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Abstract

4 commected graph & of order n is called m-goed If
rf_Km.G] = {m-1}(n-1) + 1. Let £{m,n} be the largest
integer g such that erery connected graph of order n
and sizge g is mwe-good and let gi{m,n) be the largest

g for which there erxiete a connected graph & of order
n and size q which 18 m—good. Asymptotic bounds are
given for £ and g,

1, Introdustion.
One of the most ootable vet simply proved results in generalized

famsey theory is the theorem of Chvital [5],
r{Em.T] = {m-1)(n-1) + 1, (1)

where Km is the complete graph of order m and T denptes an arbi-
trary tree of order n. This result stugpasts many different avenues
for research. In fact, r{ﬂm,ﬂi - {m-1)(n-1) + 1 for every connected
graph & of order m and 1t Is natural to seek to determine those
graphs for which equality holds. A connected graph G of order n will
be called m-good if r{Kn,G] = (m=1){n-1} + 1. Chvital's theorem
‘shows that every conmected (n, n-1) praph is m-good and so suggests
the introduction of the following extremal functions. Let fim,n)
denote the largest integer q such that every connected (n,q) graph
‘im m-good and let g{m,n)} derote the largest integer g for which
thers exists a comnected (n,q) graph which is m=good. Our most pre-
eise results are for the cage m = 3 dnd the major portion of this
peper will be devoted to this case. For this reason and in order to
gain simplicity of notation, we shall let £(3,n) and g(3,n) be
depoted f(n) and gin) tespectively.

Terminology and notation not specifieally mentioned will be in
-accordance with that In the well-known text of Harary [9]. A graph
with n wvertices and g edges will be referved to as an  (m,q) graph.
Dur conventiona with regpect to Ramsey theory run as follows. Let

= {vl.vz,...,vp} denote 4 set of vertices, Then {EIE denotes the

ARG COMBINATORIA, Wol. 10 (1980), pp. 193 — 203



set of all unordersd peirs of rhese vertices. By :a tuo-coloring we

mean a particion [1.r]2 = (R,B), Equivalently, we ascribe to each edge
of the complete graph of order p .a color, either red or blue. This
two-toloring defines two edge-induced graphs of order p and we use
<R> and <B» a3 symhols for these graphs, Let F and G be ordi-
nary graphs without lsolated vertices. The statement K? + (F,G)

means that if |V| = p then for every poselble two-coloring (R,B) of
['l.i']zl either <R> contains (a subgraph isomorphie ec) F or <Be
eontains €G. In derail, either there exists a one-to-one map of V{F}+V
such that {u,v) e E(F) dmplies {o(u),o(v)} & R .or there exists a
one-to-one map T V{8 + ¥ ‘such that {u,v} e E(G) impliea
{r{u),7{v}} ¢ B. The Aomeey rumber r(F,G) is the smallest matural
mmber p such that KF « (F,G). Propertles of <R* and <B> will
be denoted in an obvious way., Thus, for example, if w e ¥V, then NRfV}
and HE{y} denote the neighborhonds of v din <B» amd <B> respectively,
Let X be a subset of V. We shall use the symbols X (v) and st‘-'}
to denote NR[v} % and Nn{v} n X respectively.

The arguments used in this peper are similar in nature to those
used by certian of the suthers in other investigations. It may be
useful to the teader to refer to these studies, iIn particular te [2],
(3], and [4].

2. ILow order values of the extremal functiona.
The following table gives f(n) and g(n) for n = 6.

TABLE I, Low order values of f and g

n £(n) glnd

2 1 1

3 2 2

& 5 5

5 7 il

2] 8 12
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For. n i 4, rhese values sre trivially determined. The values of
£{5) and g(5) are containad in the work of Clancy [6]. The (5,8)
graph K,j - l":a iz 3-good and this graph provides us with the sxample
which showe that g(5) = 8. It also shows that €£(5) 27 since
every connected (5,q) graph with g - 7 is a subgraph of E_ - P

5 3
and, thereforas, 3=good. The (5,8) graph K. - ZK, is not 3-good

and so £(53) = 7. For n =6 there is a attikingli gimilar situatiom.
The Ramsey numbers I:(KS,G:I for all connected graphs of order gix
have been determined by three of the authors [8] and we now draw upon
= Pd is 3—good, and this is

the example which shows that g{6) = 12. It also shows that £(4) Z ]

those results. The (6,12} sgraph K

gince every conpected (6,q) graph with g 28 1s a subgraph of
Kﬁ - Pﬁ- On the other hand, the {(6,9) graph K& - ZR3 is not 3=good.
Thus £(6} = B.

3. Asymptotis Founde.

The results of the last section, though certainly interssting,
are probably In no way indicative of £(n) &nd g(n) in general. We
thus turn to the main suhject of this paper. namely general upper and
lower bounds for these two extremal funcrions. Several preliminary
Tesults are needed.

LEMMA 1.1, Fet & be g graphof ordsr #n and let H =06 - T,
whars z is a verter of degree 4 in 4.

>
If p= (d41)in-1) + 1 and Kp + (g, i), then hP - rna,GJ,

1} and suppose that L3 is of
. 3‘""'xd}' With
H = G-x_ suppose that K = (K,,0), and with vl = p 1let (R,E)
be a two—coloring of [Ef‘ such that <R* contains no K . Then

3
there exists an embedding o: V(H) =V @of H d1aco <B>. Letc ¥

Praof. Let V{(G) = {xn,xl...
degree d din G, its neighberhood being le.x

» g3
L]
n—

denote the set of vertices in ¥V which are distince from n(xl}...,.
olx ;) and note that |¥] = d{n-1) + 1. If any vertex of ¥

is adjacent in <B> to each of the vertices U{xli,...,a{xdl, then

<B= coptaing 6. If not, theo at least one of the vertices cr{'xl}l..‘.,
u{xﬂ} has degree at least n in <HB*». Since <R*> contains no K
this gives En' and go. Gy in <Bs, [
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Armed with this result, we may now prove a general, albeit
erude, uppar bound for r{KJ,G} where G d1s an arbitrary (n,q)

graph.

LEMMA 1.2. If G isan (nq) graph, them »(K,Gl = n + 2g.

Progf. The proof is by induction on n: Since. § has no leolated
vertices, we atart with n =2 and € = KZ where the result is
chviously true. With n > 2 let 6 be an (n.q) pgraph. Then G
has a vertéx n of degree d 3 2g/n. Upon deleting this vertex,
we obtaln the {n-1, g-d) graph H. Set p =n + Zg. Since

p = (o=1) + 2(q-d), it Follows from the industion hypothesis that
Kp * {'i'ij,EL In addieion, p > {(d+1)(n-1} + 1. Conseguently,

H.F > (Rqedy [

In what follow, the term suapended path iz often used. A
sugpended path of Iength % 4in a graph © 4= a path in G

{Hn.xl. i .,xg} in which the vertices are each

i LSRRl
of degree two in G.

LEMMA 1.3, Let & be a graph of order wn.  (a) Suppose that there
e a verter of & whioh {8 of degree one-and let B dencte the
graph obtotned by deletimg this verter. If K:m—.r + (KE_ B then
T {HS,EFJ. {b) Suppose that § oemtaing a supended path of
Length thres, [u,v?,nz,wl, and let F denote the graph cbtatned
feom G by replacing this suspended path by one of length twe,

(g t,u}. IF "(5'?: + IrKE,H} thew K +* f.l’a,-ﬂ'.-'.

En—-1

Froof. (&) This is a special case of Lemma 1.1, (b) With |V| = 2n-1
let (®,B) be an arbitrary two-coloring of [ﬁ.l']z. and suppose that
<R* contalns no K?r and <B> contains mo copy of G. Let o V(H)*V
be an embedding of H dinto <B». Let X denote the set of vertices
of V¥ which are exterior to this copy of H and note that [X| = o.
For gimplicicy of notation, let :{Riﬂﬂ\l‘)] anid }{E{l:rlhr]lf be repre-
gented by just XR and IE'- respactively, Since, by assumption, <B>
contains oo copy of G, every vertex in }LB is adjacent to oilu)
and o(w) 4dn =<R*. It now Ffollows that since <R> contains no !(3,
the only edges of [J'[]2 which can be in R are of the type {x.v}

1%




where = & xR gnd ¥ £ xa
Kn in <B», Rejecting this poseibility, we note that if =x= ¢ IR

iz adjacent in <R> to some VeTrLtex ¥ £ KB. then =x iz adjacent in

<B> to beth ofu) and ofw)., If there were two such vertices

« If no such edge sxists, then X spans

x| a¥gs then the embedding of H could be extended to an embedding
of 6, T: ViG) + ¥V by setting r{vl} =¥, Tivz} =i, and T = o
otherwise, Thus, by assumption, there i3 a wiigue verter X « KE
which is adjacent in <HE> Co one or more vertices of IB- Consider
the graph spanmed by X together with o(v) 1n <B>. If Jxﬁl =]
then the graph spanned by X in <B> 15 complete except for one
edge. IT |KE| 4 2, then the graph spanned by ¥ in <B* contains
a Kn—l and o{v) is adjacent in <B> to at least two vertices

of this Kn-l‘ In either case, <B* conteios G, and 0 we have

reached a contradiction. [J

If neither hypothesis {a) nor (b} of the last lemma holds, then

there are some Important consequences.

LEMMA 1.4, With k= 0 Tet H be a donnected (L, 04%) graph
which hae no varter of degree one and no suspended path of length
three. If k=0, then H 0, and, otherwise, & = &k This
bownd 18 sharp.

Progf., TE k=10, 'them H dis a unieyclic graph. Since there are
no vertices of degree one, H 48, in fact, a cycle. Since there is
no suspended path of length three, H = EE' Kow suppose that k =1,
Let b denote the number of vertices of degree at least three in H.
Since k : 1, 1t follows that h Z 1. For each vertex v of degree
two in H, delete v and join the twe vertices to which it is

adjacent by an edge. We thus obtain a multigraph M with h

vertices and h + k edges. Since M has no vertices of degree twa,
Ih ) 2{h+k) and so h g 2k. How if H dis regained by inserting the
vertices of degree two, the fact that there is at most one such vertex
for each edge of ™ implies that there are at moest 3k such vertices.
Consequently, 2 = 5k. The gimple example H = KE.E shows that the
bound is sharp. [
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We are now prepared to prove genaral wpper and lower bounds for
f(n) and gin).

THEOREM 1. () Forall n =4, finl = (i7n+ 10/15. (b} Let &> 0
ba fired, Then, ©f n fo sufficiently large, Fin) < (E7/4+elnllog w.

Proof. (a) With 0=k = (2n + 1)1/15, let G be a connected

{n,n+k} graph and suppose that K - {KB,C]. By repeated appli-

cation of Lemma 1.3, if n&cessary.zgalcbtuin a conpected (%, R+k)
graph H such that (1) W has oo vertex of degree one, "(ii) H
has mo suspended path of length three, and ({11} KZH— -+ (KB,H}.
5k. 0On the

14k - 3 < 2p-1 .,

Since o = &, HF cj. Consequeéntly, by Lemma 1.4, &
other hand, & = &k; otherwise, by Lemma 1.2, r(Ry, H)

L

Let t denote the pmumber of wertices of degree two In H. Then

2(E+k) = 2t + 3(0-t). Since & = &4k, it follows thar ¢t = k. By
deleting as many vertices of degree two as necesgary, we find a graph

¥ and a vertex x of degree two im F such that Kanl + (K3,F}

but Kyl = fKE,P“K}+ Since F 1s of order = 5k and 3(5k-1) + 1 =
in-1, this contradicts Lemma 1.1 and so0 the result is proved.

(b} Choose L to be the least integer t guch thac r(Rq.K.) > 2n-1
Let G he the graph consistingof a KL tegether with a path of length
n - £ attached to one of its vertices., Then G 18 a connected (m,q)
graph where g = ﬂ;} + {n=L} and G ds not J=good. In [10], Spencer
reconsidérs an early application of the probabilisele methed by one of

the authors. Spencer shows that

F(KgK ) > (1427 - o(1))(t/1og )2, (2)

Using this result, it follows that & is such that g < (27/4 4+ g)n (log n
when n 15 sufficiently large. [0

THEOREM 2. There exist pogitive constants A od B suck that

Aﬂsjzflﬁg HJIIE 5/ 2/

< gin) < 80" (log w)
For all euffieiently lowe values of w.

Proaf. The proof of the lower bound relies on a simple example
together with a recent result of Ajtai, Knmlés, and Szemerédi 1],

namely r(ﬂs.Ks} < Eszflcg & for all sufficlently large walues of =.




Set s = [/n (log n)/6e] whers ¢ is the constant which appears in

the Ajtai, Komlba, Sgemerddl result. Let t be the smallest inteper

for which n - 1 = tn € 'L'{Ks.l'}. Then K__, * {Ka.t‘x‘} and B0

K!n—l - :xg,c}, whare § = Iil +H and H is the graph consisting of

t disjoint copies of l together with m - 1 - ts8 Jlsolated vertices.

'lhuGislmm:Hd[rlphntanErnmﬁui“ q-l‘.[}'l'n-l

which is 3-pood. Using the fact thac r(la.l ) < 8 .r"log By ﬂlﬂ'

choices for s and t yield gq = Anyz ”z. where A =3 (fa 1l
The proof of the upper bound is based on a probability theorem dus

to Lovisz. This theorem was first used by Lwn';: and one of the authors

1z

in [7], and it has been employed by Spencer to obtain lower bounds for
certain Ramsey numbers in [10]. A proof of the LovEsx result and a

clear presentation of the mtrategy of its application are givem in the
paper of Spencer and by referring to this paper the reader will have

no difficuley in following the preseat argument. The nesded result is
contsined in the proof of Theorem 2.1 of Spencer's paper [10]. It is
expressed in purely arithmetic terms as follows. Let € be an arbitrary
{n,q) graph and suppose that there exist positive numbers a, b, and

P such that P <1, apc <1, b(1-m9 <1,

log & > MaP® + Wb (1-p)9 (1

and
tog b > JHnZar” + W% (-0)%. (4)

Then r(tj.ﬂ“} > H. This is a typilcal application of the probabilicy
method. If (3) and (4) are satisfied and the edges of K. are
randomly two-calored with each edge being red with independent probability
P, then there is a positive probability that <R*» contains no K, and
«B> contains no copy of G. In our application of this result, we

introduce constants !.‘.1 through E# by setting

a=0C, (5}
b = exp{Cgn log n), (6
P = 3“2'(3 (log n}u?' (7}
q = (e 210 ;' (@)

and we set N = 2n. It is easily verified that (3) and (4) are satisfied
when n is sufficiently large, provided that 01 through Cﬁ are
_ghosen so that




¢, > L (9)
::3::4 g+ 1, {10}

and 3
5% €€y . (11)

These inequelities are gatisfied by

¢, =1+ ef2, (12}

¢, = (1 +e)/2, (13)

Gl 2“1"f3, (143

G, = 377207 4 £, (15)
where ‘e = 0: Thua; 45 ¢ =022 4 3 hog wiH 23 wad-m da

sufficiently larpe, every (n,q) graph G satisfies ftxgrﬁl > 2n. O

4. More Gensral Results

We now turn to the gemeral problem of estimating f£{m,n} and g(m,n).
The arguments which will be used are basically the same as in the case of
m= 3, For this reason, we shall give only those proofs which require

aome less than obvious modification of the corresponding argument for m=3.

LEMMA 3.1.. If m=>=Jd and & 18 an (n,ql graph, then

k6] £ (n+ 24)°,

where a = (m-1}/2.

FProof . The proof is by induction on min. The reault has been proved
for all n where m = 3 (Lemma 1.2) ‘and 1t is clearly true for all m
where n=2. With n > 3 and q 2 EE} let 6 be an (n,q) graph.
With m = 4 get p=[{n+ quu], where o = (m=1}/2. W%ith |Vv| =
let (R,B) be an arbitrary two-coloring of [‘l.Fl2 and suppose that <R>
containg no KTE and <B> contalns no copy of G. Let x be a vertex of
degree d = &(6) £ [2q/n] in G and let H = G-x. By inductiom,
r(K_:H) £ P, 80 there must be an embedding o: V(H) + ¥ of H inta
“B= . Suppoge that the neighborhood of = iIn G is fxl,xz.---,xd}
and consider the vertices -:ri_'xl), -:[xzj, Py c-(xd},

S8lnce none of the pin-1) vertices exterior to the copy of H can be
adfacent to each of a{xlj,Q{xz},....q{xﬂ}. in =B=, If

p = {n-1} z (n-1) > d(r-1) + 1 then at least one of the vertices 2%,
1




through u(xdj must have degree at least r 4n <R* . Finally, if we
set r© = r(I{m_l.G} we reach a contradictiom to our amsumption that <R»
contains no K and <¥> contains no copy of G. The needed inequality
here is d{r-1) +n < p. By inductiom, we have r < (n + Eun'-lﬂ.
Using this inequaliry together with d £ [2q/n], 41t 1is not difficult

to establish the fact that d(r-l) + o £ p and so completes the proof. [J

LEMMA 3.2. Iet G be a graph of order n and set p = n-I+r(k__ ..G).
fa) Buppoze that thers {a a verter of 6 whick o a degree ons and let
H denoie the graph cbbained by deleting this vertex. If K =+

hy
I'Km,EJ then Kp* f'Km,{?J'.

fd) Suppoge that ¢ containe a suepended path of Length me - am o+ 4
and Iet § denote the graph obtained frem G by replacing thie
suspended path by ome of length - ey Ir zp+rxm,E}
then !% - (E_,C).

Procf. With |v| =p let (R,B) be a two-coloring of [‘ln‘n"]z and
suppose that <R contalns no "m and <B* contains no copy. of G. In
view of the faet that ]{F - ﬂ{m.H} and p=n =1+ r{K‘_l,H}. we saa
that there is a copy of H in '<B> and, diajeint from this, a K1
in <R>. Let o: V(H) + V be an embedding of H into <B> .

{a) Let v denste the vertex of degree one and let u be the vertex to
which it is adjacent in G. Then c{u) is adjacent in <R> to
all cthe vertices exterior to the copy of H, in particular to
all of the vertices of the ‘-—l in <E». This gives I- in <>
and so a contradictionm.

(b) With t = m°-3m+3 let (% 2%,00002% 1] be the suspended path in

H which, if lengthened by one, produces G. PFor use in the following
argument, define the sutcessor operation w by ul::i} = Xyt

i=1.2,....t. Since <K* contains no I., eiach vertex of

= {atxll.u{::}.....n(:t]] is adjacent to at least one vertex of
the red l-l in <B> . Since £ = {(@2)(m=1) + 1, this means that
there is a vertex v, one of the vertices of the red K_,., such
that |J|‘.B(v)] > m-l. Consider the set ¥ consisting of v
together with {n(x)|x ¢ I.B{VH. Since, by assumption, the
guspended path cannot be lengthened to produce a copy of G, it
follows that Y spans a complete graph in <R>. Thus, we have




found a Rm in <B> and so a contradiction. ]

In addition to the preceeding lemmas, the theorem to follow relies
on certain information concerning the classical Ramsey numbers, If

m = 3 is fixed, there are constants ¢ and e such that, for all

1 2
sufficiently large values of n,
mrtl
L, L I m-1 log log n-
ey (_Iﬂg =] < r{Km,[-:n} <g,m propemd {16)

Aleo, we shall apsume a familiarity with Spencer's proof of the lower
bound in (16) by means of the Lovdsz theorem [10]. Having given this
orientation, we now give, without further discussion, the following

theorem.

THEOREM 3. Widh m > @ flred, set a = 8/(m-1), B =4 im1), y=
mf(m=1), &'=Tmd)/m and e=1- {".EJ_I, Then, thepe ape pogiiipe
eongtants A, 5,0, sush that, for all sufficiently large values of #,

n+n® < fimn) <n+ anrlag :«:,l2

and §
on' < glmn) < Dn'(leg n) ",

&. Question.

The bounds given in Theorem 2 and 3 leave much to be desired and,
in this sense, there are many open questions left by this work, However,
thera is one particular question which should be mentioned. Tt s
particularly amnoying that we have not been able to answer this gquestion.

Does fin)/fn+= as n =+ =}
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