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First we introduce some notations .

c l , c 2 , . . . denote positive absolute constants . The number of

elements of the finite set S is denoted by ISI . We write

ex = exp x . We denote the i th prime number by p i, . v(n) denotes

the number of distinct prime factors of n . mk is the smallest

integer m for which

v(1k» > k .

P(n) is the greatest, p(n) the smallest prime factor of n . nk is

the smallest integer n for which

P(n+i) > k for all 1 < i <_ k .

In L31, Erdös, Gupta, and Khare proved that

Mk > c I k2 log k .(1)

We prove

THEOREM 1 .

	

Por k > k 0 we have

(2)

	

mk > c2 k2 (log k) 4/3 (log log k)-4/3(logloglog k) -1/3

It seems certain that mk > k2+c . It follows from results of

Selfridge and the first author [41 that, by an averaging process,
mk < ke+e

	

The exact determination of, or even good inequalities for,

mk seems very difficult .

Denote by mk the least integer such that for every m ? mk

k )I ? k

Szemerédi and the first author proved in L51 that mk < (e+c ) k for

every c > 0 if k > k0 . Very likely mk < k c but we could not even

prove mk < (e-F) k . Schinzel conjectured that v((k)) = k holds for
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infinitely many values of m . This is almost certainly true, but will be

hopelessly difficult to prove . Let g(n) be the smallest integer

t ? 1 (if it exists) for which n-t has more than one prime factor

greater than t (or the same definition for n+t) ; surely g(n)

exists for both definitions but it is not known (see [41) .

In a previous paper C2, p .2731, P . Erdős outlined the proof of

(3)

	

nk < klog k / log log k

No reasonable lower bound for nk was known . We prove

THEOREM 2 .

	

If k > k 0 , then nk > k5/2/16 .

It seems certain that for k > k 0 (t), nk > k t and, in fact,

perhaps the upper bound (3) is close to the "truth" .

Some other related problems and results can be found in [1] .

2 .

	

Proof of Theorem 1 .

We need two lemmas .

LEMMA 1 .

	

If x ? 0, y > 2 and d is a positive integer, then the

number of soZutions of

p-q = d, x < p << x+Y ,

where p, q are prime numbers, is Zess than

c3 T[ I1 + 1	y2 < c4 log log (d+2)	y 2
p/d

	

p log y

	

log y

This lemma can be proved by Brun's sieve (see e .g . [61 or 171) .

LEMMA 2 .

	

Let N ? 2 be a positive integer and s l < s2 < . . .< sN

	

e

any integers . Put sNsl = S and, for fixed d, denote the number of

soZutions of

s - s = dx

	

y

by F(d) . Then there exists a positive integer D such that

2
D <_ NS and F(D) > 48S



Proof of Lemma 2 .

Then

and thus

hence

(4)

since

and

For j = 1, 2, . . ., [N/4] + 1, let Ij = [sl+(j-1)y,sl+jy] .

holds alsó for N = 2, 3 .

Let N, ? 2 for some
J

N .
Then for all the ( 2 J

	

pairs,

sl +(I s i+1'y > sl + y y-s l+S=s N ,

[S/y]+i
U

	

I j D Lsl , SN 1 ;
j=1

lsj<_[N/4]+1 J

	

1<-j5[N/4]+l

	

J

	

1<j5[N/4]+l
N.>-2

	

N.=1
J

	

J

=N- ([N/4]+1) ?N- 2= 2

[ N ]±1 < N + N = N

	

for N? 44

	

4

	

4

	

2

j

N,

and define z by s z i I
J., sz+1 E I

j
.

1 < x < y < N . , we have

1 <_ s

	

-sz+x
<

s z +N'J - sz+1 < 4S/Nz+

	

.
Y

Thus, with respect to (4) and using Cauchy's inequality, we obtain that

N `
F(d) >

	

2j

)

lsd<_4S/N

	

15j5[N/4]+1
N,?2
J

N,-1

	

N,/2

1<-j<[N/4]+l J 2

	

lsjs[N/4]+1 1 2
N,>2

	

N .?2
1

	

1



hence

1
4 lsj<_LN/4]+1

N,?2

2

> 4(2)

	

1<j<LN/4]+l

F(d)
2

max

	

F(d) >_ 1<d<4S/N	 > N/12 = N

1<-d<-4S/N

		

E

	

1

	

4S/N 48S '
1<-d<-4S/N

which completes the proof of the lemma .

In order to prove Theorem 1, it suffices to show that if e is

sufficiently small then the assumptions

2
N,

	

E

	

1
l<- j<-[N/4]+l J

	

1<j<-[N/4]+1
N . ?2

	

N . ?2
J

	

J

> N2

	

N + 1 > N 2 3N - N
16

	

4

	

) 16 4

	

12

(5) v
«M»

> k ,

(6)

	

m : ck 2(log k) 4/3(log log k) -4/3 (log log log k)
-1/3

lead to a contradiction for all k ? k0 (c) . By (1) we may assume that

(7)

	

m > cl k2 log k

also holds .

For all 0 < i < k-1, we write

m-i = a,b, ,

where P(a i ) < k and p(b i ) > k (if, for example, all the prime

factors of m-i are less than or equal to k then we write b, = 1) .i
Furthermore, let S 1 denote the set consisting of the integers

0 <_ i < k-1 such that

P(m-i)

	

k log k
log k

and let S 2 = {0,1, . . .,k-1}-SI (i .e . i e S 2 if and only if

110 < i <- k-1 and P(m-i) > k log k (log log k) -l ) .



thus

(9)

First we give a lower estimate for

	

II

	

aí • (k) is an integer ;
icS 2

m-i
p

k'
k-1

	

k-1
m(m-1) . . .(m-k+1) = II a 1, II b 1, ,

i=0

	

i=0

k-1
and, obviously, ~k!, R b 1, = 1 . Thus we have

i=0

and hence by Stirling's formula,

(8)

(for sufficiently large k) .

From (5), we have

k
II

a
> k .

> (k ,

i=0 i l
1

3

ki

k < v ((k )' < (v(m(m-1) . . . (m-k+l) )

1 +

	

-1 1
p<-k

	

k<p<_k log k (log log k)
p I m(m-1) . . .(m-k+l)

	

pIM(m-1) . . .(m-k+l)

+

	

~

	

1 1
k log k(log log k)

-
<p

p m(m-1) . . .(m-k+l)

Here the first term is less than or equal to 7(k) . Furthermore, if

k log k (log log k)-1 < p and p I m(m-1) . . .(m-k+l) then p1m-i

for some i e S 2 , and by (6), we have

_ m

	

_

k log k (log log k) -1

sk2 (log k)4/3(log log )-4/3	 (log log log k) -l/.3

k log k (log log k) -1

= ck(log k) 1/3 (log log k) -1/3 (log log log k) -1/3

< k log k (log log k) -1 .



Thus for all í c S 2 , m-i has only one prime factor greater than

k log k (log log k) -1 . This implies that the third term in (9) is less

than or equal to IS21 . Finally, we write

E

	

-1 1=R .
k<p<k log k (log log k)

pIm(m-1) . . . (m-k+l)

We obtain from (9) that

k < Tí(k)+R+IS 2 I ;

hence

(10)

		

R ? (k-IS2I)- TT(k) = S1 - Tr(k)

Obviously, we have

7T(k)+R

	

Ti(k)+R
(12)

	

II

	

p, >

	

II
í=7i (k)+1 L

	

í=TT(k)+1

By the prime number theorem, we have p i
- i log i . Furthermore, by the

prime number theorem and the definition of R,

R < Tr(k log k (log log k) 1) < k

(for large k) . Thus by (10) and using the prime number theorem and

Stirling's formula, we obtain, for sufficiently large k and

S I I > c8 , that

Tr (k) +R
R

í=Tr (k)+1

'1 - 1

	

i log i

'1 -

S1
(11)

	

11

	

= 11

	

m-1 <	m

ieS l

	

S

	

bi

	

II

	

-1 p
k<p<k log k (log log k)

plm(m-1) . . .(m-k+l)

i=TT(k)+R
<_ m

	

p

	

p í
1= Ti (k)+1

11)i log (TT(k)+1)



• ~ (k)+R

	

1 - 1 i log k = 9
R(log

k)R (Tr(k)+R)'

i=7r(k)+1

	

10)

	

(10)

	

( (k)) .

ISI I-7(k)

	

ISI I :
•

	

(2_)k

IO (log k)
r(k) 7r

(
k)

S l i

- Ti
> ( 9~)k (log k) ISl (7(k) log k) (k)
	 IS l i S1I

3

9
•

	

(IO

k

)
(ISII log

9 k
(• 10) (IS1I log

k) Is 1 1 e -Ti(k) log (Tr(k) log k) 3-k

k) I S 1 I e -2k 3-k

Is
1 -k -k

	

-k

	

S l
k)

	

93= 30(ISIIlog
k)

(9
)k(IS1I log

•

	

1 10

(11) and (12) yield that, for

	

IS I I > c 8 ,

(13)

	

R

	

ai <	 mIS1I	
IS

	 I

	

k IS11 30k ISI I k log k

	

Is1 1

icSl

	

30-k (IS I Ilog k)

	

1

By (10) and the prime number theorem, we have

(14)

	

IS
1

1 s R+TT(k) _

	

E

	

1 + 7T(k)
k<psk log k(log log k-1

pIM(m-1) . . .(m-k+l)

5

	

E

	

-1 1 + 71 (k)
k<p`k log k(log log k)

_ (Ti(k log k (log log k) -1 ) - TT(k)) + 7T (k)

= Tr(k log k (log log k) -I)< 2k(log log k) -I -

If a > 0 then an easy discussion shows that the function f(x) _ (a/x) x

is increasing in the interval 0 < x < a/e . If we put a = m/(k log k)

and x = ÍS 1 1 then from (7) and (14) we have

.

c k 2 log ka

	

_m	 > 7

	

= rl k > 2k(log log k) 1 > IS Ie

	

e k log k

	

e k log k

	

e

	

1



for sufficiently large k . Thus, for large k and IS1I > c 8 , (13)

and (14) yield that

(15)

For large k, this holds also for 0 < IS11 5 c 8 since in this case,

from (6) and (7) we have

kIs1I30k	m	2k(log log

(k 2 log k (log log k) -1

> 30k

	

cl k2 log k

(k2 log k (log log k) -1

while

for sufficiently large k .

(8) and (15) yield that

IS1

	

k

	

m

	

/ IS1Iie
11
S

ai <

	

30 IS 1 Ik log k
1

F1

	

a, < n m = m IS1I < (k3)
S1 I < k3c8 < 30k

icS 1 1

	

icS 1

< k
IS 11

30k(	m	2k(log log k) -1

2k(log log k) -1 k log k

IS I

	

2k(log log k) -1< k 1 30k	 m

k2 log k (log log k) -1

-2k(log log k) 1

k-1

	

1
(16)

	

n

	

a . _ ;I a

	

aa
i(S2 1

	

i=0 1 iESI 1

k
kIkIs1I30k	m	2k(log log k) -1 -1

~3/

	

(k2 log k (log jog k) -1

kk- IS1 1 90-k

	

m

	

-2k(log log k) -1

k2 log k (log log k) -1

= k S2 90-k	m	

-1

~ 2k(log log k) -1

(k2 log k(log log k)

k) -1

k> 30 ,



Let S,, denote the set consisting of the integers

0 <- i < k-1, i E S2 , and ai < 10-6k . Then we have

(17)

where

(1 .6) and (17) yield that

hence

(18)

(19)

R

	

a, =

	

R

	

a .

	

R
ies2 1

	

1ES 2 ,i~S 3 1 icS 3

•

	

11 10-6k 11 mb1
iGS2 ,i~S 3

	

icS 3

	

1

•

	

R 10 6k R k m
ics 2 ,i~S3

	

iES 3 kP(m-i)

i satisfying

5
k Is2I

	

R

	

10-6 1'

	

m
icS2 , US3

	

icS 3 k2log k (log log k) -1

k `Is2i (10- 6) IS 2 I-T	 m	 T

(k 2 log k (log log k) -1

•

	

kIS2I(10-6)k-T (	m	_ T

k` log k (,log log k) -1

k is2I 9p k	m	 2k(log log k) -1

(k2 log k (log log k) -1 )

<
k S2I(lp-6)k-T(	 m	 T

k2 log k (log log k) -1

T+2k(log log k)- 1
(106 ) k-T90-k < (	m	

k2 log k(log log k) -1

We are going to show that this inequality implies that

T > k(log log k) -1 .

If T ? k/2 then this inequality holds trivially for large k ; thus we

may assume that T < k/2 . Then we obtain from (18) that



T+2k(log log k) -1

k2 log k(lo

m

g log k) -1

(106 ) k-k/290-k > 103k 10-2k = 10k .

Thus, from (6), we have

T+2k(log log k)-1 > _	klog10

log

		

m

	

1k2 log k(log log k) -

klog10

log Ek2 (logk) 4/3 (loglogk) -4/3 (loglog logk) -1/3

k2 log k (log log k) -1

k log 10

log (e(log k) 1/3 (log log k) -1/3 (log log log k) -1/3 )

>	klog10	 - 3klog10 > 3k(log log k) -1
tog (log k) 1/3

	

log log k

for sufficiently large k, which yields (19) .

By the definition of a ., we have a .lm-í . If

	

then

> 10-6k also holds . But, if a > 10 -6k, then a may have at most

k+1 < k + 1 < 106 + 1 < 2 .106al

	

a

multiples amongst the numbers m, m-1, . , m-k+l . Thus, for fixed a,

ai

	

a, 1 E S3 ,

has less than 2 .106 solutions . From (19), this implies

that the number of the distinct aí 's with í c S 3 is greater than

F, 1
icS3	 T k(2 .106 log log k) -1
2 . 10 6 - 2 .106 >

	

•

By the definitions of the sets S 2 and S 3 , i ( S 3(á S2 ) implies that

-k log k (log log k) 1 < P(m-i) < b i ;



hence, from (6),

(20)

	

(10-6k <)a . = m-i

	

m
i

	

bi

	

k log k (log log k) I

< ek2 (log k) 4/3 (log log Q -	4/3	 (log Iog log k)	1/3

- k log k (log log k)- 1

ek (log k) I/3 (log log k) -I/3 (log log log k) -1/3

and for all

Let us write

•

	

= k (log k) -5/3 (log log k) 2/3 (log log log k) 2/3

(ek(log k)1/3(log log k) -1/3 (log log log k)-1/3 + l,
L

	

t

let us form the interval I
J

, _ ((j-1)t,jt7 . By (20), these intervals

cover all the a i 's (with i E S3), and the number of these intervals is

~ek(log k)1/3(log log k) -1/3 (log log logk) -1/3 , + 1I
l

	

Jt

~ek(log k) 1/3(log log k) -1/3 (log log log k)-1/3 + 1

k(log k) -5/3(log log k) 2/3 (log log log k) 2/3

•

	

c(log k) 2 (log log k) -1 (log log log k) -I + 1

•

	

2e(log k) 2 (log log k) -1(log log log k) -I

(for large k) . Thus the matchbox principle yields that there exists

an interval I, which contains more than
j

k(2 .106 log log k) -I

2e(log k) 2 (log log k) -I(log log log k) -1

_ (4 . 106 )
-1c

-I k (log k) -2 log log log k

distinct aI 's . In other words, there exist indices i l , i2 ,

	

1N

satisfying i Q e S3 for i <_ Q <_ N,



(21)

	

(j-1)t < a
1
.

	

< a
1
,

	

< . . .< a
1
.

	

S jt
1

	

2

	

N

and

(22)

Let us apply Lemma 2 with the set a . , a, , . . ., a,

	

in place
11

	

1 2

	

1N

of the set s l , s 2 , . . .,s N . (By (21), N ? 2 holds trivially .) Then

from (21), we have

(23)

	

D

has at least

(25)

	

F(D) ? N2 > (4 .10 6 )-2e-2k2(log k) -4 (log log log k) 2

48S

	

48k(log k) -5/3 (log log k) 2/3 (log log log k) 2/3

> 10-15 c-2 k(log k) -7/3 (log log k) -2/3 (log log log k) 4 / 3

solutions .

S = sN-sl = a -ai
l IV

	

1

that for large k

N > (4 . 106 ) -1 c-1 k (log k) -2 log log log k .

< t = k(log k) -5/3 (log log k) 2/3 (log log log k) 2/3

Thus, from (22), we obtain that there exists an integer

< 4S < 4k(log) k) -5/3(log log k) 2/3 (log log log k)	
2/3

N

	

(4 .106)-1 e-1 k (log k) -2 log log log k

16 .10 6 c(log k) 1/3(log log k) 2/3 (log log log k) -1/3

a . - a, = D
x

	

y

By the definition of the set S 3 , i Q E S 3 implies, from (6),



m-12

	

m
1 R

	

a 1Q

	

10-6k

< 106 e k(log k) 4/3 (log log k) -4/3(log log log k) -1/3

< k(log k) 4/3

and, on the other hand,

(26)

	

b í ? P(m-í R ) > k log k (log log k)- 1 .
Q

By the definition of b, , we have p(b, ) > k; thus these inequalities1 Q

	

1Q

imply that b i = q. must be a prime number . Then q l , g2' *** 'qN are2
distinct since by (26), q Q > k log k (log log k) -I (for all R) . Thus

q. may have at most one multiple amongst the numbers m, m-1, . . .,m-k+l .

Furthermore, we have

m-iZ

	

m
a,

	

< ('-1)t

(it can be shown easily that j > 1) and

m-iQ

	

1R > m _ k

	

m

	

6qQ

	

ai

	

al

	

ai

	

jt

	

10-6k

	

jt - 10

Q

	

Q

	

Q

Thus all the primes q R belong to the interval

6	 mI= r jmt - 10

	

(j -1) t

From a i > 10-6k, (5), and the definition of t, the length of this

(27)

interval is



(28)

Hence

(29)

(30)

_

	

m -

	

6	 m 	6~1~

	

Q-1)	t

	

jEl- - lo

	

= 0-1) jt + lo

<

	

mt

	

<

	

mt

	

<

	

mt

	

< 2 . 10-12mtk-2(it-t)jt

	

(aiz-t)a

	

(10-6k-t)10-6k

< 2 .10-12 ek2 (log k) 4/3 (log log k) -4/3 (log log log k) -1/3

	 k(log k) -5/3 (log log k) 2/3 (log log log k) 2/3 k2

2 . 10 -12 ek(log k) -1/3 (log log k) -2/3 (log log log k) 1/3

Furthermore, if a,

	

and a,

	

satisfy (24) then we have
x

	

y

m-i

	

m-i

	

a .i -ai

	

i

	

i

qy-qx
__

a
	 Y

a x= m a,
	 x

i

	 Y +
a

	 x

	

a
	 Y

,

	

,

	

a

	

,

	

,i

	

i

	

i

	

i

	

iy

	

x

	

x y

	

x

	

y

mD

	

+x -
ai (ai +D)

	

a,

	

a,
Y Y

	

lx

	

ly

	 ml)
(4y-qx ) - al (a 1 +D)

Y Y

< a +	y
< 2•k6 = 2 . 106 .

i

	

ai

	

10 kx

	

y

On the other hand, by (6) and (23), we have

L	(jt) 2- (a i ) 2) +D(jt-ai )I

mD	 Y	Y
a . (a . +D)jt(Jt+D)
ly lY

mD jt-a, I(jt+a, )
	 y	x

ai ai jt(jt+D)
y x

	mD

	

_	mD
ai (ai +D)

	

jt(jt+D)
Y Y

1
jt-a,

	

jt+a
	 l

. +D

= mD	 lY	Y
ai (ai +D)jt(jt+D)
Y Y

<

	

mD •t •2jt
a, a, it aa
y x

	

x

2mDt 	= 2 . 10 18mDtk-3
(10-6k) 3

< 2 .1018ek2(log k) 4/3(log log k) -4/3 (log log log k) -1/3

16 106 e(log k) 1/3 (log log k) 2/3 (log log log k) -1/3

	 k (log k) -5/3 (log log k) 2/3 (log log log k) 2/3 k-3

24= 32 .10 e2 •



For small E, (29) and (30) yield that

	mD(q q ) -
Y- x

	

it(jt+D)

by G(d), we have from (25)

(33)

	

G(d) >F(D)

6 . 10 6+1

(q -q ) -	mD
y x

	

a i (a i +D)
Y Y

< 2 .106+32 .1024E2 < 3 . 10 6 .

Thus for all the F(D) solutions x, y of (24), qy-qx is in the

interval

mD+D
- 3 . 106 < q -q <

	

mD

	

+ 3 .106 .jt(~

	

)

	

y x

	

it(jt+d)

The length of this interval is 6 .106 ; thus, by the matchbox principle,

there exists an integer d such that (from (6) and (23))

(31)

	

d < jt(jD+d) + 3-10 6 <

	

-6k) 2 + 3 . 10 6
(10

< 1012ck2 (log k) 4/3 (log log k) -4/3 (log log log k) -1/3

	 1 6 . 10 E(log k) (log log k) (log log log k) -1/3 .k-2

16 . 1018E2 (log k) 5/3log log k) -2/3 (log log log k) -2/3

6

	

1/3

	

2/3

and, denoting the number of solutions of

(32)

	

qX q y = d, qx E 1, q y E 1

	mD	mD
ai (ai +D) jt(jt+D)
Y Y

> 10-15c-2k(log k) -7/3 (log log k) -2/3(log log log k) 4/ 3

6 . 10 6+1

> 10 22 e-2k(log k) - /3 (log log k) -2/3 (log log log k) 4/3

On the other hand, by (28), Lemma 1 yields that the number of

solutions of (32) is



(34) G(d) < c log log (d+2)	III
4

	

log 2111

< c4 log log(16 .1018e2(log k)5/3(log log k)-2/3(log log log k)-2/3+2)

2 .10-12ek(log k)-1/3(log log k)-2/3(log log log k)1/3
log 2(2 .10-12Ek(log k)-1/3(log log k)-2/3(log log log k)1/3)

< 2c tog tog tog k 2'10	
12	 ek(log k)- 1/3	 (log log k)- 2/3	 (log log log k)	1/3

4 2-1 log2k
= 8 .10-12 s4 k(log k)-7/3(log log k)-2/3(log log log k) 4/3

(33) and (34) yield that

10-22e-2k(log k)-7/3(log log k)-2/3(log log log k) 4/3

hence

< 8 .10-12E c4 k(log k)-7/3(log log k)-2/3(log log log k) 4/3

8-110-10c-1 < c3

But for sufficiently small c, this inequality cannot hold, and this
contradiction proves Theorem 1 . (In fact, as this inequality shows,
Theorem 1 holds,for example,with c2 = 10-4 c41/á )

3. Proof of Theorem 2 .

We have to prove that if k > k0 and

(35)

	

0 <_ n <_ k5/2/16 ,

then there exists an integer u such that

(36)

	

n < u < n+k

and

(37)

	

P(u) <- k .

We are going to show that there exists an integer u satisfying (36)
and of the form



where the integers di satisfy

(38)

	

0 < di <_ k for i = 1, 2, 3 .

Obviously, an integer u of this form also

and

Then

hence

(39)

	

x2 - n > 0z

Let us define the non-negative integer y by

(40)

	

y <
(x2

- n)1/2 < y+1 .z

Finally, let

and

d3 = x+y .

Then d l > 0 and d3 > 0 hold trivially while d 2 > 0 will follow

from d l > 0, d3 > 0 and u = d1d 2d 3 > n . Furthermore,

dl = z = [k l/2 /3] < k holds trivially . Finally, in view of (35) and

(39), we have

Let us define the positive integers x and z by

z = Ck1/2/3]

x = C(n/z) 1/2 ] + 1 .

x 2 > ((n/z)1/2)2 = n/z ;

satisfies (37) .

d l = z,

d 2 = x -y ,



for k

large

Finally, by (40),

hence

Thus, from (35), we have

(42)

	

u =

d2 =
,1/2

x-y < x+y = d 3 < (x + x2 - nzZ

(n/z)1/2+1 + «(n/z)1/2+1,2 -

(n/z)1/2+1+(2(n/z)1/2+1)1/2

\

	 k	5/2

	

1/2

	

k

5/2

	

1/2
	 /2		+ 1 + 2

	

1/216[k 1 /3J

	

16Ck

	

/37

n
z

\1/2

+ 1

_ (1+0(1))3 1/24-1k+1+0(kí/2 ) _ (1+0(1))3 1/2 4-1k

)

1/2

-> + -, Here 3 1/24-1 < 1 ; thus also d2 <- d 3 < k holds for

k which completes the proof of (38) (provided that u > n) .

By (40), we have

(41) u = dld2d3 = z(x-y)(x+Y) = z(x2-y2 ) > z/x2- ( x2- n)l/2 2 = z ,Z = n .

x 2 - z ~ (Y+1) 2 ,

z(x2-(Y+1)2) ~ n

d ld 2d 3 = z(x-y)(x+Y) = z(x2-y2 )

n + (z(x2-y2)-n) -< n+(z(x2-y2)-z(x2-(y+1)2)

n+(2y+1)z < n+(2 (x2~ n)l/2 + 1 z
l I

	

1

	

z
< n+(21 ((n/z)1/2+1)2 - ntl/2 + 1 z

n+(2(2(n/z)1/2+1)1/2+1,z

n+ 2 (2(	n	 1/2 + 1)1/2
+ 1 kl/2

( \ `Ckl/2/37!

	

3

< n+ 2 2(k5/2/16\ 1/2

	

1/2

	

k 1/2

\kí/2/4

	

+ 1

	

+ 1

	

3

/
n+'2 (k+1)1/2+1) k31/2

< n+3k1/2 - k 31/2

	

n+k

for sufficiently large k /.

(41) and (42) yield (36) and this completes the proof of Theorem 2 .
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