Some old and new probhlems In various branches of combinatorics

Paul Erdis

During my very long life I published very many papers which
consist almost entirely of open problems in various branches of
combinatorial mathematics (i.e. graph theory, combinatorial number
theory, combinstorial geometry and combinatorial analysis).
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3. Extremal problems in graph theory, Theory of Graphs and Its
Applications, Proc. Svmp. Smolenice 1963, Acad. Press, New
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Some extremal problems on families of graphs, Comb. Math.
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I refer to these papers by their number.
In the present paper I first of all give a progress report on
some of my favourite problems and later I state a few recent

problems and give some proofs of new results.

1. Hajnal and I stated in 1961 the following problem: Denote by
mk(r) the smallest integer for which there is a k-chromatic
r-uniform hypergraph of mk(r) edges. Determine or estimate
mk(r) as accurately as possible. (In the older literature the

edges of a two chromatic hypergraph were said to have property B.

2r—1)
T »

), also m3(2) = 3, m3(3) = 7.

This concept was first used by Miller). We proved mj(r) < (
r-k+2
T

m3(h) is unlnown. Later 1 proved

~1
more generally mk{r) < ((k )

(1) log 2.2« m3(n) < cln22n.

The lower bound in (1) was improved by W. Schmidt to
(1- %)2“ <my(n). 1 conjectured that m3(n)12“ +® and I
further cenjectured that to every T there is a Cr which tends
to infinity with r so that if {Al,...,At], [Ail 2r,l<sic<t

is a three chromatic family of sets then
E 1

(2) o
3=1 2144 r

Beck proved both these conjectures, he proved in fact that

13 2", 1t would be interesting to get an asymptotic

m3(n) >ecn
1
formula for mJ(n) and for mk(n).
Fellowing G. Dirac we call the family {Al,...,At] critical
if it is three chromatic but if we omit any of the sets Ai the
remaining family is two chromatic. Assume that {Al,...,At] is

critical and max |A,| 21, then perhaps (2) remains true.
l1sis<r

It is well known and easy to seg that mz(k) = (;). In
other words every k-chromatic (ordinary i.e., r = 2) graph has at
least (;) edges, equality only for the complete graph K(k).
The geaeralization for hypergraphs fails in view of m3(3) =7

and the smallest complete three chromatic hypergraph for r = 3
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is K,(53) with 10 edges. 1 conjectured nearly twenty years .ago
2 (k=1)r+1

that for k > ko{t) mr(k) = ( &

complete r-graph Kr((knl)r+1). This conjecture is still open

), equality only for the

even for r = 3.

P. Erdbs and A. Hajnal, On a property of families of sects,
Acta Math. Acad. Sci. Hungar. 12 (1961), 67-123.

P. Erdés and L. Lovdsz, Problems and results on 3-chromatic
hypergraphs and some related questions, Finite and Infinitec Sets,
Coll. Hath. Soc. J Bolyai 10, Keszthely 1973, North Holland/Amer.
Elsevier, 609-627.

J. Beck, On three-chromatic hypergraphs, Discrete Math., 29
(1978), 127-137.

2. Rényi and I conjectured that almost all graphs G(n;[c n log n])
are Hamiltonian for sufficiently large ¢, and in fact we
conjectured that this holds for every ¢ > %. (G (n;2) denotes a
graph of n vertices and & edges). Pdsa proved our first
conjecture and the second was receatly proved by Xomlds and
Szemerédi, their proof will soon appear. At the end of 9, Spencer
and 1 foramulate the following conjecture: Let G(a;t) be a
random graph of n vertices and t edges with the added condition
that w2 Jmow that every vertex has valency 22. 1Is it then true
that for t = e nlogn (e > 0 arbitrary) almost ail of these
graphs are Hamiltonian. This was also proved by Kemlés and
Szemerédi. We further stated in 9 several other conjectures all
(or most) of which were also proved by Komlds and Szemerédi.

I conjectured that there is an interesting function f(c),
f(c) 1 as ¢ + =, so that for c > <o almost all G(nj;c,n)
have a path of length > f(¢)n. Szemerédi disagreed, he
believed that the expected length of the longest path is o(n).
Komlés and Szemerdédi now proved that I was right, in fact they
proved that my conjecture holds for every ¢ > 1., f(e¢) =0 for

[ 4 %- follows from results of Rényi and myself - the largest
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connected component in fact has size o(n). The behaviour of £( )
for %—c c €1 is not yet cleared up. As I put it in a nutshell,
Komlés and Szemerédi proved that I was right = I would have
preferred it if I would have proved that Szemerédi was right!

Rényi and I proved that if ln = % nlogn + nf(n) where
f(n) +« as n+= and n is even then almost all graphs
c(n;ln) have a matching (or a linear factor). During my last
visit to Jerusalem (197911) Professor Shamir suprised me with a
very prerty and perhaps difficult problem: Let =n = r m, ]5| = n.
Consider the random r-uniform hypergraph of n vertices and ln
edges. How large must Ln be so that with probability tending to
1 our hypergraph should have an r-matching i.e. m vertex disjoint
edges? For r = 2 Rényi and I completely solved this problem.
For reasons which are hard to explain (maybe not so hard, the two
greatest evils old age and stupidity are adequate explanations)
I neglected to ask this beautiful and natural question. Many
questions on random hypergraphs can be settled easily if one
settled r = 2. Shamir's questicn seems to be different and we

1+e

)

have no idea what to expect. It is not at all clear if ln = [n
suffices for such a matching - note even for r = 3.

Joel Spencer and I receantly proved the following conjecture
of Burtin: Denote by G(")
the n-dimensional cube.

the graph determined by the edges of

c(™ bis 2® werticas ssd = 20TH
(n)
G

edges. Choose each edge of

with probability %} Then the
¢(n)

resulting graph
%, (which is the probability that

is conpmected with probability tending to
() has an isplated vertex).
Our paper with Spencer will soon appear.

Fliredi recently studied the random subgraphs of the lattice
graph of the plane (i.e. two lattice points are joined if they
are neighbours), he obtained several interesting results which no
doubt can be extended to higher dimensions.

Neither he nor Spencer and I could so far decide whether if
one chooses edges in our graphs with increasing probability (i.e.
one studies the "evolution of random subgraphs") then does the
Ygiaat corponent” fuddenly appear. Rényi and I proved that this
happens for the random subgraphs of K(n) 1if the number of edges



is %(1+:). This unexpected phenomenon was perhaps the most
interesting result of Rényi and myself. One morec problem on the
evolution of random graphs which Rényi and I found very
interesting but due to the untimely death of Rényi I never
investigated: In our paper "On the evolution of random graphs' we
studied the size and distribution function of the size of the
largest component. Similarly one should study the second largest
component. Of particular interest seems to be the maximum
expected size of the second largest cowponent of the evolving

random graph.

P. Erdds and A. Rényi, On the evolution of random graphs,
Publ. Math. Inst. Hung. Acad. Sci. 5 (1960), 17-61 and On the
existence of a factor of degree ome of a connected randoem graph,
Acta Math. Acad. Sci. Hungar. 17 (1966), 359-368.

L. Pésa, Hamiltonian cycles in random graphs, Discrete Math,
14 (1976), 359-364.

3. Denote by f(n; G(k,2)) be the smallest integer for which
every G(n;f(n; G.(k,2))) contains G has a subgraph. These
types of problems were started by P. Turdn who determined
f(n;K(r)) for every r. W. Brown, V.T. Sds, A. Rényi and I
proved that

W fmie) = G+ o't

We conjectured that if p 4is a prime or a power of a prime,
then

@ f0MpHe) = JEHP 47 + L.

(2) was recently proved for infinitely many values of p by
Fiiredi.
Reimann and E. Klein (Mrs. Szekeres) proved that there is a

bipartite ¢{n) which has no €, and has (1+o(l))n3/2!2/5

4
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edges. Reimann further observed that -—%: is best possible. The
292
following problem has been unsettled for more than 10 years: Let

G(n) be a graph of n vertices which contains no 83 ajgd no 04.
1s it true that G(n) can not have more than (l+o(1l))n IZJE
edges? This problem is still open but Simonovits and I proved this,
if we assume that G(n) contains no Ch and no CS. Our proof

will appear soon.

3/2

21 3 12
£(n:C,) =5 n o+ T+ 0)

is conjectured in 10.
An cld and nearly forgotten conjecture of mine states that if
G is a bipartite graph of [n2!3] white and n black vertices

and more than ‘cn edges then it contains a C It is easy to

see that it contains a CB' Clearly many gene:alizaticns and
extensions are possible.

Simonovits and I published since 1958 resp. 1966 many papers
on extremal problems on graphs, here I only stated a few very
recent results. Nevertheless I want to call attention again to the
old problem of Turdn which dates back to 1940. Denote by
f(n;K(r)(t)) the smallest integer for which every uniform r-graph
(r)(t)-

on n vertices and f(n;K(r)(t)) hyperedges contains a K

It is easy to see that

&) 1im £k )/ (™ = ¢
b r,t
n+=
exists. €y T 1- ?EI follows from Tur4dn's theorem, but the
] e L
value of L is not known for a single t > r > 2. Tdran

conjectured Ehat f(3n;K(3)(ﬁ)) = n3 + 2n(;) + 1 and

f(ZR;K(3)(G)) = nz(n—l) + 1. I offer 1,000 dollars for a proof

of these conjectures and the determination of €. s for all
¥

t>r > 2,

(r)

The second problem is one of my old problems: Let G i {n.)

5 4
5 P e

1 2
The edge density of the sequence is the largest a for which

be a sequence of r-graphs having n, vertices n

there is a sequence X, > = as i + o sp that Gir)(ni) has
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P. Erdds, On some extremal problems on r-graphs, Discrete
Math. 1 (1971), 1-6.

W.G. Brown, P. Erdis and M. Simonovits, On multigraph
extremal problems, Coll. Internat. C.N.,R.S. 260, Problimes
Combinatoire et Théorie des Graphes, 1972, 63-66, Extremal
problems for directed graphs, J. Comb. Theory, 15 (1973), 77-93.

Last year the comprehensive book of B. Bollobds appeared
which contains an immense material and very extensive literature
on extremal problems in graph theory: Extremal Graph Theory,
London Math. Soc. Monographs No. 11, Acad. Press 1978.

4, Llet ]Sl = n, and consider families F(n;k) of subsets
{Ai}, of S, lAi] = k. A family is called m-intersecting if
every m of them have a non-empty intersection. Let £(n;k,m)
be the cardinal number of the largest family F(n;k) such that
every m-intersecting subfamily of it is necessarily (mtl)-
interesting. Ko, Rado and I proved that for n 22k f(n;k,1) =
(z:i). 1 conjectured in 8 that

3k

: = ("1 3k
(1) f(n;k,2) (k—l) for k 23, n 2 2"

Chvatal proved (1) for k = 3, more generally he proved
E(ask,k-1) = (7)) for k 23, m 2k +2

and conjectured

f(n;k,m) = (::}_) for 1<m<k,n 2%1- k.

2
f(n;2,2) = [nT] is the well known theorem of Turédn (every
2 i
G(n;[ﬂ“—]+1) contains a triangle and [%r] + 1 is best possible.
A.Frankl just informs me that he proved (1) for n > no(k) and
proved that Chvatal's conjecture is asymptotically correct.
4
In 8 1 state That Hajnal and I proved n —+ (cl log n, [3])3

but n 4 {c2 log n,[;])3. I am afraid I was too optimistic, we
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only proved n + (c lagnfloglogn.[g])s, the non arrow relation we

really proved. Thus a gap of size cloglog n remains.

V. Chvatal, An extremal set intersection theorem, J. London

Math. Soc. (2) 9 (1974), 355-359.

P. Frdts and A. Hajnal, On Ramsey-like theorems, problems
and results, Proc. Conference Oxford 1972, Combinaterics, Inst.

of Math. and Its Applications, 123-140.

5. Hajnal and I conjectured that for every k there is a graph
Gk which has no K(4) but if one colours its edges by k colours
there always is a monochromatic triangle. This was proved for
k=2 by J. Folkman and for every k by Nesetril and R&d1l. For
infinite k our problem is open. Our simplest unsolved problem
states: Let ¢ “Sl' Is there a graph G of power 5'52 which
has no K(4), but if one colours the edges of G by EiD colours,
there always is a monochromatic triangle.

The graphs of Follman, Nesetril and R8d1l are enormous. This
made me offer 100 dollars for the proof or disproof of the
following problem: Is there a graph of at most 1010 vertices
vhich has no K(4), but for every colouring of its edges by two
colours there always is a monochromatic triangle? I expect that
such a graph exists.

I conjectured that for every k and r (r > 3) there is a
graph Gk.r which not only.does not contain a K(r+l) but
every two K(r)'s of which have at most two vertices in common and
is such that for every colouring of the edges by k colours there
always is a monochromatic K(r). Nesetril and R&d1l proved this
conjecture too and also all the extensions for hypergraphs 1
could think of. In 5 I stated the following question of H. Dowker
and myself: Is it true that every graph of girth greater than k
can be directed in such a way that it contains no directed circuit
and if one reverses the direction of any of its edges the

resulting new digraph should alse not contain a directed circuit?
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Nesetril and R&dl answered this question affirmatively.

Hajnal and I conjectured that for every k and r there is
an f(k,r) so that if x(G) > f(k,r) then G has a subgraph
of girth greater than r and chromatic number greater than r.
R8d1l proved this for r = 3 and every finite k 1in a surpris-
ingly simple way, but his estimation for f(k,3) is probably
far from being best possible.

In 1 I stated the following problem of M. Rosenfeld: Is it
true that every finite graph G which has no triangle is a
subgraph of the graph GJE wvhose vertices are the points of the
unit sphere of Hilbert space and two points are joined if their
distance is > /3" Alspach and Rosenfeld proved this if G is
bipartite. Larman disproved the general case. In fact he showed
that for every a > 2(%)1}2 there is a triangle free G which
can not be imbedded in G _ . He conjectures that this remains true
for every a > 21!2. ¢

Very recently J. Spencer proved the following very attractive
problem: A graph is said to have property R, if for every
colouring of its edges so that two edges having a common vertex
always have different colours, our graph has a rainbow circuit
i.e. a circuit all whose edges have different colour.

Spencer's problem now states: Are there graphs of arbitrarily
large girth having property R?

One would expect that this problem will yield to the

probability methed, but so far we had no success.

P. Erdés and A. Hajnal, On the chromatic number of graphs and
set systems, Acta Math. Acad. Sci. Nungar. 16 (1966), 61-99,

J. Nesetril and V. Rddl, Partitions of finite relational
and set systems, J. Comb. Theory (A) 22 (1977), 289-312. This

deep paper has a very extensive list of references.

D.G. Larman, A triangle free graph which cannot be /3
imbedded in any Euclidean unit sphere, J. Comb. Theory Ser. A
24 (1978), 162-169.
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A forthcoming book of R.L. Graham, B. Rothschild and J. Spencer
on Ramsey theory will discuss the results of Nesctril and R&d) and

of course many other topics not mentioned in this survey.

6. MNow I state some new problems. First a few questions on block
designs and finite geometries. I am mot an expert in this field
and 1 apologize in advance if some of "my" problems turn out to be
well known.

I. 1Is it true that there is an absolute constant C so that
every finite geometry contains a blocking set which meets every
line in at most C points? More generally: Is it true that to
every € > 0 there is an absclute constant Cc so that if
’S] =n and A- S, 1< i < m(e,n) is a system of subsets
€ nl}Z < |Ai[ <1n for which every pair of elements is contained
in exactly one Ai' then there is a set S, © § for which every

i, 1 £ i < n(e,n)

1

(1) 12 |ans| <c?

By the way a well known theorem of de Bruijn and myself
implies that m(e,n) 2n.

J. Freeman informs me that he and Bruen proved that there
are infinitely many finite geometries for which there are
blocking sets which satisfy (1).

II. Let Ag,...sA, IAinhj| <£1,1$4i<jst bean
arbitrary family of sets. 1s it then true that there is a
finite geometry whose lines containm the {Ai} as subsets? In

other words there is a set §, |S| = 22+n+1 and B, <8,

IBiI"h+l,lsisn2+n+l, lBinlel.l, lsi<j$n§+n+1
and Ai c Bi for 1 <1 s t. I have no idea how to attack this

prablem.

N.G. de Bruijn and P. Erdds, On a combinatorial problem,
Nederl. Akad. Wetensch. Proc. 51 (1948), 1277-1279, see also
Indigationes Math.
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In 1 I conjectured: Let 1 < al € we. < a

integers for which all the sums a_ + aj are distincrt. Then

k be a sequence of

i
there is a prime p and a perfect difference set mnd(p2+p+1)

which contains the a's. I expect that this conjecture will be
more difficult.

Both conjectures can be slightly strengthened. Tirst of all
both conjectures could hold for all sufficiently large n for
which a finite peometry exists, and in the second conjecture the

1

satisfy a, = bi, i=1,2,...,%x. (I remind the reader that a

perfect difference set satisfies bi - b. represent all the non

perfect differénce set 1 £b, < ... < bp+1 < p2 4 p could

zero residues mod(p2+p+l) exactly once. For references on
these questions consult 1, p. 189). I was just informed that "my"
problem on finite geometries is not new but was stated more than
10 years ago by T. Evans.

III. Jean Larson and I proved that for n + = and |[S| =n
there is a family of sets Ai Eig, {Ail = (l+o(1))nl!2
1 i < n(l+o(l)) and so that every pair of elements of S is

contained exactly one Ai. The proof follows without much L
difficulty from the probability method and from Pltl = Pi ¢ pk"c
(the p's are the sequence of primes).

Here are a few further older problems of mine on block
designs. Is it true that there is an absolute constant ¢ so
that for every n there is a systen Ai c S5, iS' =n so that

every pair is contained in exactly one Ai and for every T the

1/2
number of indices IAiI =T 4is less thanc n ! ? It is not hard
to prove that if this is true then it is best possible i.e. there

alwvays is a ¢, %0 that for some T the number of indices
; 1/2
]Ai’ =T 1is greater than cyn -

Let X 2% 2. zx“ 22 be a sequence of integers for

which there are sets A, |A1| =X, Ay

pair is in exactly one Ai. I conjectured that the number of such
c3n1}2

sequences is greater than n . If correct it is easily scen

c s, {Sl =n and every

to be best possible apart from the value of Cqr



s Pl

On the other hand I conjectured that if the elements of S are
points in the plane and the Ai are the lines joining the points
then the number of the sequences xl z xz 2 .., 1is less than
exp nljz. It is again easy to see that if true this is best
possible apart from the value of L I expect that this problem

is much harder than the previcus one.

7. I state now a few miscellaneous recent problems.

I. At the problem session of our meeting J. Dinitz stated
the following problem of his which I find very interesting and
challenging: Let A, s, |Ai’j| =n,1<i<n,1<j<n bean
arbitrary family of n~ sets of size n. Prove that there
alvays is an xi,j € Ai,j which form an incomplete latin square
(i.e. each element occurs at most once in every row and every

column),
Observe that if the Ai j are all the same set the answer
k]

is trivially affirmative. Further if |[A 2n is replaced by

gl
|Ai,j| 22n - 1 the answer is also trivi;iiy affirmative. Also
Gupta has some related perhaps more general problems.

1I, Hanani and T proved that if n = (;) +j < (tgl) and
G is a graph of n edges then it contains the largest number
DP subgraphs K(r) (r st) if Gn has t+ 1 wvertices
XyseeosX where  G(x ,xt) is complete and x is

£+l : A t+1
joined to j of the x's. The proof is not difficult. During my
last visit in the spring of 1979 Mr. Allon asked me if our
theorer remains true for hypergraphs. I could not settle this
interesting question which as far as I know is still open, but I
asked: Let G(r) be any graph of r wvertices. Let Gn be
the graph of n edges which contains the largest number of sub-
graphs isomorphic te our G(r). Can one characterize G, and
in particular when is Gn our graph with Hanani. Allon has
several interesting results on this problem which I hope he will
publish soon. The simplest case which remained unsettled was if

G(r) is an odd cycle (r > 3).
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P. Erdbs, On the number of complete subgraphs contained in

certain graphs, Publ. Math. Inst. Acad. Sci. Hungar. 7 (1962), 461.

I1I. Let G(n) be a graph of n wvertlces m < n(l-g).
Assume that every set of m vertices of our G(n) contains an
edge - in other words the largest independeut set in our (n)
is less than m. f(n;m) is the largest integer so that there
aluays exist a subgraph of m vertices of our G(n) which has a
subgraph of m vertices of our G(n) which has at least f(n;m)
edges i.e. f(n;m) 1is the largest integer so that if every induced
subgraph of m wvertices contains an edge then there is a subgraph
of m vertices and f(n;m) edges. We have

(1) c.m < f(nim) < ¢

1 zm log n.

The lower bound in (1) is almost immediate, the upper bound is
given by the probability method. Is the upper bound best possible?
If m=c¢ log o the answer is "easily" seen to be affirmative
(easily but not trivially). As far as I see the most interesting
open question is whether the upper bound in (1) is best possible
for m= {nlfz]?

There are several possible modifications of this problem
which might be of some interest. Let G(n) be a graph vhere we
either assume that ©G(n) does not contain a X(m) and the
largest independent set is less tham m, or we assume that G(n)
has %{g) edges. Denote by emax(l3m(n}) resp. emi“(IEm(n]}
the largest respectively the smallest integer for which there is

an induced subgraph of m vertices of G(n) containing

i G
emax(cnﬁn)) respectively emin( m(n)) edges. Put

A(n;m) = min (e (G (n)) ~e . (G (n))
G(n)

where the minimum is taken over all admissible graphs. Determine
or estimate A(n;m) as accurately as possible and compare it to
f(n;m).

Many further generalizations and extensions seem promising
e.g. for hypergraphs but here I do not pursue this subject any

further.
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IV. 1In 1 (p. 189) I stated the following conjecture. Let

G(n) be a graph of n vertices, assume that every subgraph of
2

[gl vertices contains more than [254 edges than  G(n)

contains a triangle. Unfortunately I got nowhere with this
interesting conjecture. Further 1 asked: Denote by f(a,n) the
smallest integer so that if every induced subgraph of [an]
vertices contains f(a,n) edges them G(n) contains a triangle.
Determine or estimate f(a,n) as well as possible. Perhaps the

determination of

lim f(ﬂt.ﬂ)!’n2 = g(a)

nre

is not hopeless. So far I had no success. By Turén's theorem
2
£(1,n) = [ + 1.

Perhaps the following new question may be of interest. Let
2
G(n) be a graph of [%;i edges which has no triangle. By

Turfn's theorem G(n) (G is the complementary graph of G )
must then contain a K([E%;J). Assume now that G(n) has no
triangle and the largest clique of G(n) is h(n). Determine
or estimate mgx e( G(n))*= Fh(“)(n). The problem makes sense

only if h(n) is large enough for such a graph to exist.

12 log n then

I proved nearly 20 years ago that if h(n) > ¢ n
such a graph exists. V.T. S58s and I proved that if h(n) = IE]

then (k fix n =+ =)

(1) F_(n) > ——o

On the other hand trivially F () < '2‘15 (since avery vertex
=]

K 2
has valency < ). It would seem likely that F () = o(%-‘-),

k
k
and perhaps in fact (1) is best possible.
Another problem which is perhaps more closely related to my
original problem states as follows: Let £(n;T) bVe the largest
integer for which there is a G(n;f(n;T)) which contains no

*
¢(G) denotes the number of edges of G.



T
triangle and for which every induced subgraph of Pi vertices
contains ar least T edpes. My conjecture stated in 1, if true,

implies that the problem makes sense only for T < %ﬁ .
2 2

For
T= %ﬁ I think f£(n;T) = [%;]. Further gencralizations are
possible if instead of looking at induced subgraphs of [%}
vertices we insist that every induced subgraph of [an] wvertices
has at least T edges, but we do not pursue this question at
present.

The final remark. Consider the graphs ¢ (n;lc nz])
0o<¢ < %3 n + =, It easily follows from the probability method
that there is a g(n;[c nz]) so that if lnflog n + @ every
induced subgraph of ln vertices gas (c+o(1))£i edges. Thus
in particular there is a G(n;[en”]) so that every induced sub-
graph of igﬂ vertices has C§-+ o(l))n2 edges. On the other
hand I proved that if n > no(r} then every such graph must
contain a K(r). I hope to return to this question in the near

future (assuming that there is a future for me).

P. Erdis, Graph theory and probability II, Canad. J. Math,
13 (1961), 346-352. See also, P. Erdds and J. Spencer,
Probabilistic methods in combinatorics, Acad. Press, New York,
1974.

V. Denote by A(n;k) the least common multiple of the
integers n+l,...,ntk. In my lecture at our meeting I stated
the following conjecture: Let o be the smallest inteper for

which
a(nk;kJ > A(nk+k;k).

Then lim nk!k = w, During the meeting I found a simple proof of
ke

this conjecture which I now present. (In fact the proof is so
simple that only the remark made in 2 explains that I did not
ind it right away).

Let k <n (r+1)k, r fixed %k large. Denote by

k
P(u,v) the product of the primes in the interval (u,v). Clearly
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. T n nk+k nk+k
(1) A(nk,k) = P(1,k) I P(—i", ‘-'Hi—*) P(k, '-m)ql

i=1

where the factor Ql comes from the primes which divide

Ak(nk,k) by an exponent greater than one. Similarly

rt+l nk+k nk+2k nk+2k

=
The prime factors of Ql and QZ are all less than (uk+2k)1,".
1/2

The contriburicn of each of them is less than exp(c(nk+2k) i
Thus
(3) max(Q,,Q,) < exp(n +2k)1f2(10g n, +2k) .

1’72 k k

By the prime number theorem for fixed i and large k

+k
) PCE, ) - emp(@ro) 5.

From (1), (2), (3) and (4) we easily obtain for fixed r and
large k that

A(nk-i'-k,k)

el TN T 1/24¢
) XCRRY

# > e ((1-e) ) exp(-(x1) /2%

(5) clearly gives A(nk+k,k} > A(nk,k) for every fixed r and

large k, which proves our assertion lim nkfk = », In fact using
ke

sharper forms of the prime number theorem this proof gives without

difficulty that there is a ¢ > 0 so that o > k1+c. On the

other hand I conjecture that'
s 2
(6) lim nkfk = 0.
k=
The proof of (6) probably will not be very difficult, but I
have not done it as yet.

The following old conjecture of mine seems very much more

difficult: Let n + k < m then

) Aln,k) ¥ Am,K).
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At the moment I do not see how to attack (7). I asked for
solutions of

(8) A(n;k) > A(m32), & > k, m zn + k.

The referee of one of my papers found two solutions.
Selfridge showed that (8) has no solution for k < 7 but that
there are 18 solutions for k = 7 and probably the number of
solutions tends to infinity as k tends to infinity, but as far
as I know it is not yet known that (8) has infinitely many
solutions. Selfridge further observed that if (8) holds then
n < A(1l;k-1). It would be interesting to estimate the largest
solution of (8).

Two final questions: Put h(n) = max(2-k) where the
maximun is extended over all solutions of (8), n fixed k,i,m
are variable. Estimate h(n) from above and below as
accurately as possible. The exact determination of h(n) is of
course hopeless. Probably h(n) + ® as n + « but perhaps for
every € > 0 h(n)/nE + 0.

Are there infinitely many values of n so that for every
k,1<k<n-1

(9) Aln-k,k) < A(n,k)?

e.g. n=10 and n = 12 satisfy (9), but I expect that for
large n the seclutions of (9) will be rare and 1 do not see a

proof that (9) has infinitely many solutions.

P. Erd6s, Some unconventional problems in numker theory,
Math. YMagazine 52 (1979), 67-70.
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