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TRANSVERSALS AND MULTITRANSVERSALS

P. ERD(SS. F. GALVIN anp R. RADO
1. Introduction

A transversal of a family & of sets is a family of pairwise distinct elements, one from
each member of .7, and a multitransversal of # is a family of pairwise disjoint subsets,
one of each member of # . The main result of this note, Theorem 4, gives necessary and
sufficient conditions on families o and % of cardinals in order that every family #
whose members have cardinals given by & should have (i) a transversal, (ii) a
multitransversal whose members have cardinals given by #. Our conditions turn out
to involve the notion of a weakly inaccessible cardinal and that of a stationary set of
ordinals. Our result (announced in [1]) amounts to saying that the test families %,
whose “good behaviour” implies that of every other family with the same cardinalities,
are those whose members are sets of the form {x:x < 1}, where 4 is an ordinal.

2. Terminology and notation

Capital letters denote sets. The relation A = B denotes inclusion in the wide sense.
If nothing is said to the contrary, small letters denote ordinals. For each « we put
& = {x:x < a}. For cardinals ¢ put

wlc) = min{a: |a| = c};
F=w); &= {t = cardinal : t < c}.
For every set § of cardinals put
o(S) = {w(c):ceS}.

For cardinals y put

[A) = {X < 4:|X] = 7}.

The symbol (ay, ..., a,), where the a, are any objects, denotes the sequence (a,: v < n).
Given a family (q; : i € I) of cardinals and a family (A, : i € I) of sets we put, for J < I,

ay =Y (jela;; A; = U(jeJ)A;.

Symbols such as(aq, ..., ,) < or (x; : i € I), are self-explanatory. For infinite cardinals x
the symbol cf x, the cofinality of x, denotes the least cardinal ¢t such that, for some
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cardinals x, < x, we have x = x;. The cardinal x is regular, if cf x = x, and singular, if
cf x < x. For every cardinal x put

+

x* = min{y = cardinal : y > x},

x~ = min{y = cardinal : y* > x},

and similarly for ordinals. The infinite cardinal x is weakly inaccessible if
x=x" =cfx.

Let 4 be a regular cardinal and let A = 1. A regressive function on A is a function
f: A—={0} — Zsuch that f(x) < xfor 0 < x € A. The set A is stationaryon 2if A = £
and for every regressive function f on A there is y € 2 with |f ~'(y)| = 4. Let stat 4
denote the set of all sets which are stationary on 4.

The disjoint subset relation
(1) (a;:iel)— (b:iel),

means that the g; and b, are cardinals with the property that whenever |4,| = a;foriel,
there always exist pairwise disjoint sets X; € [4,]" for i € I. Thus if all b, = 1 then (1)
means that every family (A4, : i€ I) with |4,| = a, for i € I has a transversal. Families
(X;:i€el)as described above are called multitransversals of (4, :i € I) of size (b, : i € I).

If #,,..., #, are sequences, then [#,, ..., #,] denotes the sequence obtained by
concatenation, i.e., by arranging the terms of the %, as a single sequence, maintaining in
each #, the given order and placing 7, infront of #,if 4 < v < n.If xis an object and
¢ a cardinal then (x), denotes the sequence (x,: v e ¢) in which x, = x for ve ¢.

Let S be a set of infinite cardinals. An S-sequence is a sequence (a, : v < n)such that
{a,:v < n} =Sand, if vo < n, then a, > |vo| and |[{v < n:a, = a,}| = a,,.

3. Results

THEOREM 1.  Let S be a set of infinite cardinals. Then the conditions (2), (3), (4), (5) are
equivalent, where

(2) for every weakly inaccessible cardinal i, w)(S) N % ¢ stat 7,
(3) there exists an S-sequence,

(4) every family of sets consisting, for each x € S, of k members of cardinal k, has a
transversal,

(5) the family (k : k € S) has a transversal.

THEOREM 2. Let I be a set; a; = N, foriel ;S = {a;:i€l}. Then the conditions
(6), (7), (8), (9), (10) are equivalent, where

(6) (a;:iel)—l(a;:iel),,

(7) (gj:iel)—=(1:iel),,

(8) (a;:iel) has a transversal,
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(9) (k:k€S8) has a transversal and |{i€ I : a; = k}| < K for every cardinal x,

(10) |[{ieI:a; = k}| < x for every cardinal k,and w(S) N 4 ¢ stat A for every weakly
inaccessible cardinal 1.

Remark. The implication (7) = (6) seems to be interesting. Perhaps it can be
proved directly.

CoRrOLLARY. Let I be aset and let a;, b; be cardinals for i € I, where the a; are infinite.
Then (11) and (12) are equivalent, where

(11) (a;:iel) = (b;:iel),,,

(12) (a;:i€l) has a multitransversal of size (b;:i€I).

THEOREM 3. Let I be a set and let a;, b; be cardinals for i € I such that a; < W, for
iel. Then (13) < (14) < (15) A (16), where

(13) (a;:iel)) = (b;iied)y,
(14) (a,:i€eI) has a multitransversal of size (b;:i€l),
(15) if n < Ng, then ¥ (i€el;a; < n)b;, < n,

(16) if m < and m < Y (iel;a; = No)b;, then there is ny < w such that,
whenever ng < n < w, we have m+) (i€ 1;a; < n)b; < n.

Our main result is the following theorem.
THeoREM 4. Let I be a set and a;, b; be arbitrary cardinals for i€ I. Put
S={a:iel;b =1}.
Then (17) <= (18) <= (19) A (20) A (21), where

(17) (a;:iel) = (b;:i€ ),

(18) (a;:iel) has a multitransversal of size (b;:iel),

(19) Z (iel;a; < k)b; < Kk for every cardinal k,

(20) @(S) N A¢ stat A for every weakly inaccessible cardinal i ,

@) ifm<wand m< Y (iel;a; = No)b;, then m+Y (i€l;a,< nb; < n for
every sufficiently large finite n .

4. Proof of Theorem 1

Proof of (3) =(4). Let (ko, ..., k,) be an S-sequence. Then every family ./ as
described in (4) can be written in the form (A4,, ..., 4,), where |4,| = k, for v < n. Since
|4,] = K, > |v|, we can choose elements x, for v < n so that x,e 4, —{x,, ..., X,} for
v < n. Then (x,, ..., X,) is a transversal of .o/.

Proof of (4) = (5). This is trivial.
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Proof of (5) = (2). Let(x,: k € S) be a transversal of (k : x € §). Then the function
(k) — x, is regressive on «x(S) and injective. Hence, clearly, (2) is satisfied. There only
remains:

Proofof (2) = (3). Letuscall aset S good if S is a set of infinite cardinals satisfying
(2). For 4 > N, let P(4) denote the statement: whenever S is good and § < Z, then (3)
holds. We have to show that P(4) holds for every 4 > N,. We use induction over 4. We
know that P(N,) is true. Let A > N, and assume that P(4') holds for Ny < 4’ < 4. We
have to prove P(4). Let S be good and § = £. We have to construct an S-sequence.

Case1: 4> A~.Puté = Ai". We may assume that S ¢ §sothat S = T U {4},
where T = &. By P(J) there is a T-sequence (xq, ..., k,). Then |t| = ¥ (x e T)x < 4.

Casela: |t] < 8.Putk, =k fora < t,andk, = dfort < a€d.Then(k,: a€d)
is an S-sequence.

Case 1b: |1] = d. For k € T put
M, ={a<t:k,=kK}.

Then a € M, implies that k = x, > |af, that is, a € k. Also, [M,| = k for x € T, and we
can write M, = P, u Q,, where P, n Q, = & and |P,| = |Q,| = k. Put k}, = x, for
o€ Prand x; = 6 for x € Q;. Then (k,:a < 1) is an S-sequence.

Case2: 4is weakly inaccessible, Then, since S is good, we have eXS)¢ stat 4 and, by
well known properties of inaccessible cardinals and stationary sets, there is a set
C= {Jg, .., Oz} < Of infinite cardinals such that (C) is closed and cofinal in £ and
CnS = . (Here closure refers to the usual order topology.) For a€4 put
S, =Snd,andS, = §,—S,.ThenS = 5;;5, N Sy = Ffora < pei;S, < S, < §,,
and P(6,) holds for a € 4. Hence there is an S,-sequence A,. Put

A=[A:ael]. =
We claim that
(22) A is an S-sequence.

Proof of (22). Let k € S.Then k € S, for some «, € 4, and exactly x terms of A are
equal to k. All these terms belong to A, . We have to show that every occurrence of k in
A has an index in A which belongs to k. Now every occurrence of x in A, has an index
in A, which belongs to k. Hence it suffices to show that the sequence [A, : x < %] has
fewer than x terms. This holds if &, = 0. Now let 2y, > 1.1fa; = aythenke S, = &
which is false. Hence 2y = 2,+1 for some x,. By definition of S, we have
0, S Kk <0,,, Sinced, eC,keS,CnS =, we have §, < x. Hence

(number of terms of [A,:a < ug])
= (number of terms of [A,:a < «,])

=Y (WeSnd K <o, <k.
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Case3: A > cfA. Putcf 4 = 7. Then thereis a set D = {8, ..., Oy} <« = A—F*
such that aXD) is closed and cofinal in 1. Put

A={xet:5,eS;sups,nS =4,};

A=1{5,:xaeA};S =S5S-A.
For aei put S, =8 nJ, and S, = §,—S;. Then §' = §; and S:nSy =g for
a < fet. The set Sis good and S, < S. Hence S, is good. Since S, < 4, and P(4,)
holds, it follows that there exists an S;-sequence A,, for every aei. Put
A = [A,:2e 7). We claim that
(23) A is an §’-sequence.

Proofof (23). Letx € S'. Then there is exactly one a, € T withk € §,, , and exactly x
terms of A equal x. All these terms are terms of A, , and their indices in A, lie in k.
Hence it suffices to show that the sequence [A, : « < a,] has fewer than k terms. This
holds for a, = 0. Now let 2y > 1. If g = g, then k € S,, = & which is false. Hence
%o = &, +1 for some «,, and 4, < k <4, ,,.1f §,, < k, then

(number of terms of [A,:a < ag])
= (number of terms of [A,:a < «,])
=Y KeSnd,)K <, <k
as required. On the other hand, let §,, = x. Then
0, =Ke€S =8§-A; J,¢A; a,¢A; ), =xeS cS§.
Since o, ¢ A, we have
Y(KeSnd, )k <d,,.
Hence
(number of terms of [A,:a < ag])

= (number of terms of [A,:a < «,])

=Y WeSnd )k <Y(KeSn K <8, =«
as required. This proves (23).

Let A = (xg,...,K,). For xe§ put M, ={u<o:x, =k}. If peM,, then
Kk =k, > |u|. Hence M, = k. Also, [M,| = kforxe §". If t < k€ §', then there is a
representation M, = |J(x < o(t))M% such that [Mj| =k for « < w(r) and
M:AM? = Ffora < B < 1)

Let 4 < a. We now define «),. If © < k,, then there is a unique o(u) < o(t) with
ue M1, in addition, a(u) < e(t)and |u| < J,,, € S, then we put &, = J,,,. Forall
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other u < ¢ we put x, = x,. We claim that
(24) (x, : 4 < g) is an S-sequence.

Proof of (24). Wehavek, e Sforu < g.Let u < 0.Thenx, > |u|.Forifx, = x,,
then x, = x, > |y| since (xo,...,k,) is an S'-sequence, and if x| # x,, then
Kj, = Oy > |u|. To complete the proof of Theorem 1 it suffices to show that, for k € S,
we have

(25) Hr<o:x, =«x}=x.

Case 3a: t < x€S§'. Then x, = « for all pe M2, and (25) follows.

Case 3b: x <t and x€S'. Then pe M, implies that x, = k < t and hence
K, = K, = K, s0 that M, c {u < 0: k] = «}. Since |M,| = «, we conclude that (25)

holds.

Case3c: xeS—S. Then keA. and k=9, for some axeAd. Put
T={xeS:t <k <4,}. We claim that

(26) Mic{u<o:x, =x}.

Proof of (26). Let k' € §'; 1 < k' < d,; ue My.. Then x, = «’, so that t < x, and
wp) = a < o). Also, |y <k, =x"<J, and we have |yl < d,,€S. Hence
K, '= dy4u = 9, = k. This proves (26). Now, to complete the argument in Case 3c, it
suffices to show that

27) M3 = x.

Proof of (27). Let k" < d,. Denote by k'’ the least cardinal in S satisfying
max {x”, 1} < k"’ < 4,. This cardinal ™ exists in view of

supd, NS =34,.

ThensupR™ N § < max{k”, 1} < k".Ifx"" ¢ §'thenx" € A;x"" = dgforsome fe A4;
supa, N S= 0y supk” N § = k" which is a contradiction. Hence k"’ € §’. Now

IMjl =Y (yeS;t<y<d)y=«x">«"
Since x” i®an arbitrary cardinal with k" < é,, we conclude that |IM§| = , = x.This,

- together with the previously proved relation M, c k, establishes (27) and so completes
the proof of Theorem 1.

5. Proof of Theorem 2

The implications (6) = (7) = (8) are trivial, and the implication (9) = 10) follows
from Theorem i.
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Prbofof (8) = (9). Let (x;:iel) be a transversal of (a,:i€I). For each x€§
choose i, € I with a;_ = x. Then (x;_:x€5) is a transversal of (k : x € §). For every
cardinal x, we have {x;:i€l;a, = x} = & and therefore

fiel:a =«}| =|{x;:iel;a = x}| € k.
This proves (9).

Proof of (10) = (6). Let |4,| = a, for i el. It suffices to show that the sequence
F = [(A),,:i€I] has a transversal. Given any x € §, the family # contains at most
x3(= x)sets of cardinal x. Since «(S) N 1 ¢ stat A for every weakly inaccessible cardinal
A, Theorem 1 shows that & has a transversal.

Proof of the Corollary. Clearly (11) = (12).

Proof of (12) = (11). We have b, < g, for iel. Put I* = {iel:b, > 1}. Then
(@:ieI*)hasatransversal. By Theorem 2,(a;:i€I*) = (a;: i€ I"*),.Since b, < a,, it
follows that (a;:iel*) — (b;:iel"),,. Since b, = 0 forie I—1*, (11) follows.

6. Proof of Theorem 3

The implications (13) = (14) = (15) are trivial.

Proof of (14)= (16). Let (X,:ie I) be a multitransversal of (a,:ieI) of size
(b;:iel). Let msatisfym < wand m < Z(ie!;a, = No)b;. Then

UGel;a,=Ro)X|| =Y (iel;a,=No)b, =2 m,
and we can find a set M with
Me[UGiel;a, = No)X]".

Then M < @;|M| = m < w, and there is ny < w with M = A,. Let ng < n < w.
Then M c iy, < . Also, |J(i e I; a; < n)X; = A. Therefore

m+Y (ielia, <mb,=Muliel;q <mX|<n.

Proof of (15) A (16) = (13). Let |4;| = a;foriel. For n < ¥, put
1, ={iel;a; = n}.

Letp = by, Thenp < b, < Noby(15).PutP = {r < w:1 < r < p}..Then|P| = p.
There is a mapping f: P — I, such that, foreveryi€ I, |{re P:f(r) = i}| = b;. This
follows from the definition of p. For n < @ put d, =n—Y (iel;a; < n)b; and
e, = min {d,,d,.,,,...,d,}. Then 0 < e, < d, and, since d,,, < d,+1,

e, ey Se+l.

By (16), given any r € P, there is n < w with e, = r. (Here one uses that ¢, = 0.) For
n < o we shall define, by induction on n,aset F, with |F,| < e,+) (i€ l;a; < n)b;,as
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well as sets X, c A, nF,for iel,. Put F, = @ and X; = & for iel,. Now let
0 < n < w, and suppose that F,_, and X, have been defined for i € I;. Then

|Fooyl4by, <e,_,+Y (iel;a, < n—1)b+b,,
=e,_ 1+ (iel;a <nb <d,+Y (iel;a < n)b
=n.
(Here we have used the relation e, , < d, and the definition of d,.) Thus
EF]—]|+bf. s n. LCtjE .’.- Then |AJ| = aj =n, 1AJ-F._'II = ﬂ—lF._ll B bf", S0
that b, <|A;—F,_,| for jel,. Therefore there are pairwise disjoint sets
X, e[A,—F,.)"foriel,.Put F,=F,_, v X,.Then
|Fyl = |Fp-yl+b, € e,- +Y (i€l:a < nb
<e,+) (iel;a; <nb, =e,+(n—d,)<n
by definition of e,.Put F, = F,ifeithere,_, = e,ore,_, < e, ¢ P.In the remaining
case, ie. ife,_, < e, € P, wechoose, as s then possible, an element x, € A, — F, and
put F, = F,|J {x,}. We have now defined X, for every i€ I,. For i€ I, put
X, ={x,:0<n<we,., <e,€P;fle,) =i}.
Itfollows that (X, : i € I)isa multitransversal of (4, : i € I)and that | X ;| = b/forie I,.It
only remains to prove that |X,| = b, for i€ I . Let r € P. Denote by n(r) the least
number n < w with e, = r, which clearly exists. Then, since e, = d, = 0 ¢ P, we have

n(r) > 0, so that e,, -, < e,, € P. Hence the element x,,, is defined and satisfies
Xur) € X s Put g(r) = x,,). Then the mapping

g:P - Uliely)X;
is bijective. For i e I, put
Pi={reP:f(rn=i}.
Then g(P;) = X, and hence |X;| = |P,| = b,, and Theorem 3 is established.
T
LemMmA. Let I be a set and a,, b; be cardinals for i€ 1. Let
c2Ny Ilp={iel: a<c}; I, =1-1,.
Then (28) = (29) A (30), where

(28) (a;ziel) = (b;:iel),,
(29) (aiiely) = (biely),,
(30) (a:iel) »(bjtiely),.
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Proof. Trivially (28) = (29) A (30). Now assume, vice versa, that (29) and (30)
hold. Let |4;| = a; for i € I. Then, applying (29) to the family (@, : i € I,,), we find that
b, < c.Also, the family (4, : i € I,) has a multitransversal (X : i € I) of size (b; : i € I,).
Then |X, | = b;, < c. Hence, since ¢ > N,, we have |4,— X, | = q; for iel,. By
(30), the family (4;,— X, :ieI,) has a multitransversal (X;:iel,) of size b;:iel,).
Then (X, : i € I) is a multitransversal of (4, : i € I) of size (b; : i € I), which proves (28).

8.
Proof of Theorem 4. The implications (17) = (18) = (19) are trivial.

Proof of (18)=(20). Let I' ={iel:a; > Ny;b; 2 1}. Then (a;:iel') has a
multitransversal of size (b;:iel’). Let §' = {a;:iel’}. Then, by Theorem 2,
a(S') N 1 ¢ stat A for every weakly inaccessible cardinal A. Since w(S) = o(S) U @, it
follows that o(S) N 1 ¢ stat 4.

Proof of (18)=(21). Let I, ={iel:a; <No}. Then (a;:iel,) has a
multitransversal of size (b;: i € I,). Then (21) follows from Theorem 3, in view of the
relations

Yiela =No)b, =Y (ielg;a, =No)b, Y (iel;a, < mb; = Y (i€ ly; a; < n)b
forn < w.

Proof of (19) A (20) A (21) = (17). Let I, = {iel:a, < No}; I, =1-1I,.
Then (a;:i€ly) = (b;: i€ Ip)y by Theorem 3. Let If = {iel,:b, > 1}.
Then, for every cardinai x,

{ieli:a,=x}|=)(iel};a =Kl
<Y(Geti;a, =xb, <Y (iel;a =xb < k.
Since a,€ S for ie I}, we deduce from Theorem 2 that
(a:ieltl) = (a;:iell),.

By (19) we have b; < g, for i € I'], which implies that (a;:ieI]) —» (b;:ieI}),. But
b; =0foriel,—1I].Hence(a;:i€l,) - (b;:i€l,),. Now the lemma, with ¢ = N,
yields (a;:ieI) - (b;: i €l),,, and this concludes the proof of Theorem 4.
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