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SOME UNCONVENTIONAL PROBLEMS

IN NUMBER THEORY

by

Paul ERDÖ S

I have several papers with a similar title which will be published soon -

at least one of them is a joint paper with R.R. Hall . The number of unsolve d

problems is so large that I can keep the overlap to a minimum .

First of all I state a very old conjecture of mine : the density of integers n

which have two divisors d 1 and d 2 satisfying d 1 < d2 < 2 d 1 is 1 .

I proved long ago [1] that the density of these numbers exists but I have neve r

been able to prove that it is I . I claimed [2] that I proved that almost al l

integers n have two divisors

1 - r loglog n
(1)

	

d 1 <d2 <d i (1 +(3)

	

)

and that (1) is best possible, namely it fails if 1 -T1 is replaced by 1 + 11 .

R.R. Hall and I confirmed this later statement but unfortunately we cannot prov e

(1) . We are fairly sure that (1) is true and perhaps it is not hopeless to prove

it by methods of probabilistic number theory which are at our disposal .

Denote by d + (n) the number of integers k for which n has a divisor d

satisfying 2k G d < 2k+1 . I conjecture that for almost all n

d+ (n) / d (n) - 0

which of course implies that almost all integers have two divisors satisfyin g

d 1 < d 2 < 2 d 1 . It would be of some interest to get an asymptotic formula fo r

d+ (n) = F (X) .

It is easy to prove that F (X) / X log X -4 1 .

Another interesting and unconventional problem states as follows :

let 1 = d 1 < d2 < . . . < dT (n) = n be the set of divisors of n .

Put :

T (n) - 1
(n) =

	

E

	

d. / d i + 1i = 1

X
E

n = 1
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I conjecture that q (n) -3 oo if we disregard a sequence of integers n o f
density 0 . This again would imply the conjecture on d 1 <d2 <2 d 1 , bu t
needless to say 1 cannot prove it .

It would be of interest to determine the normal order of d (n) and Cl (n)
(or at least of log G (n) and log d (n) ) . Also an asymptotic formula fo r

X
E

	

q (n )
n = 1

would be of interest . It is easy to prove that
X
E q(n)

	

.
n = 1

1
X

Let p 1

	

< pV(n) be the consecutive prime factors of n
Alladi and I proved that (unpublished) :

V (n) - 1
f (n) _ E

	

p .
i = 1

	

'lp i+ 1
has a distribution function and a bounded average.

A' well-known theorem of Hardy and Ramanujan states that the normal orde r
of V (n) (the number of prime factors of n ) is (1 + o (1)) loglog n .
A special case of our well-known theorem with Kac [3] states tha t

V(n) - loglog n _
(loglog n) 1/2

has normal distribution,
More than 40 years ago I proved that if p ;n) < . . . < Pv(n) are the

consecutive prime factors of n , then for almost all n the v -th prim e
factor of n satisfie s

loglog pvn)= (1 + o (1)) v

More precisely : the every e >0 ,

	

> 0 there is an P., = , (e, rl) so that
the density of integers n for which for every g o <v < V(n )

(2 1 )

	

v (1 - e) < loglog p(n) < (1 + e) v

is greater than 1 - TI [4] . I do not prove (2) in [4], I only indicate that it is a
special case of a result which can easily be deduced by methods of probabilisti c
number theory .

(2)

7 4



PROBLEMS IN NUMBER THEOR Y

(2) seems to me to be interesting and has many applications, ' thus at the end of

this paper I give a direct and simple proof of (2) . A similar proof of (2) i s

outlined in a forthcoming paper of S. Wagstaff and myself. This paper also deal s

with an unconventional problem. Let Bn be the n-th Bernoulli number and

an =

	

E

	

1
bn

	

p - 11n p

its fractional part. Let n be the smallest integer with this fractional part . Then
i

the density do of integers m with fractional part an/bn exists and

	

do =
n

where the dash indicates that the summation is only extended over the n whic h

have fractional part an/b n and are minimal (our paper will soon appear i n

Illinois J. of Math.) .

Denote by dv (p) the density of the integers n whose v- th prime facto r

is n , dv (p) can easily be calculated by the exclusion - inclusion principl e

(essentially the sieve of Eratosthenes) . By (2), for almost all integers, p(n)

is about expexp v . On the other hand, it is easy to see that the largest valu e

of dv (P) is assumed for much smaller values of p , in fact fo r

ev(1-e) <pGev(1+e)

by more careful computation it would easily be possible to obtain bette r

estimates. The simple explanation for this apparent paradox is that there ar e
v

very much more values of p at e e than at e v . It is not impossible tha t

dv (p) ís unimodular, i .e . it first increases with p then assumes its maximu m

and then decreases. 1 in fact doubt that d v (p) behaves so regularly but have no t

disproved it . The same problems arise if dv (n) denotes the density of the

integers m whose v-th divisor is n . Here we obtain that if D 1 <02 ar e

the consecutive divisors of n then for all but e X integers n <X fo r

v > v, (e, n)

exp
(v

l/ log 2 e ) < Dv <exp (vl/log 2 + e )

On the other hand, for fixed v dv (n) is maximal for

exp((i -e) logv loglogv)<D v <exp((1 +e) logv Ioglogv ) .

It can be shown that d v (n) is not unimodular.
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I now state some further results on the prime factors of integers which ca n
be obtained by the methods of probabilistic number theory or also by mor e
elementary but longer computations . Some of these results have been stated i n
[5] .

For almost all integers n :

El v = (
2

+ o (1)) logloglog n

where the dash indicates that the summation is extended over the
loglog p(n) > v .

Similarly, for almost all n :

= (-1- + 0 (1)) logloglog n .
p(n)

	

p (n+1 )
v

	

v
On the other hand, it is not hard to show that it is not true that for almos t

all n :
i

1 = (1+ o (1)) loglog n

On the other hand, if v i+ 1 > (1 + c) v i , then for almost all n :

v satisfyin g

v

	

2

E

	

1
loglog p(/n) > v .

= (Z+ o (1))

	

Z 1
v . < loglog n

(3)

It easily follows from the methods of [3]

loglog p(/n) - v

v
1 /2

has normal distribution, and that if v 1/v2

tha t

, the n

an d
loglog p(n)

	

v 1
1

loglog p(n) - v 2

2
1 /2v 1

	

v21 /2

are asymptotically independent . (3) follows from this without too much difficulty .
For further results of this type see [5] . Here we just make two mor e

v
remarks . (2) does not mean that p(n

	

is really close to ee

	

In fact, th e
following results hold.
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Let cc (v) tend to 0 monotonically as v tends to infinity . Denote by ha (n)

the number of v -s for which the v -th prime factor p v(n) of n satisfies

v - Ct (v) < loglog pv(n) < v + (v )

Then, if E a (v) /v 1/2 < .

	

, for every k the density (3 k of integers n
v = 1

m

for which ha (n) = k exists and

	

E ak = 1 (or roughly speaking ha (n)
k = 1

is almost always bounded and ha (n) has a distribution function) .

If

	

E a ( ' / 1 '2 = o , then ha (n) -3 oo for almost all n .
v = 1

In particular, for almost all n ,

E, '

	

1/2 = (1 + o (1)) c Iogloglog n

where the summation is extended over the v for which v < Iogiog p (n) < v + 1v
On the other hand, it is not true that for almost all n

(4)

	

E ' 1 = (1 + o (1)) c 1 (loglog n) 1/ 2

The order of magnitude of the left side of (4) is (loglog n) 1/2 and wit h

more trouble the distribution function could be calculated.
Let p l < p2 < . . . be an infinite sequence of primes, it is quite easy t o

prove that z 1 /p
i =

is the necessary and sufficient condition that almost all integers n should hav e
a prime factor p i . It seems very difficult to obtain a necessary and sufficien t
condition that if al < . ., is a sequence of integers then almost all integers n
should be a multiple of one of the a's . I just want to illustrate the difficult y
by a simple example : let n i + > (1 + c) n i . Consider the integers m whic h
have a divisor d satisfying nk <d<nk (1 +Tik )

If E

	

Ti k < =

	

then it is easy to see that the density of these integer s
h = 1

exists and is less than 1 .
oo

If

	

E

	

'tl k = oo

	

it seems difficult to get a general result, e .g. if Il kh = 1

the density in question exists and is less than 1 .
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It seems certain that there is an a , 0 <a < 1 so that if

	

<a and

rl k = 1/0 the density of the m having a divisor d , nk < d < nk (1 + 1 /k )
is 1 and if p >a it is less than 1 .
Denote by e (n, m) the density of integers having a divisor d satisfyin g

n < d< m and by e l (n, m) the density of integers having precisely one diviso r

d , n < d <m Besicovitch proved lim inf e (n, 2n) = 0 and I proved that i f
log m/log n - 1 , then lim e (n, m) = 0 [6] .

It is easy to see that this result is best possible, i .e.
lime (n, m) = 0 implies log m/log n - 1 .

Further, I can prove that :

e' (n, m) <e/(log n)a

for a certain 0 <a < 1 . Perhaps e l (n, m) is unimodular for m > n + 1 ,

but I know nothing about this . I don't know where e l (n, m) assumes its maximum .

I am sure that :

e' (n, m) / s (n, m) - o

for m = 2 n . If m - n is small, then clearly e1 (n, m) / e (n, m) -~ 1

and I don't know where the transition occurs.

Some time ago the following question occured to me : let k be given n > n o (k) .

Is there an absolute constant a so that for every n < m < n k there is a t ,

0 < t < (log n)a so that m + t has a divisor in (n, 2n) ?

More generally : if n + 1 = a t < a2 < . ., is the sequence of integers whic h

have a divisor d , n < d < 2n . Determine or estimate mak (a . + 1 - a i )a i < n
Now we prove (2) and (2') . Denote by V (n) the number o f

prime factors of n and by V T(n) the number of prime factors of n exceedin g

T . The well known inequality of Turán [7] implie s

X
E

	

(VT (n) - loglog T) 2 < C X loglog T ,
n= 1

where C

	

is an absolute constant . From (5) we immediately obtain by th e

Tchebicheff inequality that the number of integers n < X satisfyin g

(5)
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Put T. = (exp exp i 4) . From (6) we obtain that the number of integers

n < X for which some i > i0

(7)

	

I VT (n) - loglog T.I > (loglog T.)
3/4

is less than

(8)

	

C X
i> i o

.2
< e X

for every e> 0 if i o > i o (e) . To complete our proof observe that VT(n )

is nondecreasing in T . Thus, If Ti < T< Ti +

	

and n satisfies (7) ,

we have

VT (n) - loglog TI < (loglog Ti)3/4 + loglog Ti +

loglog Ti < 10 (loglog T)
3/4

Thus, from (7), (8) and (9) it follows that (2) and (2 1 ) are satisfied for almos t

all n and our proof is complete .

Finally I state an old problem of mine which is probably very difficult an d

which seems to be unattackable by the methods of probabilistic number theory :

denote by P (n) the greatest prime factor of n . Is it true that the density of

integers n satisfying P (n + 1)

	

P (n) is

	

2 ? Is it true that the density o f

integers for which

(10)

	

P (n + 1) > P (n) nn

exists for every a ? Pomerance and I proved (our paper will soon appear i n

Aequationes Mathematica) that if en -a 0 then the upper density of the integer s

-e

	

P(n+1)

	

e
nn <	 <n n

P (n )

tends to 0 as n tends to 00 .

To end this note,I state a few unrelated unconventional problems . Denote

by ct. (X) the number of integers n < X for which CP (m) = n is solvabl e

( cp (n) is Euler's cp function) . The sharpest current bounds for ch (X) are du e

to R.R. Hall and myself [8] .

(9 )

satisfying
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We prove (for every s> 0 and X> Xo (6) )

(11)	 	 X	 exp ((logloglog X) 2 ) < di (X) < 	 X 	 exp (C 1 (loglog X) 1/2 )

log X

	

log X

It seems to us that the upper bound in (11) is closer to the truth, in fact w e
believe that for every C> 0 and X> Xo (e )

cf) (X) > log X exp(C 2 (loglog X) 1/2 ) .

It is not certain that there is a genuine asymptotic formula for c (X) but

perhaps c (C X)/? (X)

	

C holds for every C> 0 .
Denote cK (X) the number of distinct integers n of the for m

cp (k X + t) , 1 < t < X . For "small" k all the f.T?K (X) probably have a
similar asymptotic behaviour, but of course I can prove nothing . I have no idea
how many new integers appear amongst the cp (k X + t) , 1 5 t < X . In othe r

words : estimate the number of integers n < X for which the smallest solutio n

of cp (m) = n satisfies k X < m <_ (k + 1) X . I can at the moment say nothing

interesting about this problem .

Denote by mX the largest integer for which co (my) <_ X and by m i x

the largest integer for which co (mX) <_ X and for which there is no u< m i x

with co (u) = Co (m' X ) . In other words m i x is the largest integer for whic h
co (m i x) X and which gives a new number of the form cp (m) . 1 hope tha t

m' X/mX -> 1 but I do not see how to prove this . Perhaps m ix = mX holds

for infinitely many X
Let u1(n) < . . . < ut(n) be the set of integers (if they exist) for which

co ( u i ) = n, 1 5 i <_ t . An old (and probably hopeless) conjecture of Carmichae l

states that t ? 1

	

implies t > 1 . It would be perhaps interesting t o
investigate

max

	

urn) ~ u (n )
n < X

One final question about the co - function : let p(n) be the smallest prim e

1 (mod n) . By a classical result of Linnik [9] p (n) < n t + C . Let un

be the smallest integer with (u ) a 0 (mod n) . If n = p - 1 we of course
n un < p(n )have u =n

u

	

-> 09

	

stets for almos tn n
1 am sure that p (n) /un -> co holds for almost all n .

n
(n )P

	

and it is easy to show that for infinitely many

all n . The proofs are not difficult .

8 0



PROBLEMS IN NUMBER THEOR Y

Let q 1 < q2 < . . . be a sequence of primes for which q .+1

	

1 (mod q i ) .

It easily follows from the theorem of Linnik [9j that there is an infinit e
sequence of such primes satisfying for every i q i < (exp exp C i) for som e

absolute constant C . In fact, there is little doubt that such a sequence exist s

with q . < exp (i (log i) 1 + 6 ) . I am fairly certain that for every such sequence
lim

	

= co but I have never been able to prove this .
i=c

Denote by h (n) the largest integer f for which there is a sequence o f

prime divisors p~ n) of n for which

Pi +

	

= 1 (mod p
(
. n) ) , 1

	

i <_ f - 1 = h (n) - 1

	

.

It is easy to see that h (n) tends to infinity for almost all n . Denote by L (n )

the smallest integer v for which the v - times iterated logarithm of n is les s

than e . It seems that the normal order of h (n) is about L (n) but Ihave

not carried out all the details . Denote by H (n) the largest integer u fo r

which there is a sequence of divisors d i of n , 1 < i < u - 1 for whic h

d i + = 1 (mod d i ) .

I am not sure if H (n)/h (n) -> co holds for almost all n , I am sure tha t

H (n) is not much larger than L (n) . The estimation of H (n) is related to the

following question : denote by A (d, a) the density of integers n which have

a divisor D = 1 (mod d) , 1 < D< exp da . For a. < 1 , A (d, a) -4 0 is

trivial . I can prove A (d, 1) -4 0 as d -4 oc . This last result is not quite

trivial sinc e

E l p = 1 + o (1 )

where the dash indicates that I < D < exp d , D = 1 (mod d )

and for í3 >a lim A (d, ) = 1 .
d = o0

I believe that there is an a , 1 <a < cc so that for

	

<a lim A (d, (3) = 0
d = co
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