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The problem of our title was suggested by a question concerning
the Ramsey numbers of pairs of k-uniform hypergraphs. We will de-
scribe this question first,

An early result in the generalized Ramsey theory for graphs is
given by the following theorem [2].

Theorem, (Chvatal, Harary) Let 2K, denote the graph with four

vertices and two edges, these two edges being disjoint, and let GN

denote a graph with N vertices, none of which is isolated. Then

the Ramsey number of this pair is given by

]

(1) r(ZKZ,GN} N+ 2 if G, is complete, and

N

(') r(ZKz,GN) N4+1 if G is not complete,

N

Let K; denote the complete k-graph on N vertices, that is,
the k-uniform hypergraph whose edges are the (ﬂ) k-subsets of a set
of N wvertices, The Ramsey number of a pair of k-graphs is defined
as for graphs in terms of the 2-colorings of the k-sets which are
the edges of a complete k-graph. Let sK: denote a k-graph which
is a matching with s edges., That is, sK: has sk vertices and
s edges, no two of which intersect, The question of determining
the Ramsey number of a pair of k-graphs, one of which is a matching,
arose in connection with work done by the first author and S. Burr [11.
(The Ramsey number of a pair of graphs, one of which being a matching,
has recently been considered by Faudree, Schelp, and Sheehan [6].}

Equation (1) can easily be generalized to k-graphs as follows:
k
(2) r(sKh,K;;) =N+k(s -1) for N2>k,

To show that the Ramsey number is at least N + k(s - 1), we
2-color the edges of the complete k-graph on N + k(s - 1) = 1 wvertices
in such a way that all of the edges of some complete sub-k-graph with

ks-l vertices are given color one and all other edges are given color
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two, Then there is no matching of s edges all having color one,
while each set of N vertices includes at least k vertices, and
hence an edge, in the complete subgraph. An easy argument by in-
duction on s establishes the inequality in the opposite direction,
If we replace the complete k-graph in (2) by a k-graph on N
vertices which is not complete, the value of the Ramsey number may
3

not decrease when k > 3. For example if K; - K3 denotes the 3~

graph obtained by deleting a single edge from K; , we have
(3) r(sKi,Kg - Kg) = r(sKg,K;) =N+3(s-1), for N> 3s-2.

This follows from the existence of a system of triples on 6
points in which each set of four points spans two triples and no
two of the triples are disjoint. The collection (1,2,3), (1,2,6),
(1,3,4), (L,4,5), (L,5,6), (2,3,5), (2,4,5), (2,4,6) , (3,4,6), and
(3,5,6) forms such a system, Assigning one color to the triples
of s-1 disjoint copies of this system, thought of as edges of the
complete 3-graph on N + 3(s=-1)-1 vertices, yields the required
2-coloring, since then each set of N wvertices must include at
least four vertices in some one of these copies,

If in (2) the complete k-graph is replaced by a k-graph in which
more than one of the possible edges is missing, the value of the Ram-
sey number may decrease, Let r(s,N,t;jk), N > k, denote the least
integer m such that every 2-coloring of the edges of a complete k-
graph on m wvertices produces either a matching with s edges all
in the first color, or some k-graph obtainable from Kk

N
letion of t edges which in this 2-celoring has all of its edges in

by the de-

the second color, Equivalently, each 2-coloring produces either a
matching with s edges in the first color or a complete k-graph on
N vertices with at most t edges in the first color, By fixing a
set C of ks-1 wvertices in the complete k-graph on N+k(s-1).
2 wvertices and assigning color one to each edge has all of its ver-
tices in C and a second color to all other edges, we obtain a 2-
coloring in which there can be no matching of s edges all of the
first color and such that each complete sub-k-graph on N vertices
contains at least k+1 edges in that color, Similarly, by fix-

ing a set C of (k=-1l)s=-1 wvertices in the complete k-graph on
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N+ (k=-1)(s - 1) -1 wvertices and assigning color one to those
edges having at least k - 1 vertices in C we produce no matching
of s edges in color one and no subgraph on N vertices having

fewer than n - k + 1 edges in that color. Hence we have

(4) (s, N, t;k) >N+k(s-1)-1, for t<k+1, and

(') r(s, N, tjk) =N+ (k-1)(s~-1), for t<N=-k+1,
For s =2 (2), (4), and (4') yield

(5) r(s, N, t jk) =N+ k or N+ k-1 if either t <k + 1 or
t<N-k+1,

For N sufficiently large we have r(s, N, t' ;k) = r(s, N, t; k)

whenever t' > t, It follows that there exists a value to(k)

such that

(6) r(2, N, t;k) =N+ k, for 0<¢t < tO(k)’ and
r(2, N, t jk) =N+ k-1, for to(k) <t<N=-k+1,

The results (1) and (1') show that t0(2) =1, while (3) shows
that t0(3) > 2, By considering several cases it can be shown that
any 2-coloring of the edges of the complete 3-graph on N + 2 ver-
tices which is such that each pair of vertices miss at least three
edges of color one must produce at least two disjoint edges in that
color. It follows that t(3) =2.

Examples which we will describe later establish that to(ﬁ) >3,
These facts suggest the possibility that to(k) =k =1 1in general,
Before considering when this is so, it will be convenient to reformu-
late this question.

We have that to(k) =k =1 if and only if whenever a 2-coloring
of the edges of the complete k-graph on n =N+ k - 1 > 2k vertices
is such that each complete sub-k-graph on N wvertices contains at
least k edges of color one, then there must be at least two dis-
joint edges in that color. Equivalently, to(k) =<k-1 if and only
if whenever a 2-coloring of the edges of Kﬁ , n =2k, is such that
each subset of k - 1 wvertices misses at least k edges of color
one, then there are at least two disjoint edges in color one, Con-

sidering those sets of edges given color one by the possible 2-



colorings of K: we are led to the following conjecture,

Conjecture, Given k and n, n > 2k, if H 1is a k-graph on n
vertices which is such that each subset of k - 1 vertices of H
misses at least k edges of H, then H must possess at least

two disjoint edges.

Note that if each subset of K vertices misses a single edge,
then, trivially, there are two disjoint edges, while for each posi-
tive integer £ there is an integer n(£) such that for any n >
n(£) there is a k-graph on n vertices with no two disjoint edges
and in which each subset of k - 2 vertices misses at least £
edges,

The results concerning to(k) show that the conjecture is
true for k =2 or 3 and any n > 2k, The conjecture is also
correct for each k > 2 when n = 2k, This can be seen as follows.
Consider a k-graph H whose vertices are the integers 1,2, ..., 12k,
and suppose that each subset of k - 1 wvertices misses at least Kk
edges of H, Then there are at least k edges having their verti-
ces in the set C = {l, By wiazg Ko 1} . We may assume that each k-
element subset of C, other than possibly {1, . k}, is an
edge of H, Similarly, the (k + l)-element set {k-1, k+2, k+3,
.v., 2k} must contain k edges, so at least one of {k-1, k+2,
k43, ..., 2k} and {k, k42, k+3, ..., 2k} is an edge of H.

But the complements in H of these two k-sets are edges in C,
Thus H contains a pair of disjoint edges.

The conjecture is correct for arbitrary k > 2 and sufficiently
large n if we assume that our k-graphs have no isolated vertices,
In this case, for n large, our k-graph contains a large "A-system"
(see [4] or [5]), that is, a large collection of edges which is such
that the intersection of any two of them is equal to the intersection
of all of them, If no two edges are disjoint, then the common inter-
section, say A, of the edges in our A-system satisfies 1 < [A] =
k-1, Let B be a set of vertices with A C B, iB[ =k =1, An
edge which misses B must meet each edge of the A-system, but can
not meet any two of them in the same vertex, which is impossible,

(When considering the sub-k-graph induced by one of the colors of an



s-coloring of & complete k-graph we may have isolated vertices, so
this result does not apply directly to the question of Ramsey num-
bers.)

The first examples which we were able to find showing that the
conjecture is not correct in all cases were a family of hypergraphs
H(k), k > 2, constructed by Erdds and Lovdsz [3]. Here H(k) is
a 3k-graph on n = ?k vertices, with no two edges disjoint, These
hypergraphs are defined recursively as follows: Let H(l) be the
7-point Fano plane, viewed as a 3-graph with vertex set {1,2, ...,?}

and the 7 lines of the plane as 3-edges., Let H;, 1i=1,2,...7,

be seven disjoint copies of H(l} and define H() to be the 9-
graph having as edges all of the sets Eil u E12 U E;. , where Ej
is an edge of Hi and {il’ 12’ i3} is an edge of H(l) . 1n gen=
eral, H(k} is formed by taking one copy of H(l) for each vertex
of H(k-l), and taking as an edge each 3k-set which is the union
of one edge from each of a set of Jk-l copies of H(l) corre=
sponding to the 3]"-1 vertices of some edge of H(k-l).

Peter Frankl [private communication| was soon able to provide
much simpler counterexamples for each even k, k > &, For each
such k Frankl constructed a k-graph H on 3k-3 vertices by
letting Xl, Xz, and XS be three disjoint (k - l)-sets and tak-

ing as an edge of H each k-subset of X 6 U Xz Ux

1 having exactly

k/2 wvertices in each of two of the X, . :
By combining ideas from these two constructions we can now
give counterexamples to the conjecture which are vertex 2Z-colorable
as hypergraphs and for which the number of edges is given by a poly-
nomial in k. To obtain such a k-graph we let Xl, XZ’ and X3 be
three disjoint copies of a finite geometry on p2 +p + 1 points,

We then form a (2p + 2)=-graph with vertex set Xl U X2 U X3 by
taking as an edge each set which is the union of one line from each
of two of the X, . The resulting hypergraph has 3(92 +p + 1)2
edges, no two of which are disjoint, and is such that each set of
2p + 1 vertices misses at least p(p2 +p + 1) edges.

These examples show that the conjecture is not correct in gen-

eral, but many questions remain., Some of these are the following:
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Question 1, What is the smallest value of k for which there is
a counterexample to the conjecture?

From the results above we know that this value is 4, 5 or 6,

Question 2, Given that there is a k-graph which is a counterexample
to the conjecture, what is the smallest number, m(k), of edges in
such a counterexample?

The examples above show that for certain Kk we have m(k) < ckh_

Is mik) = o(kq) possible?

Question 3. Given thac the conjecture is not correct for some value

of k, what is the smallest number, n(k), of vertices in a counter-

]
example for this k?
We know that n(k) = 2k and that n(k) < 3k for k even,

k=6,

[RY

Question 4, We have seen that if we do not allow "isolated vertices",
then the conjecture is true for sufficiently large n, What is the
smallest value, nl(k) , such that the conjecture is true for all k-
graphs with n vertices, n > nl(k) , and no isolated vertices,

Many other questions may be asked, For example, suppose that
each subset of k - 1 vertices misses more than k edges, When
does this imply the existence of two disjoint edges? How many edges
must each (k - 1)-set miss? What conditions imply the existence of

s pairwise disjoint edges, s > 27

Finally we mention a similar and apparently very difficult
question which was posed several years ago in a paper by one of us
with L, Lovisz [3]. Suppose H 1is a k-graph in which each subset
of k -1 vertices misses at least one edge and H has no two dis-
joint edges., What is the minimum number, m (k) , of edges in such
a k=graph? It is known that ml(k) < k3/2'+E , but perhaps ml(k) <

ck for some constant ¢, In fact, it may be that ml(k) < 3k,
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