AN EXTREMAL PROBLEM IN GRAPH THEORY

P. Erdős and E. Howorka*

The distance $d_G(u,v)$ between vertices u, v of a graph G is the least number of edges in any u-v path of G; $d_G(u,v) = \infty$ if u and v lie in distinct components of G. A graph G = (V,E) is distance-critical, if for each $x \in V$ there are vertices u, v (depending on x) such that $d_G(u,v) < d_{G-x}(u,v)$. Let g(n) denote the largest integer such that $|E| \leq \binom{n}{2} - g(n)$ for every distance-critical graph on n vertices. It follows from the results of this note that g(n) is of the order of magnitude of $n^{3/2}$; possibly, one has $g(n) \sim \sqrt{2} n^{3/2}$.

THEOREM 1. A graph G = (V,E) is distance-critical lift to each vertex x of G there corresponds a pair $(u,v) \in V$ such that $uv \notin E$, and $(yueE \ and \ yveE) \longleftrightarrow y = x \ for each \ y \in V$.

More generally, we are interested in the graphs G = (V,E) satisfying the following condition, where $[V]^T$ denotes the collection of the r-subsets of V:

(*) There is a mapping M from an n-element subset S of V into
[V]^T such that [yv∈E for each v∈M(x)] ← y = x.

Let $f_1(r,n)$ denote the largest integer such that $|[V]^2-E| \ge f_1(r,n)$ for every graph satisfying (*).

THEOREM 2. For each r there is a $\sigma_p > 0$ such that $f_{\frac{1}{2}}(r,n) \ge [\sigma_p + \sigma(1)] \cdot n^{1+1/r}$.

Proof: It is convenient to prove a slightly stronger statement: For each r there is N_r , $c_r^* > 0$, such that if G satisfies (*) with $n \ge N_r$

^{*} The second author was supported by NSF Grant No. MSC75-21130.

then $|\{uv\notin E: uv\cap S \neq \emptyset\}| \ge c_r' n^{1+1/r}$. The proof is by induction on r. The assertion clearly holds for r=1. Let $k\ge 2$ and suppose that the assertion holds for r=k-1. Let G=(V,E) be a graph satisfying (*) with r=k. Let S_0 be a maximal subset of S with the property that the k-sets M(x), $x\in S_0$, are pairwise disjoint.

CASE I: $|S_o| \ge n^{1/k}$. By assumption, for each fixed $x \in S_o$ and each $y \in S_o(M(x) \cup \{x\})$, at least one of the edges joining y and an element of M(x) is missing. Since the sets M(x), $x \in S_o$, are pairwise disjoint, at least $n^{1/k}$, $[n-(k+1)n^{1/k}] \sim n^{1+1/k}$ edges are missing.

CASE II: $|S_o| \le n^{1/k}$. Let $A = \upsilon(M(x); x \in S_o)$. Thus $|A| \le kn^{1/k}$. By the maximality of S_o , $A \cap M(y) \ne \emptyset$ for each $y \in S$. Let α be a function S + A such that $\alpha(y) \in M(y)$ for each $y \in S$. Let A_o denote the set $\{a \in A: |\alpha^{-1}(A)| \ge N_{k-1}\}$. Let $S' = \upsilon(\alpha^{-1}(a):a \in A_o)$. Since $|S'| \ge n - N_{k-1} kn^{1/k}$, we have |S'| = n + o(n). Consider a fixed $a \in A_o$. The mapping $M: x \mapsto M(x) - \{a\}$ defined on $\alpha^{-1}(a)$ satisfies the condition of (*) with r = k-1. By induction hypothesis, $|\{xy \ne E: xy \cap \alpha^{-1}(a) \ne \emptyset\}| \ge c_{k-1}^* n^{k/(k-1)}$ for sufficiently large n. Summing over all $a \in A_o$ and dividing by 2 (because each edge is counted at most twice) we obtain by an elementary estimate:

$$\left| \{ \text{xy/E: xy } \cap \text{S} \neq \emptyset \} \right| \geq \frac{1}{2} c^{\dagger}_{k-1}, \quad \frac{n + o(n)}{k n^{1/k}} \quad k n^{1/k} \sim \frac{1}{2} c^{\dagger}_{k-1} k^{-1/(k-1)} \cdot n^{1+1/k}.$$

This completes the proof.

Let $f_2(r,n)$ denote the largest integer such that $|E| \le {n \choose 2} - f_2(r,n)$ for every graph G = (V,E) satisfying (*) with S = V and $[M(x)]^2 \cap E = \emptyset$ for each xeV. Clearly, $f_1 \le f_2$ but we were not able to establish a better upper bound for f_1 then the following one for f_2 :

THEOREM 3. For $r \ge 2$, $f_{p}(r,n) \le [(r!)^{1/4} + o(1)] n^{1+1/4}$.

Proof: Let $r \ge 2$, n be given. Let $G_o = (V_o, E_o)$ be a regular graph of degree r containing no triangles, with $|V_o|$ nearly equal $(r!n)^{1/r}$. Let $M_o(x) = \{y: yx \in E_o\}$ for each $x \in V_o$. Let V_1 be a set, $V_1 \cap V_o = \emptyset$, such that there is a bijection

 $M_1:V_1 + \{W \in [V_0]^T: [W]^2 \cap E_0 = \emptyset \text{ and } W \neq M_0(x) \text{ for any } x \in V_0\}.$

Let G=(V,E) be a graph defined by $V=V_0\cup V_1$ and $E=E_0\cup \left[V_1\right]^2\cup \{xy\colon x\in V_1,\ y\in M_1(x)\}$. Then G and $M=M_0\cup M_1$ satisfy the conditions stated above. Moreover, $|V|\sim n$ and $\binom{n}{2}-|E|\sim (r!)^{1/r}$. The details are left to the reader.

We conjecture that for $r \ge 2$, $\lim_{t \to 1} (r,n)/n^{1+1/r} = \lim_{t \to 1} f_2(r,n)/n^{1+1/r} = (r!)^{1/r}$.

However, the optimal constants c_r calculated from our proof of Theorem 2 form a sequence converging to 0. In particular, one has $c_2 = 1/\sqrt{2}$. Since $f_2(2,n) = g(n)$, we have: $[1\sqrt{2} + o(1)] n^{3/2} \le g(n) \le [\sqrt{2} + o(1)] n^{3/2}.$

We suspect that, in fact, $g(\frac{1}{2}k(k-5)+k) = \frac{1}{2}k^3-3k^2+\frac{7}{2}k$. An example of a distance-critical graph realizing this bound is obtained from the proof of Theorem 3 by taking r=2 and $G_o=$ cycle of length k.

Hungarian Academy of Sciences and University of Florida

University of Florida.