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Let G, and G, be (simple) graphs. The Ramsey number

r(Gl’GZ) is the smallest integer n such that if one colors
the complete graph Kn in two colors I and II, then either
color I contailns Gl as a subgraph or color II contains GQ'
The systematic study of P(Gl,Gz) was Initiated by F. Harary,
although there were a few previous scattered rcsults of
Generisér, Gyérfds, Lehel, Erd8s, and others. For general
information on the subject, see the surveys [ 1], [ 71, [ 81].
We also note here that notation not defined follows Harary
[61.

Chvétal [ 3] proved that if T is any tree on n

vertices, then

r(Tn,Kg) = (2-1)(n-1) + 1

Trivially, then, if Gn is a connected graph on n polnts, we
have P(Gn’KL) > (2-1)(n-1) + 1. It appears to be a general
principle that if such a graph 1s sufficlently "sparse",

equality holds. With this in mind, call a connccted graph

Gn on n polnts &-good if



r(6,,K;) = (2-1)(n-1) + 1.

We are preparing a systematic study of 2-good
graphs [ 2]. We will not discuss the results of [ 2], but
we will mention the following interesting unsolved problem:
Let Qm be the graph determined by the edges of the m-dimen-
2m—-l

sional cube, so that Qm has 2™ vertices, and m edges.

Is Qm 2-good if m 1s large enough?
One type of sparse graph not dealt with in [ 2]
is that of subdivision graphs. If G is a graph, 1its sub-

division graph S(G) is formed by putting a vertex on every

edge of G. We will show that S(Kn), n > 8, is 3-good. 1In
fact, we will treat a denser graph than this. Dcnote by
K"(n) the subdivision graph of Kn’ together with all the
edges of the original Kn. In other words, each edge of

the Kn is replaced by a triangle. This graph has

n + (;) = (nzl) vertices and 3(;) edges. (for consistency,
we denote S(Kn) by K'(n).) We will prove the following
result.

Theorem l1: If n 8, then K"(n) is 3-good,

|v

that is

r(K"(n),KB) n~ +n- 1.
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The proof of this thecorem is somewhat long and
we defer it. It appears likely that the method can be
extended to show that if 2 is fixed, K'(n) is &-good when
n is large enough, but we have not carried out the details.
Other possible extensions are discussed at the end of this
paper.

We now turn our attention in another direction.
Following Erd8s and Hajnal [ 4], denote by Ktop(n) any
graph homeomorphic to Kn, that 1s a graph formed from Kn
by putting various numbers of extra vertices on 1ts edges.
The paper [4] is reproduced in [9], pages 167-173. Thus K
and K'(n) are both examples of a Ky (n) Note that a Ktop(n)
has n vertices of degree n-1 and anv number of degree 2. Let
K op(n) be the class of all Ktop(n). In [4]) Erd8s and
top(n),Ktop(n))

(m),Kg). (Here we have slightly extended the

Hajnal investigate the Ramsey numbers r(K
and P(Ktop
definition of r: 1If G1 or G2 are classes of graphs, we are
satisfied if any number of a class appears In its approprilate
color.) They prove (in our notation):

r( top(n) K ) > cnu/3(10g n)~ 2/3

Our method will give, without much difficulty,

2Ky op () Kg) < cln3/2.

top
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Before we prove this, we need another result.
Denote by f(n) the largest integer for which there is a
graph G on f(n) vertices which has no triangle, and more-
over every induced subgraph of G has at least f(n) edges.
We prove the following result.

Theorem 2:
cnu/3(log n)_2/3 < f(n) < 2"1/2n3/2.

Proof: The proof of the lower bound is implicitly con-
tained in [U-see pg. 147] (and also in the proof of Theorem 3
which follows), so we only have to prove the upper bound.
Let G be a graph with f(n) vertices, all of whose n-vertex
induced subgraphs have at least f(n) edges. Let q be the

number of edges of G. Then, by a simple averaging argument,

we obtain

5 f(n)(f(n))(f(n) 28yl o §e (n)(f‘(n) 1) , £3(n) , nf(n)

n(n-1) 2 — 2 ?
n

if f(n) > 271723372 gipce 6 has f(n) vertices, it has a
vertex x of valency at least n. Since G has no triangle,
all the vertlces adjacent to x are mutually nonadjacent.
But thls contradicts (strongly) the assumption that any n
vertices iInduce at least f(n) edges, so necessarily

f(n) < 2"1/2n3/2, completing the proof.
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1/2

Clearly, the constant 2~ could be replaced by

a smaller one, However, we will not pursue this farther
since we belleve that f(n) = 0(n3/2), although we don't

know how to prove it. We can now prove our result on

r(K (n),K3).

Theorem 3: For some constants ¢ and i

top

4/3 -2/3 3/2
cn (log n) < r(KtOp(n),KB) < cqn .
Proof: We have already said that the lower bound

was proved in [4]. We prove the upper bound by showing

that

r(K (n),K3) < f(n) + 3n - 5.

top

Consider a graph G on f(n) + 3n - 5 vertices such that G
has no triangle. Observe that 1f any vertex has degree

at least n in G, we are done, since otherwise we have even
a X in G. (In fact, this also 1s immediate from Chvatal's
result.)

From the definition of f(n), we see that G has a
set of vertices A = {al,...,an} which induces fewer than
f(n) edges. We will develop a Ktop(n) in G for which A is
the set of vertlces of degree n. These vertlces already span
at least (g) - f(n) + 1 edges, so that at most f(n) - 1 must
be Joined by other paths. We will in fact do so with paths

of length two, with the midpoints being distinct, of course.
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Suppose, on the contrary, that we have joined k
pairs of a's, k < f(n) - 1, but that we cannot join ay to
aJ by a path of length two in G which avoids all vertices
already used. We have used n + k < n + f(n) - 2, leaving
a set B of at least 2n - 3 vertlces. Since, by our assump-
tion, none of these are adjacent to both ay and aJ in G,
elither ay or aJ is joined in G to at least n - 1 vertices
in B. Since we also have that ay and aJ are adjacent in G,
we have a point of degree at least n in G. But this has
been shown to be impossible, which completes the proof.

It would be of great interest to estimate f(n),

or r(K (n),K3), as accurately as possible, At the moment

top
W3te o rin) = 0(n3/2). It might

we cannot prove f(n) > n

not be out of the question to determine the existence and

value of

1im f(n)/log n.
N
To determine the exact value of f(n) or P(Ktop(n)’KB) is

probably hopeless.

Now we return to the proof of Theorem 1. It is
very likely that this theorem actually holds for n > 3.
Once or twice (for instance in Fact 4) we prove a trifle

more than necessary in what follows in the hope that this

will help eventually to fill in the missing cases.
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Proof of Theorem 1: Of course, K"(n) has n + (2) = N

vertices, so we wish to show that r(K"(n),KB) < 2N - 1. (That
r(K“(n),K3) > 2N-1 follows immediately from the fact that K"(n)
1s connected.) Let G be a graph on 2N - 1 points and assume,
contrary to the theorem, that K"(n) & G and K3*¢=§.

It will be convenient to make the following defini-
tion of a partial K"(n). Let A and B be disjoint sets of
vertices with [A] = n and with [B| < (3). Then a K"(A,B) is
any graph consisting of a complete graph on A, together with
a palr of edges connecting each point of B with a different
palr of points of A. Such graphs are not unique 1n general,
but of course if |B| = (2), a K"(A,B) is a K"(n). Further-
more, if F is a K"(A,B), define Hp to be the graph with A as
its vertices, with a pair of vertlices joined in HF if they
are joined in F through a point of B. Moreover, call a
K"(A,B) in G maximal in a given graph if there exists no
K"(2,B;) in the graph with ]Bll > |B].

We will now prove a series of facts about G,
leading finally to a contradiction.

Fact 1: If F is a maximal K"(A,B) then ﬁ? con-
tains no triangle.

To see thils, assume to the contrary that ala2a3
is a triangle in ﬁf and let v be any vertex not contained
in F. Since no two a4 can be Joined through v in G, v is

connected to at least two a; in G. Let vy be any other
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vertex not contained in F; 1t, too, 1s connected to at least
two ay in G. Hence, for some ay, the edges a; v and a;v, are
both in G. Since G contains no triangle, the edge vv, must
be in G. But v and v, were arbitrary vertices not in F, so
these vertices span a complete graph in G. If F had as many
as N vertices, F would be a K"(n); so G contalns a Kys Which

is agaln a contradiction.

Fact 2: G has no vertex of degree as large as L,
where L = [%?] + n.

Suppose that this is false; since G has no triangle,
G must have a KL' Let A be a seg of n vertices from the Kg,
Omit for the moment the other [EF] vertices of the KL, and
let F be a maximal K"(A,B) using the remaining part of G.

By Fact 1, H_ contains no triangle, so by Turidn's Theorem,

B
2
H, has no more than [ET] edges, and so Hy has at least

F
2
n

(2) - [2;] edges. Therefore, [B| > (3) - [%T]‘ Furthermore,
there are L-n unused vertices in the KL, where we have

2
L-n= [%r]. Therefore, we can form a K(A,B;), where

_ (N n

]Bll = (,), using [7T] of these unused vertices, and
(;) - [%r]vertices from B. This contradiction establishes
Fact 2.

Fact 3: Any two polnts of G are Joined by at least
2N - 2L - 1 different paths of length 2.

This fact follows I1mmediately from Fact 2.
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Fact 4: Let n > 7 and let F = K"(A,B) be maximal.
Suppose that al,ag,a3 be distinct vertlces 1n¥YA, and suppose
that ay andEH are connected through b1J € B. Let u1u2 be
any edge in ﬁf. Then G does not contain all six edges of
the form uibjk'

(Note that uy = aJ is permitted.) Assume this
fact is false, so that G does contain s such edges. Let
C be the set of vertices not in A or B, so |C| > N. Let.

c € C. Suppose G had two edges cay and cay. Then G would

contain the two paths alica‘j and ulbijuz' In F, adjoin these

two and delete the path aibijaj' This new graph 1s a

K"(A,B U fc}), contradicting the maximality of F. Thus

for any ¢ € C, there 1s at most one edge from ¢ to al,ae,a3.
Therefore, at least 2N edges join the a; to C in G, and

hence some ay has degree at least 2N/3. It 1s casy to sce
that this contradicts Fact 2 if n > 7.

Fact 5: Knc: G.

This fact follows easily from the well-known result
that r(K,K ) < (""]°), already proved in effect in [51].
(The paper [5] is reproduced on pages 5-12 of [9].)

We are now.ready to complete the proof of Theorem 1.
By Fact 5, G contains a K"(A,{#}) for some A. Let K"(A,B) = F
be maximal. By hypothesis, [B| < N; this will lead to a
contradiction. Let uju, be an edge of ﬁf. By Fact 3,
uy and u, are Jolned by at least 2N - 2L - 1 different paths
of length 2, the midpoints of which all must 1lie in A U B,
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by the maximality of F. Of these midpoints, n-2 1ie in A.
Thus 2N -~ 2L - 1 - (n-2) of these are in B, and therefore
correspond to edges in Hp. It 1s easy to check that

2N - 2L - 1 - (n-2) > [%? if n > 8. Because of this, some
three of these midpoints correspond to a triangle alaaa3 in

H,, the midpolints being of course b12’b23’b31' But this 1is

F?
Just the configuration prohibited by Fact 4. This contra-
diction completes the proof of Theorem 1.

Now we prove one final result which is very simple,
but interesting. Let G be a graph with 2n-1 vertices such
that K3 ¢ G and Kn Z G. Then G has diameter 2. To see this,
note, as we have before, that G cannot have a vertex of
degree as large as n. Hence every vertex of G has degree
at least n - 1. From this it i1s immedlate that any two
vertices are either adjacent or joined by a path of length 2.

We close with some remarks about Iimprovements and
generalizations of Theorem 1. We have already conjectured
that Theorem 1 actually holds for n > 3, and we have indeed
proved it for n = 3. The cases 4 < n < 7 remain open.
Although the methods of thls paper would certainly help,
dealing with these cases is likely to be tedious without
at least one new idea. A more 1mportant directlon is
reblacing_K3 by KL' Standard estimates of P(Kn’Kz) show
that_K"(n) cannot be f-good if £ > 3, but there 1s every

reason to believe that for cach £, K'(n) 1s f-good when n
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is large enough. In fact, as we have said, it should be
possible to extend the proof to this case fairly directly,
but we have not carried this out.

Ancther interesting generalization would be to
consider the subdivision graphs, or the modification we
have treated here, of arbitrary graphs, rather than just
K'(n) or K"(n). This may be easy, but it would not be
surprising if new difficulties arise. One might also
consider higher-order subdivision graphs SQ(Kn)’S3(Kn)"";
this 1s probably stralghtTorward. It may be more difficult
to deal with arbitrary, but fixed, members of Ktop(n), even
with the requlirement that all the paths joining the n specilal
points have lengths at least two. (Of course, some such
requirement 1s necessary, since Kn € Ktop(n), and Kn is

certainly not even 3-good.)

One further generalization of K'(n) is of interest.
Let {al,...,an} be a set of vertices, and for each triple
[ai,aj,ak} of them, Jjoln each to a new vertex bijk‘ TH
seems certain that if & 1s fixed, all large graphs of this
form are 2-good, and similarly for the obvious generaliza-
tions. Parts of our proof of Theorem 1 generalize easily;
some may not, especlally those using Turan's Theorem, since

these seem to need hypergraph versions of that theorem, and

such versions are not nearly as precise as for graphs.
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