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Abstract

A connected graph G of order n is called m-good if
r(Km ,G) = (m-1)(n-1) + 1 . Let f(m,n) be the largest
integer q such that every connected graph of order n
and size q is m-good and let g(m,n) be the largest
q for which there exists a connected graph G of order
n and size q which is m-good . Asymptotic bounds are
given for f and g .

1 . Tntroduction .

One of the most notable yet simply proved results in generalized

Ramsey theory is the theorem of Chvátal [5],

r(Km,T) = (m-1)(n-1) + 1,

	

(1)

where Km is the complete graph of order m and T denotes an arbi-

trary tree of order n . This result suggests many different avenues

for research . In fact, r(K
m

G) _ (m-1)(n-1) + 1 for every connected

graph G of order n and it is natural to seek to determine those

graphs for which equality holds . A connected graph G of order n will

be called m-good if r(Km ,G) = (m-l)(ri-1) + 1 . Chvatal's theorem

shows that every connected (n, n-1) graph is m-good and so suggests

the introduction of the following extremal functions . Let f(m,n)

denote the largest integer q such that every connected (n,q) graph

is m-good and let g(m,n) denote the largest integer q for which

there exists a connected (n,q) graph which is m-good . Our most pre-

cise results are for the case m = 3 and the major portion of this

paper will be devoted to this case . For this reason and in order to

gain simplicity of notation, we shall let f(3,n) and g(3,n) be

denoted f(n) and g(n) respectively .

Terminology and notation not specifically mentioned will be in

accordance with that in the well-known text of Harary [9] . A graph

with n vertices and q edges will be referred to as an (n,q) graph .

Our conventions with respect to Ramsey theory run as follows . Let

V = {v1,v2' . . .,v } denote a set of vertices . Then

	

2
p

	

[V]

	

denotes the
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set of all unordered pairs of these vertices . By a two-.eoZoring we
2

mean a partition fV] _ (.R,B), Equivalently, we ascribe to each edge

of the complete graph of order p a color, either red or blue . This

two-coloring defines two edge-induced graphs of order p and we use

<R> and <B> as symbols for these graphs . Let F and G be ordi-

nary graphs without isolated vertices . The statement Kp } (F,G)

means that if IVI = p then for every possible two-coloring (R,B) of

[V] 2

	

either <R> contains (a sub graph isomorphic to) F or <B>

contains G . In detail, either there exists a one-to-one map o : V(F)-V

such that {u,v} e E(F) implies {o(u),o(v)} c R or there exists a

one-to-one map T : V(G) } V such that {u,v) e E(G) implies

{T(u),T(v)} E B . The Ramsey number r(F,G) is the smallest natural

number p such that K
P

-> (F,G) . Properties of <R> and <B> will

be denoted in an obvious way . Thus, for example, if v e V, then NR(v)

and NB (v) denote the neighborhoods of v in <R> and <B> respectively .

Let X be a subset of V . We shall use the symbols X R(v) and XB (v)

to denote NR(v) n X and NB (v) n X respectively .

The arguments used in this paper are similar in nature to those

used by certian of the authors in other investigations . It may be

useful to the reader to refer to these studies, in particular to 12],

[3], and [4] .

2 . Lom order vaZues of the extremaZ functions .

The following table gives f(n) and g(n) for n <- 6 .

TABLE I . Low order values of f and g

n

	

f(n)

	

g(n)

2

	

1

	

1

3

	

2

	

2

4

	

5

	

5

5

	

7

	

8

6

	

8

	

12

194



For n = 4, these values are trivially determined . The values of

f(5) and g(5) are contained in the work of Clancy [6] . The (5,8)

graph K5 - P3 is 3-good and this graph provides us with the example

which shows that g(5) = 8 . It also shows that f(5) = 7 since

every connected (5,q) graph with q = 7 is a subgraph of K5 - P3

and, therefore, 3-good . The (5,8) graph K5 - 2K2 is not 3-good

and so f(5) = 7 . For n = 6 there is a strikingly similar situation .

The Ramsey numbers r(K 3 ,G) for all connected graphs of order six

have been determined by three of the authors [8] and we now draw upon

those results . The (6,12) graph K
6

-

the example which shows that g(6) = 12 .

since every connected (6,q) graph with

K6 - P4 . On the other hand, the (6,9)

Thus f(6) = 8 .

P4 is 3-good, and this is

It also shows that f(6) = 8

q = 8 is a subgraph of

graph K6 - 2K3 is not 3-good .

3 . AszYmptotic Bounds .

The results of the last section, though certainly interesting,

are probably in no way indicative of f(n) and g(n) in general . We

thus turn to the main subject of this paper, namely general upper and

lower bounds for these two extremal functions . Several preliminary

results are needed .

LEMMA 1 .1 . Let G be a graph of order n and Zet H = G - xo

where xo is a vertex of degree d in

If p = (d+1) (n-1) + 1 and K

	

(K
3
,H),p

	

P
Proof . Let V(G) _ [xo,xl, . . .,xn-1} and

degree d in G, its neighborhood being

195

G .

then K K3, G) .

suppose that x
0

is of

{xl,x2, . . .,xd} . With

H = G-xo suppose that Kp } (K3 ,H), and with

	

VJ = p let (R,B)

be a two-coloring of [V]2 such that <R> contains no K3 . Then

there exists an embedding o : V(H) -> V of H into <B> . Let Y

denote the set of vertices in V which are distinct from o(x1 ) . . . . 9

6(xn-1 ) and note that IYI = d(n-1) + 1 . If any vertex of Y

is adjacent in <B> to each of the vertices a(x1), . . .,o(xd), then

<B> contains G . If not, then at least one of the vertices o(x1), . . . I

o(xd ) has degree at least n in <R> . Since <R> contains no K 3 ,

this gives Kn , and so G, in <B> . F1



Armed with this result, we may now prove a general, albeit

crude, upper bound for r(K3 ,G) where G is an arbitrary (n,q)

graph .

LEMMA 1 .2 . If G is an (n,q) graph, then r(K3,G) = n + 2q .

Proof . The proof is by induction on n . Since G has no isolated

vertices, we start with n = 2 and G = K 2 where the result is

obviously true . With n > 2 let G be an (n,q) graph . Then G

has a vertex x 0 of degree d = 2q/n. Upon deleting this vertex,

we obtain the (n-1, q-d) graph H . Set p = n + 2q . Since

p > (n-1) + 2(q-d), it follows from the induction hypothesis that

K
P
} (K3 ,H) . In addition, p > (d+l)(n-1) + 1 . Consequently,

Kp -} (K3 , G) . 0

In what follow, the term suspended path is often used . A

suspended path of length k in a graph G is a path in G

{xo,xl, . . .,xZ} in which the vertices x 1 , x2 , . . , xQ-1 are each

of degree two in G .

LEMMA 1 .3 . Let G be a graph of order n . (a) Suppose that there

is a vertex of G which is of degree one and Zet H denote the

graph obtained by deZeting this vertex . If K2n-1
- (K3,H) then

K2n-1 ~ (K 3,G) . (b) Suppose that G contains a supended path of

Zength three, {u,v,,v2,w), and Zet H denote the graph obtained

from G by replacing this suspended path by one of Zength two,

{u,v,w). If K2n-1 } (K3,H) then K2n-1 } (K3,G) .

Proof. (a) This is a special case of Lemma 1 .1 . (b) With VI = 2n-1

let (R,B) be an arbitrary two-coloring of [V] 2 , and suppose that

<R> contains no K 3 and <B> contains no copy of G . Let o : V(H) ;V

be an embedding of H into <B> . Let X denote the set of vertices

of V which are exterior to this copy of H and note that

	

XI = n .

For simplicity of notation, let X R{o(v)} and XB{o(v)) be repre-

sented by just XR and XB respectively. Since, by assumption, <B>

contains no copy of G, every vertex in X B is adjacent to o(u)

and o(w) in <R> . It now follows that since <R> contains no K3 ,

the only edges of [X] 2 which can be in R are of the type {x,y}
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where x c XR and y c X B . If no such edge exists, then X spans

Kn in <B> . Rejecting this possibility, we note that if x e XR

is adjacent in <R> to some vertex y c X B , then x is adjacent in

<B> to both o(u) and o(w) . If there were two such vertices

xl ,x 2 , then the embedding of H could be extended to an embedding

of G, T : V(G) -> V by setting T(v1 ) = xl , T(Y2 ) = x 2 and T = o

otherwise . Thus, by assumption, there is a unique vertex x e XR

which is adjacent in <R> to one or more vertices of XB . Consider

the graph spanned by X together with o(v) in <B> . If IXB I = 1

then the graph spanned by X in <B> is complete except for one

edge . If
IXB1

= 2, then the graph spanned by X in <B> contains

a Kn_1 and o(v) is adjacent in

of this KIn either case, <B>

reached a contradiction . 0
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<B> to at least two vertices

contains G, and so we have

If neither hypothesis (a) nor (b) of the last lemma holds, then

there are some important consequences .

LEMMA 1 .4 . With k >= 0 Zet H be a connected (k,k+k) graph

which has no vertex of degree one and no suspended path of Zength

three . If k = 0, then H = C 3 and, otherwise, k 5k . This

bound is sharp .

Proof . If k = 0, then H is a unicyclic graph . Since there are

no vertices of degree one, H is, in fact, a cycle . Since there is

no suspended path of length three, H = C 3 . Now suppose that k = 1 .

Let h denote the number of vertices of degree at least three in H .

Since k

	

l, it follows that h

	

1. For each vertex v of degree

two in H, delete v and join the two vertices to which it is

adjacent by an edge . We thus obtain a multigraph M with h

vertices and h + k edges . Since M has no vertices of degree two,

3h 2(h+k) and so h 2k . Now if H is regained by inserting the

vertices of degree two, the fact that there is at most one such vertex

for each edge of M implies that there are at most 3k such vertices .

Consequently, k

	

5k. The simple example H = K22,3 shows that the

bound is sharp . 0



We are now prepared to prove general upper and lower bounds for

f(n) and g(n) .

THEOREM 1 . (a) For aZZ n = 4, f(n) _ (17n + 1)/15. (b) Let e > 0
be fixed. Then, if n is sufficiently large, f(n) < (27/4+f.)n(Zog n) 2 .

Proof . (a) With 0 = k = (2n + 1)/15, let G be a connected

(n,n+k) graph and suppose that K2n-1 ~ (K 3 ,G) . By repeated appli-

cation of Lemma 1 .3, if necessary, we obtain a connected (Z,k+k)

graph H such that (i) H has no vertex of degree one, '(ü) H

has no suspended path of length three, and (iii) K2n-1 ~ (K3,H) .
Since n

	

4, H ' C3 . Consequently, by Lemma 1 .4, Z = 5k . On the

other hand, Z = 4k; otherwise, by Lemma 1 .2, r(K3,H) = 14k - 3 < 2n-1

Let t denote the number of vertices of degree two in H . Then

2(k+k)

	

2t + 3(k-t) . Since k = 4k, it follows that t

	

2k. By

deleting as many vertices of degree two as necessary, we find a graph

F and a vertex x of degree

but K2n-1 _* ()K 3 ,F-x) . Since

2n-l, this contradicts Lemma

two in F such that K2n-1 } (K3 ,F)
F is of order = 5k and 3(5k-1) + 1

1 .1 and so the result is proved .

(b) Choose Z to be the least integer t such that r(K 3' Kt ) > 2n-1

Let G be the graph consisting of a K k together with a path of length

n Z attached to one of its vertices . Then G is a connected (n,q)

graph where q = (Z2 ) + (n-Z) and G is not 3-good . In [10], Spencer

reconsiders an early application of the probabilistic method by one of

the authors . Spencer shows that

r(K3 ,Kt ) > (1/27 - o(1))(t/log t) 2 .

Using this result, it follows that k is such that

when n is sufficiently large . 0

THEOREM 2 . There exist positive constants A and B such that

An312 (Zog n) 112 < g(n) < Bn513 (Zog n) 213

for all sufficiently large values of n .

Proof . The proof of the lower bound relies on a simple example

together with a recent result of Ajtai, Komlós, and Szemerédi [1],

namely r(K 3'Ks ) < cs2/log s for all sufficiently large values of s .

1 9 8

q

(2)

< (27/4 + c)n (log n ;



Set s = [Vn (log n)/6c] where c is the constant which appears in

the Ajtai, Komlós, Szemerédi result . Let t be the smallest integer

for which n - 1 - is < r(K3'Ks ) . Then Kn-1 _} (K3' tKs) and so

K2n-1 ; (K3' G), where G = K1 + H and H is the graph consisting of

t disjoint copies of K s together with n - 1 - is isolated vertices .

Thus G is a connected graph of order n and size q = t( s ) + n - 1

2which is 3-good . Using the fact that r(K K ) < cs/log s, our

choices for s and t yield q > An3/2 (log n) 1/2 , where A = 3-1 (6c) -1/2 .

The proof of the upper bound is based on a probability theorem due
i

to Lovász . This theorem was first used by Lovast and one of the authors

in [7], and it has been employed by Spencer to obtain lower bounds for

certain Ramsey numbers in [10] . A proof of the Lovast result and a

clear presentation of the strategy of its application are given in the

paper of Spencer and by referring to this paper the reader will have

no difficulty in following the present argument . The needed result is

contained in the proof of Theorem 2 .1 of Spencer's paper f10] . It is

expressed in purely arithmetic terms as follows . Let G be an arbitrary

(n,q) graph and suppose that there exist positive numbers a, b, and

P such that P < 1, aP 3 < 1, b(1-P) q < 1,

and

and we set N = 2n . It is easily verified that (3) and (4) are satisfied

when n is sufficiently large, provided that C 1 through C4 are

chosen so that

log a > 3NaP 3 + Nnb(1-P) q

a = Cl ,

b = exp(Can log n),

P = C3n
2/_3 (log n) 1/3

q _ fC4n5/3(10g n) 2/3 ] >

1 99

(3)

log b > 2n2aP 3 + N (1-P)q .

	

(4)

Then r(K3' G) > N . This is a typical application of the probability

method . If (3) and (4) are satisfied and the edges of KN are

randomly two-colored with each edge being red with independent probability

P, then there is a positive probability that <R> contains no K 3 and

<B> contains no copy of G . In our application of this result, we

introduce constants C 1 through C4 by setting

(5)

(6)

(7)

($)



Gl > 1,

C 3C 4 > C 2 + 1,

and

	

C2
> C1C33

These inequalities are satisfied by

Cl = 1 + e/2,

C2 = (1 + c)/2,

C = 2-1/3 ,
3

C 4 = 3 .2-2/3 + e,

where c > 0 . Thus, if q

	

{(3 .2 -2/3 + e)n5/3(log n) 2/3} and n is

sufficiently large, every (n,q) graph G satisfies r(K3 ,G) > 2n . D

4 . More General Results

We now turn to the general problem of estimating f(m,n) and g(m,n) .

The arguments which will be used are basically the same as in the case of

m = 3 . For this reason, we shall give only those proofs which require

some less than obvious modification of the corresponding argument for m=3 .

LEMMA 3 .1 . If m > 3 and G is an (n,q) graph, then

Proof.

	

The proof is by induction on m+n . The result has been proved

for all n where m = 3 (Lemma 1 .2) and it is clearly true for all m

where n = 2 . With n > 3 and q < ( 2) let G be an (n,q) graph .

With m> 4 set p

	

[(n+ 2q) a_

	

], where a

	

(m 1)/2 . With IVI

	

p
let (R,B) be an arbitrary two-coloring of [V] 2 and suppose that <R>

contains no KM and <B> ccntaíns no copy of G . Let x be a vertex

degree d = S(G) < [2q/n] in G and let H = G-x . By induction,

r(KM ,H) < p, so there must be an embedding a : V(H) } V of H into

<B> . Suppose that the neighborhood of x in G is {x l ,x 2	xd }

and consider the vertices a(xl), o(x2), . . , a(xd ) .
Since none of the p(n-1) vertices exterior to the copy of H can be

adjacent to each of a(xl),a(x2), . . .,a(xd),

	

in <B>, íf
p - (n-1) > (n-1) > d(r-1) + 1

	

then at least one of the vertices a(x l )

r(Kn,G) < (n + 2q) a,

where

	

a = (m-1)/2 .

20 0

(14)

(15)

of



through a(xd ) must have degree at least r in <R> . Finally, if we

set r = r(Km-1,G) we reach a contradiction to our assumption that <R>

contains no K and <B> contains no copy of G . The needed inequality

m hereis d(r-1) + n < p . By induction, we have r < (n + 2q) a-1/2

Using this inequality together with d < [2q/n], it is not difficult

to establish the fact that d(r-1) + n < p and so completes the proof . 0

LEMMA 3 .2 . Let G be a graph of order n and set p = n-1+r(m_1,G) .

(a) Suppose that there is a vertex of G which is a degree one and Zet

H denote the graph obtained by deZeting this vertex . If K
P

(Km, H) then Kp - (Km , G) .

(b) Suppose that G contains a suspended path of Zength m 2 - 3m + 4

and Zet H denote the graph obtained from G by replacing this

suspended path by one of Zength m 2 - 3m + 3 . If p - (m,H)
then p -> (K n, G) .

Proof .

	

With IVI = p let (R,B) be a two-coloring of [V] 2 and

suppose that <R> contains no Km and <B> contains no copy of G . In

view of the fact that K -+ (K H) and p = n - 1 + r(Km-1 ,G), we see
p

	

m
that there is a copy of H in <B> and, disjoint from this, a Km-1
in <R> . Let a • V(H) -} V be an embedding of H into <B> .

(a) Let v denote the vertex of degree one and let u be the vertex to

which it is adjacent in G . Then a(u) is adjacent in <R> to

all the vertices exterior to the copy of H,

	

in particular to

all of the vertices of the Km-1 in <R> . This gives Km in <R>

and so a contradiction .

(b) With t = m 2-3m+3 let {xl,x2, . . .,xt+1} be the suspended path in

H which, if lengthened by one, produces G . For use in the following

argument, define the successor operation TT by ~T(xi) - x
i = 1,2, . . .,t . Since <R> contains no Km , each vertex of

X = {a(xl),a(x2), . . .,a(xt)} is adjacent to at least one vertex of

the red Km-1 in <B> . Since t = (m-2)(m-1) + 1, this means that

there is a vertex v, one of the vertices of the red K m-l , such

that IXB (v)I > m-1 . Consider the set Y consisting of v

together with { - r(x)Ix e XB (v)} . Since, by assumption, the

suspended path cannot be lengthened to produce a copy of G, it

follows that Y spans a complete graph in <R> . Thus, we have

20 1



and

found a K in <R> and so a contradiction .
M

In addition to the preceeding lemmas, the theorem to follow relies

on certain information concerning the classical Ramsey numbers, I£

m > 3 is fixed, there are constants cl and c2 such that, for all

sufficiently large values of n,

m+l
n

	

2

	

m-1 log log n-
cl

	

log ni

	

< r(KM'Kn ) < c2 n

	

log n

	

(16)

Also, we shall assume a familiarity with Spencer's proof o£ the lower

bound in (16) by means of the Lovász theorem [10] . Having given this

orientation, we now give, without further discussion, the following

theorem .

THEOREM 3 . With m > 3 fixed, set a = 2/(m-1), = 4/(m+1), y =

m/(m-1), S = (m+2)/m and e = 1 - (2Then, there are positive

constants A,B,C,D such that, for aZZ sufficiently large values of n,

5. Question .

The bounds given in Theorem 2 and 3 leave much to be desired and,

in this sense, there are many open questions left by this work ., However,

there is one particular question which should be mentioned . It is

particularly annoying that we have not been able to answer this question .

Does f(n)/n -> - as n - -?

n + Ana < f(m,n) < n + Bn~(Zog n) 2

Cny < g(m,n) < Dn 6 (Zog W E .
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