upper integer

T
part of =1, 1= I,E,...,EG-

1
(it) If V., and FJ. are Joined by more than 2[¥£||[J'jsin h edgea,

thew their affine closures are orthogonal, 1si < J = P’(}'

3t

®
(44} Fash ® e & <o Joilmed to af most I-Sn 4 potnts of V.

Theorem 4 implies Theorem 3: if a Ul iz one—dimensional, any

x £ 5 1ig joined to at most 2 of its wvertices. Therefore these ‘il'i"s

%
ean be put fnte V¥V . For the others we chooseé a plane P, 3 0 parallel

i
*
with some plane TP i svi and colour the planes Pi by t = xLﬂfﬁ

colours so that P:L and Pj have different colours if Pi J-Pj- We



colour the points of V_ by the colour of Pi' If we omit all the

i

edges  (x,7v), == vi, v e ¥, for which Vi and ¥V, are not ortho-

| i |
*

gonal ‘and ‘all the edges (x;¥), = € V | then the colouring given above

is a good colouring of the remaining graph Eh and we omitted at most

3 -x

1 1
* 1"ﬂ =k f l-h-l 2 b
[ ™ +2i[[vi||?j|-h £ m- |3 oot w0,

This proves that %L“gﬁ 3 ;Eﬂfﬁ. This and Remark prove Theorem 3.

& h
THEOREM 5. [ILet 5'1I 7 pea sphere of radius ;é am E, Them
&
(16) xS < x &) <5, B < ™).

The meaning of Theorem 5 is that the ordinary chromatic number of
the sphere Sh-l and the essential chromatic number of Eh tend Eo
infinity equally fast. We do not think that the ordimary chromatic

Bl ha T caufeer vedy mich; thin di why we thisk thae

number of 8
Conjecture 1 must hold.
Enowing Theorem 3, Theorem 5 becomes almost trivial and, therefora,

the proof is left to the reader.

d. o the Faithful Mmension of a Graph.

Let a graph 6" Be given. As we have seen, 6" can be embedded
into Egt if ¢t = x{Gu). One can easily see that this dimension is the
lowest possible for Kt{m,....mj if m dis sufficiently large. Here,

embedding G° into 0% we ask for finding 8 Bet 5 E.!P' such that

¢ c c(5). 1f & = G(8), the embedding will be called falthful and

i TR W DA et R RANSR by e aibedded At B 24

the faithful dimension Dim(Gn} of Gn. The question 1s whether there

exists ‘a sharp difference between the notions of dimension and faithful

dimension.
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While (7} and the example of KI: show that the dimension of a graph
is strongly related to its chromatic number, we show that Dim(G ) has a

similar strong connection to the maximum valence A(G") of G .

THEOREM 6. Dimi(G ) < 2a(G°) + 1.
Conjecture 2. Lof g g K,03.3). Then dim(c™ = a(c™y.
Proposition 1. If G is the graph obtained from Kz{m,m} (m =2} by
omiteing a 1-factor, then
m—2 = Dim(G) = m - 1.

Remark &. The important part of Froposition 1 is that in spite of the
fact thae %(G) =2 and (hence) dim(G) = 4, Dim(G) is large. For m'= 3,
4 the DHm(G) = 2! Anyway, this shows that Dim(G) can be unbounded even
if w(G) = 2, 1.2: Dim(G) Iz related to A(GY and not ¥(G) In general,
Conjecture 2 is sharp, if it holde: Diml:Km:I = ﬁ(Km} =q - 1.

Finally, we shall prove

Proposition 2. dim(e™) = a(e™) + 2.

This assertion is weaker than Conjecture 2 but sometimes stromger than (7).

4. Proofe of the Results on Chromatiz Number.

Definitien 3. Given a set U EEh , we denote irs affine closure (mot
neceggarily containing 0) by L{U). M(D) is the set of points x such
that for every v & U o{x,¥) = 1. TIf M(U) # @ , then there exists a
unique sphere (U} = L{U) containing U . (Hers the "sphere" in L{U}
always means one spanning the whole L{U).) To show the existence of
Q{Uy put QU) = L{O) n M{{x}) feor some =x & M{U). Obviously,

QIUY 2 U0 and 1% a sphera In L{U). If H ¢ Q{U) Is snother sphere in
L{U} containdng U ., then U cH n Q(U) but dim(HnQ(U}) = dim O -1,

which ig s contradiction. (dim A is the dimeasion of L{A), further,

13




for: A, BT Eh A L B Ia sn abbreviation of L{A) & L(B). A< B,

i||B, AHB are used in similar wavs.

LEMMA 1. IF MO) % @, then U LMT). MU} <5 a sphere of LiMID))

and dim U + dim M(U) = k.

Further, ©f 2e QW .y e M, then alz,yl = I,
Froof. We may assume that

A1) o) = {(ypseeesbysOaeens®) e B 1 Jyf = %)

4z we have geen, if x & M(U), then Q(U) = M{{x}) n L{IF). Thus =x has

distance 1 from each point of Q(U). Clearly, if ej is the jth basis

veekor: Ej = (0,0,..0,0,1,0,...,0) with 1 in dts jth position, then
* rej £ Q{U), thus: x* has distance 1 from I.'Ej and - l.'Ej., o L CH. 8
Thus for = = (xl .-+.xh} “j =0, 1=1,....k: This means that
]
{12) x = (0,...,0 oesiile Jai=1 -8
=z + * ’x]t'}‘l) e L i .

On the other hand, each x satisfying (12) has distapce 1 from each

v EQ(0). Thus x e M{U) Iff {(12) holds. This proves the lemma.

Proof of Theorem 4. By Remark 3 we know that

£=x Y < g @Y.

=l

2_
We show that if § c Eh, ¢" - G{&), then one can emlt = 6o adges

of €7 8o that the obtained G has chromatic number = t. For each

1
[t
e § eatisfying |#] = 3n h and M{U) 5 ¢  we define a

Y= f{U) =0 as follows. We consider all the W U such that for
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e+l

k-dmum.lulz[:m A

There exist such W's; e.g. W= U satisfies the condition. Let Vv = f(U)
be a W for which k is maximal. Clearly for k = h -1 |w| = 3
on the other hand, by Lemma 1 dim(W) =1 and Q(W) 4is a "sphere" im

L{W) , thus |W| = 2. This contradiction shows that ks h - 2.

Thus

=l

(12) I#] = 3a". .
Wow we select a U, ¢§ nuch that H{EIJ Wi and !H1| = |3n i

*
(If such & U, does not exist, we put V = §, L, = 0y, ”1+1 and
vlu are defined recursively: if 5 = l:[vl contains no
ul-ﬂ such that l_ l.|
1=

- - h

(13) MU ) = ® and Ul = |3 T
%
then the recursion stops and we put ¥V =5 - UV, b, =L, Ocherwise
5.1

we welect a U, ., sacisfying (13) and put V. = E{UHI}.

®
The fact that (13) does not held for any ul-i-l c¥  idis just
another form of (iii) of Theorem &; (i) follows from (12}. Thus we have

to prove only that if '.'= and 'ifj are not orthogonal, then they are

=

Jolned by = Ijﬁ*ifl‘l?j[h- edges.

Anmume that 'Ii -V If B 4is s hyparplana in l.ﬂri‘,l, it contains

g

vertices: otherwvise for V=H®n t'l wi had




(14) duHﬁ}-h-duE=h-{dtm?i-13-din‘lri—bl

would contradict the maximality of %k in the definitlon of ‘l.Fi - Ef'Lli}.

Thus [v,08| < [v, | P e x eV,

not contain Q(V.), hence H = qur{] n M{ix)) has lower dimension than
-1
contains at most |'¢*11n b points. Thus the
1
~h
and Vo H(V,) ds at wost Ivi| |vj|n )

- nwll, then M{[x}) does

Qﬂ'li. therefore H A 'il'i

number of edges joining ‘I-':._

Further, L('M(‘i’i‘.ll:l cannot contaln ‘ln“j » sines ¥, 4,-‘l.r‘1
H= L{H{'il'i}}ﬂl-{"i'jﬂ has lower dimension that I..t'l.ri',l which implies that
1

« Therefore

IMev ) n‘l’j] < |Hn‘i‘i| % |v1| ijih . Thus the nusber of edges between

k.
V,M(V,) and Vv, s = f‘FlH‘H’j ln . Consequently, the number of edges

k | i

h
between ¥, and ¥V, 4is at most 2]"-’1|1“j |n . This completes the

1 b
proof .

As we have seen, Theorem 4 implies Theorem 3.

Proof of Theorem 1. lLec

- h = - -
Pt.l l{xl,...,uh) c B . X 0 unless L =k or 1 = i},

If we consider these (;) ?-dimensiomal planes, then the corresponding
&{....Fk i'.""} ia obviously the Kneser graph corresponding to the pairs

of an h-alement set: Ph'- 1 Fk'.l' if [k} n (K", 2"} = . Thus

I{Ef--n!‘k ’_----}] = h - 2, that s, xiﬂh] * h - 2. By Theorem 3, more
precisely, by the trivial Remark 3, x ) = h - 2. This is just
Theorem 2.



Bemark 5. S0 1f the Kneser eoniecture is usged, in fact for pairs only,
thon Theorem 2 is trivial. Further, we think that it is very far from
tha right order of magnitude. Since gEﬁEh} = [%J ig trivial, one can
agk, what is the point In proving a slightly stronger result, like
Theorem 2. There are two points: On the one hand it shows that i%] is
not sharp; on the other hand, though Conjecture 1 states that Theorem 2
ig very far from the truth, still there 18 some chance that Conjecture 1
is false and Theorem ? 15 sharp. We cannot improve Theorem 2 even for

ho=3.

Bemark &, If h = 5, the Kneser graph on the pairs is Just the Petersen
graph. Thus the Proof abuve shows that the Petersen graph can be ohtained

h
BB G{Pl..+..P ) from 10 planes ES. Let 0{m) be the graph obtained

10
from © by replacing each x & Vi) by m new vertices and joining

two vertices of @Q{m) 1f the original vertices of 0 were jolned in Q.
The above proaf shows that if § dis the ¥neser graph of the pairs of an

beelensut wets then Q0 s ebaddable tote. 1.
&. Peoofa of the Resulte on the Dimenatom of a fpaph

Prosl” of Propogition 1. Assume that the graph G has 2Zm wvertices

xl"“'xm. and Fpaeeea¥o and (xi,yj} £ E{G) 4fF 19 5. We have to

show that m =2 £ Dim(G) = m - 1.
Asgume first that G iIs embedded into ]Em_j. We choose a minimal

subger X = iul,...,xm'.' for which L{Ej = L{{xl,..,.xm}}. We may assume

without less of generality that ¥ o= [x]_'“"xi'.} for some & =m - 2.

Let U = [x1.+...x }. We prove that Q(i) % Firet of all,

E+LT
L = L) by

i+l

M(U) % @, M{X)} % @, because both contain P

definition and as we have seen in Definition 3, Q(U} and Q(E} are the




undquely determined spheres of L{E) = L) containing U and IEeU
respectively. Thus (by the uniqueness of Q{XN]} qQiu) = Ql:i]. In other
words, Xoyq E Q¥ .

Clearly, (= H(E}- By Lemma 1, F{x'FE+1J =1 for every

Y41

xE Q{i}. thus =1 but: {x ) £ E{G). Thus the

LIRS SRy 1417 F g1

embedding is not faithful.
DimfG) =m - 2.

Now we embed G Into Em_l Faithfully. Let

A
x, = faimy e ep=l0=1)8,s0e048) € B,

A
{the ith coordinate is the exceptional - (m-1)a). Clearly, 1if ¥. = =
then

nztﬁt,?j} w e AYAT ST e = B R & 1

L R and = (RO . W

|

br SR T 1 ZToh M 22
P {Hirxj} =g (yi,?j} =dma *1
if 1# 3 ‘and

PGy, = A1t + Aim1) el i) a2 1
if m > 2. Thus the embedding is Fairhful and the vertices ii. ?1
belong to the hyperplane {(t : Eti = 0}. This completes the proof.

Remark 7. The geometric background of the above preoof is clear:

) i .
(Xl,..-,xm] and (; .+.+,;m}l wera tegular simplices of E 1 and the

1

whole pleture had a lot of (rotational) symmetries.

bkl h+l

In the sequel Sh cE denctes {acE  ,|a|= Ly,

P

Proaf of Proposition 8. We use induction on & = A{G) to prove the

following stronger statement:

A
{*) Oné can embed G dinto § 1.



For: 4&=1 (%) is obydous. For a fized 4 we choose & maximal
Independent set A € V{G} and put G* = G - A, Clearly, A(G=A) = 4 -1,
therafore G - A can be embedded into §° C i c E**2, For each x e A
there is a = A-dimensional linear subspace Lx (eontaining 0!)
containing [;: (%,y)eE(G)}. (The image of a wu ¢ V{G) at a given
emhedding will be denoted by ﬂ unless we compare two different embeddings,
when one image will be denoted by ﬂ. the other by :}. We fix a plane
an a (dimpx=23 orthogonal to Lx' Choosing any e LA Sﬂ+1 We Gnsure
that : Lu 1f (x,u)  E{G). Since Q can be chogen in infinitely many

waysd, wa may choose Q‘ﬁ one by one so that % ¢ A dg different from

; e V{8) 4if x # v. This completes the proof.

Proafl of Thesrem .  Again, we embed 6" iato 52EI falthfully. We know

by Proposition 2 that c" is embeddsble into ."52"'.I if faithfulness is not

required. We start with an arbitrary embedding and modify It step by step,
first achieving that 1if xl..i..x
are linearly independent. Let LUfUJ denote the linear

g1 © V(6™ are different, then

A

M
Bpaveaa¥ygg

subspace generated by U. Assume that

A A A
Xie1 t Lﬂ{xl""’x.ﬁj'
We Fix all the vertices of WV({G) but £ﬁ+1. The conditlons
A A n
|x&+1-u| =1 AfF  (x,,.u) € E(G)
keep %01 on a = AMl-dimensional sphere 5. I:S'i' is counted

A
‘+l-dimensional !}. Since the dimension of Lﬂ{{xl....,ﬁﬁ}} is 5 A, it

does not contain 5, thus we can replace 2 by an x i Lﬂ{xl““'xﬁ}'

i+l
can he chosen arbitrarily near to x

A+l

moreover, x

Akl AL



We iterate the step aboye until no ;Ml belongs to the linear

I“‘ e
clogure of & othera. If in the ith step x is replaced by =, first we

chooge e, such that each linear subspace L([;l.....iﬂil not containing

)
:: hag distance = Ej from ; and then choose an = for which
|;_;1 < Ej' Thus we shall not ruin the results of earlier steps In later

steps. Finally each A+l=tuple ;l"""ng will become linearly
independent.

Now, if we have embedding with |§—;1 =1 for some (x,y) { E(G),
and the {4 + 1)-tuples are independent, then we change Q to x as
follows. Let U = T (xyu) ¢ BE(G)}. Above we have achieved that

¥ *LD{UI'.I'. Thus
dim(v ) < dim{ux+t$}}.

This implies that there is an X1 EI: X 4 ;. moreaver,; this ;fsu can

be chosen arbitrarily close to %. Clearly, |;—3| =1 4f {x.u} e B{G),
~ A - A A
|%-%| %t and |x—a| % 1 4f |;-u| 1, (if |xx| 1s small enough).

Iterating this step we obtain the embedding wanted.

8, Imeplved problema.

We have already stated some open problems about the embedding of
graphs Iinto Euclidean spaces. Below we shall formulate some further ones.

Problem 3. Determine Klms}. Characterize the praphs embeddable Into

EA c EE. Can every J-—chromatie G not containing KE be emhedded into

Sﬁ'i

Problem 4. Determine d.i.n{Gn'}l} 17 6° is a random graph. More
precisely, let Gn be a random graph, where each edge 1s chosen with

probability ¢, where ¢ & (0,1) dis fixed, #4s n +'= , almost all a”



have chrematic pumber at most ey nflog n, (see the next remark!), and
thersfore the dimension of almost all G is at most -Ztlnflng n. Since
almost all the praphs ¢ contain a Fm for m = [tzlug 1), thos

czlng n lower bound. Is ﬂim{Gn} = of{nflog n} with probability tending

to 17 Find good lower and upper bounds fI{n} and fzﬁn} guch that
£ (n) = din(E™) s £, (n)
with probability tending to 1.

Remark. In [8] it is implicitely proved that almoat all g are at
most clnflog n chromatic: it is well-known that for almost all the
graphs g™ 1f mFm{En} denotes the larpest complete graph in Gu, then
m < calng n. The second part of theorem of [8] asserts that for every
graph Gn. x(Gn} < cﬁm{ﬂn}. nflngzn, Thie proves the assertion. The
otheér inequality, asserting that almost all graphs 6" have chromatic
number at least :Snflng n is trivial from the fact that for almost all
G" the maximal size of an independent set of G dis also at most

cil.og .

Froblem 5. Let
P +Hl
£ = a6 = ¢
2 2
Is it true that

dimf{c™ = dim(€ ) = p - 12

Froblem 6. Lat S ¢ Ez and fix k mumbers Bygeensd. Eet- u, v« B

be joined by an edge 1ff p(x,v} = a, for coma 2L £ k. Let tk(n} be

3
the maximmn of the chromatic number of this graph whem 8§, [l::lr...,uk'f

vary but k and n are fixed. How large is ¢ (a)?

(For soma further results and unsolved problems see [6], [7] and [9].)
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