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The authors show that if the tail of an infinitely divisible probability law

approaches zero suflicienily rapidly, then it must be the Normal Law, An applica-
tion i made o a problem of number theory.

A probability distribution function is said to be infinirely divisible if for
every positive integer a it may be expressed as the convolution of # copies of
some other distribution function. It was proved by Khinchine that the class
of such laws coincides with the class of all limit laws of sums of independent
infinitesimal random variables. For this reason they play an important
role in many applications of the theory of probability.

A function fin), defined on the positive integers, is said 1o be additive if it
satisfies the relation flab) = fla) 1 fib) whenever the integers @ and b have
no common prime factors, Supposing that for each prime p, f{p™) = fip)
and | f{p)l < 1, that

BN) = (’% pt [ﬂp}[')”'—- ©, (N-»w),

and that
AN) = Y p¥ip)
PN
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then Erdés and Kae [3], in 1939, proved that

5 S (=
e L ! —*WL et dr, N
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iRl — AN BN

Their method, which wis much developed by Kubilius [6] amongst others,
depended upon approximating the additive function fin) with sums of
independent random variables. In particular it always led to a limit law
which was infinitely divisible.

Let & be a positive real number, « <2 |, and consider the additive function
defined by f{p™) = (log p™y. Although this function is not susceptible to
the method of Erdés-Kae [3], already in 1946 Erdds [2] had remarked that
the proper limiting distribution

K (u) = (weak) lim N~ ¥ I
i gV

iy niloga™
existed. A distribution function is said to be praper if it does not consist of a
single jump, and to be improper otherwise. If n = 1 then the limit law K.(1)

still exists, but is easily seen to be improper.

In a paper of 1955, Halberstam [5] pointed out that the existence of the
limiting distribution K, (1) could be deduced by evaluating the moments

The nature of the limit law was obscured, however, since it satisfied a non-
trivial integral equation.

Other (later) treatments (Levin and Timofeev [7], Elliott [1]) only give
partial help in the study of this limit law. However, Levin and Timofeev,
in & short note [8], pointed out that when o = 1, then

i) = (log my** 3, log p™ = (log n)*

#ln

so that K, (u) =0 for 4 = 0, and = 1 for v = 1. More succintly, K.(u) is
concentrated on the interval 0 = w = 1 for « = 1. In particular, a proper
such law cannot be infinitely divisible. (They did not indicate a prooefl)

It turns out that for 0 = a == 1 the law K () is not concentrated on a
finite interval. Nevertheless, we shall show that it is still not infinitely divisible.
Thus the behaviour of the additive function Z{log p™p, ~ £ 1, cannot be
investigated (at least in any obvious manner) by the applications of sums of
independent random variables,
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We shall prove two results to the effect that the tail of an infinitely divisible
law cannot decrease to zero too rapidly. The first of these will be applied
to the study of the distribution function K (1),

Tueorem 1. Let the proper infinitely divisible law Flu) satisfy
max(F{—u), 1 — F(u)) < e-4w1oe (1)

for each A = 0 for all sufficiently large values of u. Then it must be a normal
ferw.

THEOREM 2. Let the proper infinitely divisible law Flu) have a lattice
distribution concentrated on a half-line u = wy . and satisfy

1 — Fli) < ¢-ovlogs (2)

Jor some ¢ =0 and all sufficiently large values of u. Then it must be the
convolution aof finitely many faws of Poisson type.

Concerning the additive arithmetic function

Sm) = 3 (log pmy°

b1k

W prove:

THeoReM 3. The distribution function K. (1) {5 not infindirely divisible for
any positive value of o, o 32 1. For 0 <o <2 | we have

— log{l — K.(u))
wit=*logn

— log(l — K (u) _ 1
T jogy 1 —a

ar/=ab < himoinf
W0

= ]ilT}.,E‘.-'F' (3}

Proof of Thearem 1. Let the inequality (1) held for w = U = (. Then
for any positive reals r, and w = U,

Jdlr e o F(n) = exp{2wri(] — Flw))

w

= exp{2ur — dw log w) - exp(— fAw log w).

The expression in the first of these exponents is greatest when 2r = 34
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(log w -+ 1} and se (uniformly in w) does not exceed explexp{drd—)).
Setting w = 28U, & =0, 1, 2,..,, in turn, and adding, noting that the series

Y exp(— 34 - 25U log 250))

K=l

converges, we see that
'fﬂx e dF{u) = e, explexp(drA—)). 4

It follows from a result of Raikov (see, for example, Linnik [9], [10], or
Lukacs [11]) that g(¢), the characteristic function of the distribution function
Flu), coincides on the real axis with an integral function g(z) of the complex
variable z. A further result of Raikov (fee. cit) asserts that the Lévy-
Khinchine representation

g(z) =exp (.f-yz - rﬂ (e"*“ —1 - 1 {Iiuu“) l_,j: L dH{u})

of the characteristic function of an infinitely divisible law, initiafly valid
for all real values of z, then holds over the whale complex =-plane. Here the
function H{u) is non-decreasing and of finite total variation. In particular
w(z) never vanishes and

2D =iy + J: (E‘” X g-z_ﬂﬁg) %cﬂﬂu} =log ¢(z) ()

the value of the logarithm being the principal one when z is near to zero.
It follows from our resuit (4) that

Re(g(z)) = log | ¢(z)| < exp(4|z| 4% + cy.

An application of the Borel-Carathéodory theorem (see Titchmarsh [12,
Section 5.5, p. 174]) allows us to extend this to an upper bound

| 8{z)] = ey exp(B [=]4-Y).

If | 2| =1 then from Cauchy's integral representation theorem

EEE e

T 2m foof a2
so that

|82 < ey exp(12 | =] A7),
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By adjusting the value of ¢, , if necessary, we may assume that this bound is
also satisfied when |z | = L.
However, the representation

') = [ e 4 ) dow)

o

which may be deduced from (5) shows that for every imaginary number iy

(™ el + u®) dH(u) < oy exp(12 | ¥ | A,

& o

In this step we have implicitly made another application ol the first theorem
of Raikov to which we referred earlier.

Suppose now that the function H{x) has a point-of-<increase at v = a = 0,
Then 8 = H{3a/2) — H{a/2) = 0 and for every y < 0

el . § < ¢, exp(12 | 3| A7Y.

Letting | ¥ | — oo shows that @ < 244-Y, and if 4 is sufficiently large (see
the hypothesis) a contradiction is obtained.
Hence H{u)is concentrated at # = 0, and

w(t) = expliyr — §o*t?)

for some & == 0. The distribution function is then a law of either normal or
improper type.
This completes the proof of Theorem 1.

Proof of Theorem 2. Without loss of generality the lattice on which
F{u) is concentrated may be assumed to contain the origin, and its maximum
span may be taken to be 2w Then @lt), the characteristic function of Flu)
satisfies q(r - 1) = ¢lt) for all real values of 1.

Arguing as in the proof of Theorem | we see that an integral function ¢{z)
exists, of the form exp{g(z)); and a bound

| &(2)] = ey exples|z])

holds for some ¢, = 0, this time fixed,
Then for real values of t

explg(t + 1)) = qlt + 1) = ¢(t) = exp(z(r))

so that g(t + 1) — g{t) = 2oni for some integer n. Since g(t) is a continuous
function of ¢, n must be a constant, and g'(r), 2"(r ) will be periodic, of period 1.
By analytic continuation this will also be true of the integral function #"(z).
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We next note, following the proof of Theorem 1, that
| &7(2)| < eyexples] )
for some positive constants ¢; , ¢, .

However, if z = x - iy

| —gCr + i)l = | [ ettt + o) di(u)

w
<[ g ¢ i
(ridge property), so that

| =gz}l = —g"(y) = cyexpley | ¥ 1) (6)

For w = 0 the function —g"((i/2=) log w) is well defined and analvtic
in the complex w-plane punctured at the origin. Tt satisfies

| —g" [1—; log w)l = cyexpie; [log | wl

f1c|h|“ i |l =1,
. [ T i |w| =1,

Let m be a positive integer, m = ¢, . It is now easy to extend the definition of
—wg"((i/27) log w) to an integral function, and then to deduce thal it
must be a polynomial in w.

Hence

—g'(z) = Y ot

el B agm

Integriting twice gives

g2) = ¥ (2nk) et L P(z)

| K] s

where P(z) is a polynomial in z of degree at most two.
Suppose now that (2mm)*|a_ ., | = 28 > 0. Then choosing @ suitably,
0 < # < m!, we see that for all real negative values of y

Re g(iy 4 ) = 28e-trmy 1 Op-2rin-11v)
and

| pliy + 0)| = exp(e-tmw)
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if 1 is large enough. But, by hypothesis
wiiy + &) = J-w eV dEF(W) =™
iy

which leads to a contradiction as —y — oo,
We deduce that a_,, = 0, and, likewise, a_, = 0 for & < 0. Hence

gl = Jﬁ‘ Caafcl T et =L P,

=1

For every integer r = 1 the function obtained by differentiating —g"(1) 2r
times has a real value when ¢ = 0. Hence

Y (@wk) Im(a,) = 0.

k=1

If, for example, & = Im(a,,), then

—1

m* b =< (m— 1 Y | lm(a).

Dividing by m*" and letting r -+ <0 shows that & = 0.

In this way we see that every a is real,

Since g'(t) has period 1, P(t) can be at most linear. By considering the size
of | p(t)| as | ¢ | becomes unbounded through integer values we deduce that
for some real number

i
i (2mk)2 aylet= — 1) + a':.-.r].

h=1 i

olt) = exp(

This completes the proofl of Theorem 2,

Proof of Theoren 3. Assume that 0 < « < 1. We first prove that K. (u}
is not concentrated on a finite interval. Clearly K {u) = 0 when w < 0, so
that only the positive values of u are of interest.

Let k be a positive integer, Let N be a further positive integer to be thought
of as*large”. Let g Tun through the primes p which lie in the interval N/ <
p o= NUEE Then for all sufficiently large values of N (see Hardy and Wright
[4D

1 1 1
Yo =log2+ D(—IagN] > ;5 log 2.
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Let v denote a typical integer which is made up of /& distinct primes ¢hosen
from amongst the g, thus NV < m < NU3,

Consider the integers n; , not exceeding &, which are of the form m/, where !
is not divisible by any of the {above) primes g. Their number is at least

R L

m 1N m

A straightforward application of the Brun or Selberg sieve method shows
that if k s fixed at a sufficiently large value, then a typical innersum is at least

N | N
C!HH(I : é]"i‘ﬂ(l“fr”*};fgm.

Here the constant ¢, does not depend upon £. Therefore the number of n; is
at least

eNY % = 6N I% (L }r.)k = ;:';;._]—2}! (E érhe ¥ LI

= Nexp(—k log k' — o3k

Moreover,
5 i | a
p%“ {!Og P ]’ == k {Eﬂll.'_ Iﬂg .'\lr) 5
g0 that
I — K4k =exp(—k log k — e;k). {7

This shows that K.(u) < 1 for every positive value of &, Indeed, a more careful
treatment of details, confining the primes g to an interval NO-20E = o =
Nu=a# and then letting € approach zero enables one to prove that

! —log(l — K{u)) _ 1
lquaup—"'n':r_;rj'dg;— = 7

i

1l —a’

We now obtain a result going in the direction opposite to that of (7). We
continue to assume that § <« < 1,
Consider those integers n not exceeding N for which

Y (log py = kilog NY.

P
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Let T =exp((2 log N)/kK**—), For each integer » under consideration

N (logpy = (log 7 ¥ logp™ = 2-1k{log N)*,

#lin 2" >T #in
so that

Y, (logpy = k(1 — 27%+)(log NP (8)
Fin T

Let w be a positive real number which satisfies

- (I _ )"1 o (k1Y) < (] — 2-14a) (9)
2::

We maintain that each of the integers n satisfying (8) must have at least w
exact prime-power factors p” in at least one of the intervals
Tril cgr et i=0:1,2,.) (10)

Otherwise

w

¥ (logp)r < ¥ wllog Ty

TS Jul)

= & E 2% 2— log N) < k(1 — 2-1)(log N)",

contradicting (8).
Those integers n for which the jth interval in (10) contains at least w prime-
powers are in number at most

n YT 52, ) Jap
B *“-‘1.;""‘ (1+ PP N g | T ) )
(e holda For

= Neapl{—uw log w + eyw);
here

I ¥
A:EFQE ZEFLI‘}]U (IJ_ITE],‘..) |'C=,€ﬂ'.

oAbl

Since the intervals in (I0) contain no prime-powers unless j = Oflog &)
we see that

— K (k) = exp(—e,k1/1= log k). (11)
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A more careful treatment of this proof leads to the bound

.o — logll — K{u))
- L b 4 : :_H'J.—&:I_
I’T..Lnr A logy  © *

1t fellows from the bound (11) and Theorem 1 that the distribution & {u)
can beinfinitely divisible only if it is a normal law. Sinee this is clarly not the
case, Theorem 3 is established.

Concluding Remarks. The proof that K.(u) is not infinitely divisible
when 0 <2 =<1 depends only upon weak upper bounds of the form
| i) = cflog p)®, so that the method is applicable to many other functions
fin) For which a limiting distribotion exists,
Perhaps
. — logll — K. (u))
i ‘__'ﬂfﬁﬁf log u

exists,

REFERENCES

1. P. D. T. A. Eruarr, On the limiting distribution of additive arthmetie functions
Logarithmic Renormalization, Proc, Lomdon Math. Sec, 31 (1975), 364384,

2. P. Exnds; On the distribution function of additive functions, Aur of Markh: 47 (2)
(1946), 1-20,

3. P. Erods ann M. Kac, On the Goaussian lnw of errors in the theory of additive
funclions, Proc. Nat. Acad. Sei. U.5.4. 25 (1939), 206207

4, G. H, Harpy anp E. M. WrignT, “An Introduction to the Theory of Numbers,”
Oxford Univ, Press, London/™ew York, 4th ed., 1964,

5. H. Hacnerstam, Uber additive zahlentheorctische Funktionen, . redne angew, Mh,
195 (1955), 210-214. ¥

6. J, Kueins, Probabilistic Methods in the Theory of Numbers, Amer. Math. Soc.
Translations of Math., Monographs, 11, Providence, R. 1., 1964,

7. B, Levin axp M. M, Timoreey, On the distribution of values of additive functions,
Acta Arith. 26 (1975), 333-364,

8. B. V. Leviv anp N. M. Tovoreey; The distribution of values of additive functions,
Uspehi Mat, Nauk. 28 (1) [169) (1973), 243244,

9. U, ¥V, Livmik, “Décompositions des Lois de Probabilités,™ Gaurhier—Villars, Paris,
1562,

10. U, V. Lisnig, “Decomposition of Probability Distributions,”™ Oliver ‘and Boyd,
Edinburgh/London.

11. E. Lukacs, “Characteristic Functions,” 2nd ed., Griffin, London, 1570,

12, E. C. TrrcamarsH, “The Theory of Funetions,” 2nd ed,, Oxford Univ, Press, London/
Mew York, 1939]1968.

Ga1f1y/i-6



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

