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The problem of our title was suggested by a question concerning

the Ramsey numbers of pairs of k-uniform hypergraphs . We will de-

scribe this question first .

An early result in the generalized Ramsey theory for graphs is

given by the following theorem [21 .

Theorem . (Chvátal, Harary) Let 2K 2 denote the graph with four

vertices and two edges, these two edges being disjoint, and let GN

denote a graph with N vertices, none of which is isolated . Then

the Ramsey number of this pair is given by

(1)

	

r(2K2 ,GN ) = N + 2 if GN is complete, and

(1') r(2K 2 ,GN ) = N + 1 if GN is not complete .

Let KN denote the complete k-graph on N vertices, that is,

the k-uniform hypergraph whose edges are the (k) k-subsets of a set

of N vertices . The Ramsey number of a pair of k-graphs is defined

as for graphs in terms of the 2-colorings of the k-sets which are

the edges of a complete k-graph . Let sKk denote a k-graph which

is a matching with s edges . That is, sKk has sk vertices and

s edges, no two of which intersect . The question of determining

the Ramsey number of a pair of k-graphs, one of which is a matching,

arose in connection with work done by the first author and S . Burr [1] .

(The Ramsey number of a pair of graphs, one of which being a matching,

recently been

Equation (1)

(2 )

	

r(sKk,KN) =

has

To show that

considered by Faudree, Schelp, and Sheehan [6] .)

can easily be generalized to k-graphs as follows :

N + k(s - 1) for N > k .

the Ramsey number is at least N + k(s - 1), we

2-color the edges of the complete k-graph on N + k(s - 1) - 1 vertices

in such a way that all of the edges of some complete sub-k-graph with

ks-I vertices are given color one and all other edges are given color
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two . Then there is no matching of s edges all having color one,

while each set of N vertices includes at least k vertices, and

hence an edge, in the complete subgraph . An easy argument by in-

duction on s establishes the inequality in the opposite direction .

If we replace the complete k-graph in (2) by a k-graph on N

vertices which is not complete, the value of the Ramsey number may

not decrease when k > 3 . For example if KN - K3 denotes the 3-

graph obtained by deleting a single edge from KN , we have

(3) r(sK3,K 3 - K3) = r(sK3,K 3 = N+ 3(s- 1), for N > 3s- 2 .

This follows from the existence of a system of triples on 6

points in which each set of four points spans two triples and no

two of the triples are disjoint . The collection (1,2,3), (1,2,6),

(1 3,4) , (1,4,5) , (1,5,6) , (2 3,5) , (2,4,5) , (2,4,6) , (3,4, 6) , and

(3,5,6) forms such a system. Assigning one color to the triples

of s-1 disjoint copies of this system, thought of as edges of the

complete 3-graph on N + 3(s- I)- 1 vertices, yields the required

2-coloring, since then each set of N vertices must include at

least four vertices in some one of these copies .

If in (2) the complete k-graph is replaced by a k-graph in which

more than one of the possible edges is missing, the value of the Ram-

sey number may decrease . Let r(s,N,t ; k), N > k, denote the least

integer m such that every 2-coloring of the edges of a complete k-

graph on m vertices produces either a matching with s edges all

in the first color, or some k-graph obtainable from KN by the de-

letion of t edges which in this 2-coloring has all of its edges in

the second color . Equivalently, each 2-coloring produces either a

matching with s edges in the first color or a complete k-graph on

N vertices with at most t edges in the first color . By fixing a

set C of ks- 1 vertices in the complete k-graph on N+k(s- I)-

2 vertices and assigning color one to each edge has all of its ver-

tices in C and a second color to all other edges, we obtain a 2-

coloring in which there can be no matching of s edges all of the

first color and such that each complete sub-k-graph on N vertices

contains at leastt k + 1 edges in that color . Similarly, by fix-

ing a set C of (k- 1)s- 1 vertices in the complete k-graph on
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N + (k - 1)(s - 1) - 1 vertices and assigning color one to those

edges having at least k - 1 vertices in C we produce no matching

of s edges in color one and no subgraph on N vertices having

fewer than n - k + 1 edges in that color . Hence we have

(4)

	

r(s, N, t ; k) > N + k(s - 1) - 1, for t < k + 1, and

(4') r(s, N, t ;k) > N + (k - 1)(s - 1) , for t < N

	

k + 1

For s = 2 (2), (4), and (4') yield

(5) r(s, N, t ; k) = N + k or N+k- 1 if either t <k+1 or

t < N - k + 1 .

For N sufficiently large we have r(s, N, t' ;k) < r(s, N, t ; k)

whenever t' > t . It follows that there exists a value t 0 (k)

such that

(6) r(2, N, t ; k) = N + k, for 0 < t < t 0 (k) , and

r(2, N, t ;k) =N+k - 1, for t0 (k) < t <N - k+1 .

The results (1) and (1') show that t0 (2) = 1, while (3) shows

that t0 (3) > 2 . By considering several cases it can be shown that

any 2-coloring of the edges of the complete 3-graph on N + 2 ver-

tices which is such that each pair of vertices miss at least three

edges of color one must produce at least two disjoint edges in that

color . It follows that t 0(3) = 2 .

Examples which we will describe later establish that t 0 (4) > 3

These facts suggest the possibility that t 0 (k) = k - 1 in general .

Before considering when this is so, it will be convenient to reformu-

late this question .

We have that t 0(k) < k - 1 if and only if whenever a 2-coloring

of the edges of the complete k-graph on n = N + k - 1 > 2k vertices

is such that each complete sub-k-graph on N vertices contains at

least k edges of color one, then there must be at least two dis-

joint edges in that color . Equivalently, t0 (k) < k - 1 if and only

if whenever a 2-coloring of the edges of K k , n > 2k, is such thatn

	

-
each subset of k - 1 vertices misses at least k edges of color

one, then there are at least two disjoint edges in color one . Con-

sidering those sets of edges given color one by the possible 2-
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colorings of K k we are led to the following conjecture,
n

Conjecture . Given k and n, n > 2k, if H is a k-graph on n

vertices which is such that each subset of k - 1 vertices of H

misses at least k edges of H, then H must possess at least

two disjoint edges .

Note that if each subset of K vertices misses a single edge,

then, trivially, there are two disjoint edges, while for each posi-

tive integer Y there is an integer n(,f) such that for any n >

n(X) there is a k-graph on n vertices with no two disjoint edges

and in which each subset of k - 2 vertices misses at least .C

edges,

The results concerning t 0 (k) show that the conjecture is

true for k = 2 or 3 and any n > 2k, The conjecture is also

correct for each k > 2 when n = 2k, This can be seen as follows .

Consider a k-graph H whose vertices are the integers 1 , 2 , . . .,2k,

and suppose that each subset of k - 1 vertices misses at least k

edges of H , Then there are at least k edges having their verti-

ces in the set C = {1, 2, . . ., k + 11 . We may assume that each k-

element subset of C, other than possibly {1, 2, . . ., kJ, is an

edge of H . Similarly, the (k + 1)-element set {k- 1, k+2, k+3,

. . ., 2k} must contain k edges, so at least one of ík- 1, k +2 9

k+3, .,,, 2k} and {k, k+2, k+3, , .,, 2kJ

	

is an edge of H

But the complements in H of these two k-sets are edges in C ,

Thus H contains a pair of disjoint edges .

The conjecture is correct for arbitrary k > 2 and sufficiently

large n if we assume that our k-graphs have no isolated vertices .

In this case, for n large, our k-graph contains a large "L1-system"

(see [4] or [5j), that is, a large collection of edges which is such

that the intersection of any two of them is equal to the intersection

of all of them . If no two edges are disjoint, then the common inter-

section, say A, of the edges in our A-system satisfies 1 < IA) <

k - 1 , Let B be a set of vertices with A C B, jBI = k - 1 , An

edge which misses B must meet each edge of the A-system, but can

not meet any two of them in the same vertex, which is impossible,

(When considering the sub-k-graph induced by one of the colors of an
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s-coloring of a complete k-graph we may have isolated vertices, so

this result does not apply directly to the question of Ramsey num-

bers .)

The first examples which we were able to find showing that the

conjecture is not correct in all cases were a family of hypergraphs

H (k) , k > 2, constructed by Erdös and Lovász [3] . Here H (k) is

a 3k-graph on n = 7 k vertices, with no two edges disjoint . These

hypergraphs are defined recursively as follows : Let H (1) be the

7-point Fano plane, viewed as a 3-graph with vertex set {1,2, . . ., 7}

and the 7 lines of the plane as 3-edges . Let Hi, i = 1, 2,

	

7 ,

be seven disjoin' copies of H (1) and define H (2) to be the 9-

graph having as edges all of the sets Ei1 U Ei 2 U Ei3 , where Ei

is an edge of H, and {i , i

	

i f is an edge of H( 1 ) . In gen-
e

	

1

	

2'

	

3
eral, H (k) is formed by taking one copy of H (1) for each vertex

of H (k-1) , and taking as an edge each 3 k-set which is the union

of one edge from each of a set of 3
k-1 copies of H (1) corre-

sponding to the 3
k-1 vertices of some edge of H(k-1) .

Peter Frankl private communication was soon able to provide

much simpler counterexamples for each even k, k > 6, For each

such k Frankl constructed a k-graph H on 3k-3 vertices by

letting Xl , X 2 , and X 3 be three disjoint (k - 1)-sets and tak-

ing as an edge of H each k-subset of X 1 U X 2 U X3 having exactly

k/2 vertices in each of two of the X,
i

By combining ideas from these two constructions we can now

give counterexamples to the conjecture which are vertex 2-colorable

as hypergraphs and for which the number of edges is given by a poly-

nomial in k . To obtain such a k-graph we let X 1 , X 2 , and X 3 be

three disjoint copies of a finite geometry on p 2 + p + 1 points .

We then form a (2p + 2)-graph with vertex set X l U X 2 U X3 by

taking as an edge each set which is the union of one line from each

of two of the X . . The resulting hypergraph has 3(p 2 + p + 1) 2
i

edges, no two of which are disjoint, and is such that each set of

2p + 1 vertices misses at least p(p 2 + p + 1) edges,

These examples show that the conjecture is not correct in gen-

eral, but many questions remain . Some of these are the following :
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Question 1 . What is the smallest value of k for which there is

a counterexample to the conjecture?

From the results above we know that this value is 4, 5 or 6 .

Question 2 . Given that there is a k-graph which is a counterexample

to the conjecture, what is the smallest number, m(k) , of edges in

such a counterexample?

The examples above show that for certain k we have m(k) < ck 4 .

Is m(k) = o(k 4 ) possible?

Question 3 . Given thac the conjecture is not correct for some value

of k, what is the smallest number, n(k), of vertices in a counter-

example for this k?

We know that n(k) > 2k and that n(k) < 3k for k even,

k > 6 .

Question 4 . We have seen that if we do not allow "isolated vertices",

then the conjecture is true for sufficiently large n . What is the

smallest value, n 1 (k) , such that the conjecture is true for all k-

graphs with n vertices, n > nI (k) , and no isolated vertices .

Many other questions may be asked . For example, suppose that

each subset of k - 1 vertices misses more than k edges . When

does this imply the existence of two disjoint edges? How many edges

must each (k - 1)-set miss? What conditions imply the existence of

s pairwise disjoint edges, s > 2 ?

Finally we mention a similar and apparently very difficult

question which was posed several years ago in a paper by one of us

with L . Lovász [3~, Suppose H is a k-graph in which each subset

of k - 1 vertices misses at least one edge and H has no two dis-

joint edges . What is the minimum number, mil(k), of edges in such

a k-graph? It is known that m 1 (k) < k3/2 +E, but perhaps m l (k) <

ck for some constant c . In fact, it may be that mI (k) < 3k .
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