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ON THE PRIME FACTORS OF (k

) AND OF CONSECUTIVE INTEGERS

P. Erdts and A. Sarkdzy

s First we introduce some notations.
cl, C2"" denote positive absolute constants. The number of
elements of the finite set § 1is denoted by |S|. We write
th ;
& = exp x. We denote the i prime number by Py- v(n) denotes

the number of distinct prime factors of n. m, is the smallest

integer m for which

P(n) is the greatest, p(n) the smallest prime factor of n. nk is

the smallest integer n for which
P(n+i) > k for all 1 =1i =k .

In [3], Erdés, Gupta, and Khare proved that
(1) > ¢ kz log k .
= T
We prove

THEOREM 1. For k = ko we have

(2) mo 7y kz (log k)a!3(log log k)_413(logloglog k)—lf3 i

24+c

It seems certain that m =k It follows from results of

Selfridge and the first author [4] that, by an averaging process,
m < ke+i. The exact determination of, or even good inequalities for,
m,  seems very difficult.

Denote by mﬂ the least integer such that for every m = mé

Szemerédi and the first author proved in [5] that mﬂ < (e+e)k for
every £ >0 if k > kO' Very likely mi <k but we could not even
prove mﬂ < (e-E)k. Schinzel conjectured that w (:)) = k holds for
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infinitely many values of m. This is almost certainly true, but will be
hopelessly difficult to prove. Let g(n) be the smallest integer

t 21 (if it exists) for which n-t has more than one prime factor
greater than t (or the same definition for n+t); surely g(n)

exists for both definitions but it is not known (see [41).

In a previous paper [2, p.273], P. Erdbs outlined the proof of

(3) n < klog k / log log k )
No reasonable lower bound for n, was known. We prove
5/2
THEOREM 2. If k > ko, then n, > el O
It seems certain that for k > ko(tJ, n > kt and, in fact,

perhaps the upper bound (3) is close to the "truth",

Some other related problems and results can be found in [1].

2.  Proof of Theorem 1.

We need two lemmas.

LEMMA 1. If x 20,y 22 and d ig a positive integer, then the
number of solutions of

p-q =d, x < p=xty,

where p, q are prime nunbers, is less than

ey 1 (1 +i)—3’2—< c, log log (a+2) —L5 .
p/d P log™y log'y

This lemma can be proved by Brun's sieve (see e.g. [6] or [7]).

LEMMA 2. Let N > 2 be a positive integer and s; < s, <...< sy be

any integers. Put s.-s, =S and, for fized d, denote the mumber of

N1
solutions of

by F(d). Then there exists a positive integer D such that
2

48 N
48s °

D= N and F(D) =
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Proof of Lemma 2.
1, 2,..., [N/4] + 1, 1let Ij = [s +(3-Dy,s +iy].

For j =
Then
g F |§‘+ly>s +§y=s+s=s
b y 1 v 1 N
and thus
[S/y]+1
U T. = [g. .81 3
j=1 j 1N
hence
(4) N,= 2 N~ X N
15<in/e+1 3 1ggemvar 3 a<geimain 3
N, 22 N.=1
i) 2]
N N
=N - ([N/4] + 1) =2 N - g
since
N N_N_N
[ET + 1< = +-Z oF for N = 4
and

holds also for N = 2, 3.

Let N, = for some j and define =z by s, ¢ Ij’ 8,41 € ;

2
]
N,
Then for all the 23 pairs, 1 = x <y = Nj’ we have

< -t =
sz+Nj 8 4 = 4S/N .

1= sz+y—sz+x =

Thus, with respect to (4) and using Cauchy's inequality, we obtain that

5 aws oz ()

1=d<48/N 1<j<[N/4T+1
N, 22
i
N,-1 N./2
e Y. K, ~d b I i
1<j<insatr 3 2 1=j<in/al+1 2
szz szz
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= % N? z %— 2: N 1
1<j<iB/6 1 I 1<3<[N/4J+1 3 1£340N/4 141
szz szz szz

W
|
v
i

2 2 2
O D, /e )t/
1<i=[N/41+1

hence

max F(d) =
1=d=4S/N

which completes the proof of the lemma.

In order to prove Theorem 1, it suffices to show that if £ is

sufficiently small then the assumptions

(5 u((:)) >k,

/ 1/3

(6) m = ekz(log k)a 3(103 log k)_&{3(log log log k)~ "

lead to a contradiction for all k = kO(E)' By (1) we may assume that

(7) m > €1 k2 log k

also holds.

For all 0 = i £ k-1, we write

m-i = aibi .

where P(ai) < k and p(bi) >k (if, for example, all the prime
factors of m-i are less than or equal to k then we write bi = 1).
Furthermore, let Sl denote the set consisting of the integers

0 < i< k-1 such that

= k log k
ROy < log log k

and let 8, = -io,l,....k-l}-sI (i.e, 1€ §, if and only if

[0 £ i < k-1 and P(m-i) > k log k (log log k)wl).
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First we give a lower estimate for it ai . (m) is an integer;

iESZ k
thus
k-1 k-1
k! |m(m—1)...(m~k+1} =T a T bi i
i=0 i=0
k-1 k-1
and, obviously, [k!, @I b, ]= 1. Thus we have k! n a
3 i o i
i=0 i=0
and hence by Stirling's formula,
k k
(8) a2kl (—‘%)
i=0
(for sufficiently large k).
From (5), we have
(9) k < u(({f)) < (v(m(m-1) .. . (m-k+1))
= 3 1+ 5. ok
psk k<psk log k (log log k)
plm(m-1) ... (mk+1) plm(m-1) ... (m-k+1)
+ L%

k log k{log log k}_l<p
me(m-l)...(m—k+1)

Here the first term is less than or equal to w(k). Furthermore, if

k log k (log log k}“l <p and p | m(m=1) ...(m-k+1) then pIm—i

for some 1 ¢ 52, and by (6), we have
m-i _ m
P -1
k log k (log log k)
P Ekz(l()g k)&”(log log 1{)'_“3(125;_ log log k)_l"{"3

k log k (log log k)hl

/3

[}

1/3 - =
ek(log k) / (log log k) lx3(log log log k) %

< k log k (log log k)vl
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Thus for all 1 ¢ 52, m-i has only one prime factor greater than

k log k (log log k)_l. This implies that the third term in (9) is less
than or equal to [82[' Finally, we write

-1 1=R
k<psk log k (log log k)
p[m(m—l)...(m—k+1)
We obtain from (9) that
k € m(K)+RH[S, | ;
hence
(10) R > (kaSZI)— (k) = lsll - w(k)
Obviously, we have
_.i Sl
(1L noag =1 mb < m
ic‘S1 lESl i I P

k<pzk log k (log log k)_l
p|m(m—l)...(m—k+1)

|s_ | i=n(k)+R

- 1 r[

= m =
i=m(k)+1 e

By the prime number theorem, we have p; ~ 1 log 1. Furthermore, by the

prime number theorem and the definition of R,
R = n(k log k (log log k)_l) < k
(for large k). Thus by (10) and using the prime number theorem and

Stirling's foemula, we obtain, for sufficiently large k and

| b
'Sl| > egy that

7(k)+R 7 (k)+R 1
(12) i p. > ) (1 L II) i log i
f=n(k)+1 - i=m(k)+1
m(k)+R 1
= i} (l - ii)i log (m(k)+1)
f=m(k)+1
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n(k)+R R ]
1\, 9 R (n(k)+R) !
> il (l —-—~)1 log k = (——) (log k) =27
. 10 10 (n (i) !
k Is. |-n(k) |s.|!
9 1 1
> ("") (log k) e T
10 (k)
K s, | " | |151'
s F s
> (%ﬁ) (log k) ! (v(k) log k) g 3
1
3
k s, | _
(%ﬁ (ls, | 1og © 1! -n(k) log (n(k) log k) 4=k
8.l e o
(ga) (|51| log k) e 2 3 %
Is,| . _ 3 s, |
(g_) (|s, | 1og ©) gk 57k _ 49 k(lSl|Iog K)
10

(11) and (12) yield that, for |51| > gy

. sl| sk m 551[
5,1 k log k .

By (10) and the prime number theorem, we have

s, |

(13) 14
ies

(]
M

i -k
1 307 (s, |Log K

(14) |s

1A

Rm(k) = > FIE RO
k<psk log k(log log k
p|m(m—l}...(m-k+l)

il

-1 1+ n(k)
k<p=k log k(log log k)

(n(k log k (log log k)_l) - w(k)) + w(k)

n(k log k (log log k)ql)< 2k(log log k)-l

If a >0 then an easy discussion shows that the function f(x) = (a/x)"
is increasing in the interval 0 < x < a/e. 1If we put a = m/(k log k)

and x = i51| then from (7) and (14) we have

2
c, k lug k ~
a m 1 ' 1 -1
T L =—k 2k(1 1 > |8 =
e e k log k e k log k e > 2k(log log k) | 11 X
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for sufficiently large k. Thus, for large k and |Sl| > Cgs (13)
and (14) yield that

s | Isy]
(15) I a, <k © 305 o X
; i S |k log k
1651 1
. -1
|sll k - 2k(log log k)
<k 30 -7
2k(log log k) ~ k log k
-1
|sl| " " 2k(log log k)
< k 30 5 3 ¥
k™ log k (log log k)

For large k, this holds also for 0 = |Sl| <

s cg since in this case,
from (6) and (7) we have

1| k

k30 = =
k® log k (log log k)

)Zk(log Tog K

=1
g ¢ kZ log k 2k(log log k) .

> 30 5 > 30,

k

log k (log log k)™

while
Is, | 3 1811 3eq k
NI a,< I m=m < (k7) < k < 30
ieS $ ieS
1 1
for sufficiently large k.
(8) and (15) yield that
k-1 =],
(16) T a,= 1 a1 a
1€5, 4=0 *|ieS
2 1 -1
=1
e k |Sl| K o 2k(log log k)
sisfibe =30 =
k™ log k (log log k)
-1
k-8 | -2k(log log k)
1 -k m
=k 90 5 =j
k™ log k (log log k)
=1
152| i . -2k(log log k)
=k ‘90 ( 2 =
k“ log k(log log k)
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Let S. denote the set consisting of the integers 1 satisfying

=1 =k=1l, ic¢ SZ‘ and a, < 10_6k. Then we have

£
(1?} 1 ai = il a, I a
1. 1
1652 1(52,i£53 1653
< 1 i § =L
ies,,1¢s, tes, i
-6 m
< 1 10 "k 1 kK s——
: kP (m-1)
1652,i€33 ieS3
ls, |
<k 2 m 10° 51 ——= =
1652,1653 1653 k"log k (log leg k)
T
s, | s, |-T
ik 2SS 2 (2 m ~1)
k" log k (log log k)
s, | T
<k 2 (10 6)k—T ( . m -\,
k“ log k (log log k)

where

i£53
(16) and (17) vyield that
-1
15,1 " -2k(log log k)
k 290 (2 ~
k™ log k (log log k)
s, | _ : T
cx 2 (10 6)k—T( . m _1) :
k™ log k (log log k)
hence
-1
g T+2k(log log k)
(18) (108 Top® <( > = —1)
k= log k(log log k)

We are going to show that this inequality implies that

(19) T > k(log log P

If T = k/2 then this inequality holds trivially for large k; thus we

may assume that T < k/2, Then we obtain from (18) that
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N T+2k(log log k)_l
(kz log k(log log ¥t )

g (1oe)k—k/290—k 5 loBk lo-2k _ 10k .

Thus, from (6), we have
k log 10

m

k2 log k(log log k}-1

T+2k(log log k)"l >

log

k log 10

akz (log k)&f3(log log k)_&;B(log log log k)_]';3

k2 log k (log log k)“l

log

k log 10
1/

log (e(log k)1;3(log log k)~ 3(103 log log k)_1!3)

k log 10 _ 3k log 10
e (ChE k)1/3 log log k

> 3k(log log k)'1

for sufficiently large k, which yields (19).
By the definition of a;, we have aiim—i. If i€ 53, then

a; > 10_6k also holds. But, if a > 10_6k, then a may have at most

+1 < % +1<10%+1 <2.10°

k
a

multiples amongst the numbers m, m-1, ..., m-k+l. Thus, for fixed a,

has less than 2-106 solutions. From (19), this implies

that the number of the distinet a,'s with 1 ¢ 8§ is greater than

i 3
3 1
ie§ i
36 ey k(2-106 log log k) ) .
2-10 2:10

By the definitions of the sets S and S

P ie 33(C 52) implies that

3!

k dog k (log log ¥)™F < Pla-t) £ By 4
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hence, from (&),

(200 (10°% <)a, = M=t < i .
P Kk log k (log log k)

-4/3

1

/ 1/3

(log log log k)~

3(log log k)
k log k (log log k)

skz(log k)4

1/3 1/ 1/3

3(log log log k)~

ek (log k) (log log k)

Let us write

5/ /

t = k (log k)~ 3 (log log k)2 3(10g log log k)2}3

and for all

/ / -1/3

3(10g log k)_l 3(log log log k)

t

. . |ek(log k)l

1€ + T

let us form the interval Ij = ((j-1)t,jtl. By (20), these intervals

cover all the a,'

;'S (with 1i € 53), and the number of these intervals is

IEk(log k)1;3(log log k}_1!3(log log log k)-IIB} +1
t
1/3 -1/3

2/3

_|k(log k) " “(log log k}_l/3(log log log k)
k(log k)'5/3(1og log k)2’3(1og log log k)

+ 1

< e(log k)z(log log k)_l(log log log k)_l +1
2 -1 o B
< 2e(log k) (log log k) “(log log log k)

(for large k). Thus the matchbox principle yields that there exists

an interval Ij which contains more than

k(2‘106 log log k)_l

2e(log k)z(log log k)-l(log log log k)-l

1-1

= (4'106)_ e k (log k)_2 log log log k

distinct ai's. In other words, there exist indices il‘ i2""’iN

satisfying iE £ 53 for i s ¢ = N,
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(21) (j-Dt < a, <a  <..<a S ]t

1 2 N
and
o | =
(22) N > (é-lﬁs) le k (log k) z log log log k .
Let us apply Lemma 2 with the set a, , a, , ..., a in place
T iy

of the set S5 SparersSye (By (21), N =z 2 holds trivially.) Then

from (21), we have

S=sg.-s5, =a_ -a
N1 iN 11
< t = k(log k}_5;3(1ng log k)zfa(log log log k)Z’J3 s
Thus, from (22), we obtain that there exists an integer
- 2/3
(23) D < 48 _ 4k(log) k) 5;3(193 log k)zfj(log log log k) /
. (4-106)-1 9_1 k (log k)-2 log log log k
-1/3
= 16'1066(103 k)lfs(log log k)zia(log log log k) /
for which
(24) a, —a, = D
X Y

has at least

& - =7} 2
N’ S (4'106) 4 £ 2 kz(log k) (log log log k)

(25) F(D) 2N _ £ . .
485 " 4gk(log K) > 3(log log K)2/(log log log k)

7/

/3

15 2/3

= oy - = 4/3
> 10 £ 4 k(log k) 3(log log k) (log log log k)

solutions.

By the definition of the set 53, i, e 53 implies, from (6),

that for large k
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b, = —> <2
% 107Kk
- -1

< 106 e k(log k)&!a(log log k) 4;3(10g log log k) /3

< k(log k)&]3
and, on the other hand,

. -1
(26) bi > P(m—lR) > k log k (log log k) 7
2
By the definition of bi , we have p(bi ) > k; thus these inequalities
L L
imply that bi =4, must be a prime number. Then ql, Qys e ealy are
L

=1
distinct since by (26), o 2 k log k (log log k) (for all ). Thus
q, may have at most one multiple amongst the numbers m, m-1,...,m-k+l.

Furthermore, we have

(it can be shown easily that j§ > 1) and

B 1 _m ) m k
q, = N * B

. BN
~1F 10° .

i i 1. 3% 107%

Thus all the primes q, belong to the interval

2 (M _ge® m
(27) I (jt 107, (j_l)t).

From a > 10_6
iﬂ

k, (5), and the definition of t, the length of this

interval is

- 209 -



R ROPRU (i) SR | (P | 6
(28) |1 = G-Dt (jt 10 ) ST + 10

2

mt mt mt

_12 =
(G-t~ (a; -Da © g & 410 imEk
)

(10'6k—t>1o' k

/ 1/3

< 2-10_125k2(log k)A 3(103 log k)_ﬁi3(log log log k)~

~5/3 ;3(10g log log k)2f3 k_2

/

*k(log k) (log log k}z

2-10_125k(lng k)—lf3(log log l-c)-2 3(log log log k)1!3 .

Furthermore, if ai and ai satisfy (24) then we have

x y
mei o omei aix_ai i i
i, S RS s L
i i i i i i
¥ x X 'y X y
i i
L + 5 - X
aiy(aiy+D) ai ai
Hence
i i
mD k 6
(29) ‘(q q) -—F— | = + 2 < 2. = 2.10° .
+ -
v x a, (ai D) a, a; 10 6k
y ¥ X y

On the other hand, by (6) and (23), we have

sl 2
((Jt) ~(a, J)-+D(jt~ai)
mD = mD - mD ‘
a, (ai +D)  jt(jt+D) " a; (ai +D) jt(Jt+D)
¥ =¥ y ¥
|_]t-ai ‘ jtta, +D mDIJr.—ai l(jt+ai )

(30)

X

i

mDai (a, #D)3t(jt+D) T Ta a, jt(jt+D)
y v y x

mDt-2]t 2mDt
it a * -6, .3
% B 25 a0

= 2-10 8apeic>
i k)
¥ X

< 2-10189k2(10g k)4;3(log log k)_4!3(log log log k)-lIB

/ fa(log log log k)_1f3

2/3 -3

-16-106c(10g k)l 3(log log k)z

/

*k(log k)_S 3(1og log k)zij(log log log k)

= 32.10%4:2,
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For small e, (29) and (30) yield that

(4,9 - sty | < [0 - 2]+ [ e
v 3% T JeGemy | Y9y % a_ (a, +D) a; (a, ¥0)  JE(GE+D) |
y 'y y 'y
< 2.10%32.10%%:% < 3.10° .

Thus for all the F(D) solutions =x, v of (24), qy-qx is in the
interval

mD 6 mD 6
rry e P e SRty v i

The length of this interval is 6-106; thus, by the matchbox principle,
there exists an integer d such that (from (6) and (23))

mD 6 oD 6
31 e A e PR, e T
(3D © Jt(jtrd) = (1002 3
¢ 10722 0eg 10930108 105 (208 10g 10z B3
-16-1065(103 k)lf3(log log k)2f3(103 log log k)-ll3-k-2

5/3 2/3 3

16-101852(103 k)“' “log log k) °' “(log log log k)'Z’

and, denoting the number of solutions of

(32) o d, q €I, q, € I

by G(d), we have from (25)

F(D)
6
6+10 +1

1075 A og 107

(33) G(d)

v

{3(103 log k)-zfs(log log log k)4f3

6+10 +1

22

s 1022 2 (xog 10~ 32en. 10w 1)~ 2 (108 108 10g W3 .

On the other hand, by (28), Lemma 1 yields that the number of
solutions of (32) is
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(34) G(d) < c, log log (d+2)——l—i——
log |I|

< ey log 10g(16°1018£2{log k)513(log log k)_zfa(log log log k)r2f3+2)

-1/3 1/3

. 2-10-125k(10g k) (log log k)_2;3(lqg log log k)
logz(Z-lﬁ_lzek(log k)_l{3(log log k)-zla(log log log k)
1/3

1/3)

< 2¢, log log log k

2+ lO ek(log k)~ (log log k)_2f3(lcg log log k)lia

4 -1 2

2 logk

12 -7/3

= 8107, k(log K) 4/3

(log log k)_2}3(log log log k)

(33) and (34) yield that

10—22E-2k(103 k}_?;3(log log k)-2!3(log log log k)ﬁlz

< 8-10-125 <, k(log k)v?KB(log log k)hzia(log log log k)4!3;
hence

Bﬁllﬂ_loc;l o 53

But for sufficiently small €, this inequality cannot hold, and this

contradiction proves Theorem 1. (In fact, as this inequality shows,

Theorem 1 holds,for example,with c, = 10 QIIBJ
3. Proof of Theorem 2.

We have to prove that if k > kD and
(35) 0sns 6,

then there exists an integer u such that

(36) n < u £ ntk
and
(37 P(u) < k .

We are going to show that there exists an integer u satisfying (36)

and of the form
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where the integers di satisfy

(38) 0 < di <k for i=1, 2, 3.
Obviously, an integer u of this form also satisfies (37).
Let us define the positive integers x and z by

1/2

z = [k 7/3]
and
X = [{n/lelzj +1.
Then
2
> (/YD = afz
hence
2 n
(39) X =z R 0.
Let us define the non-negative integer y by
2 n\l/2
(40) y <\x -3 < y+l .
Finally, let
dl = Ty
dz ol
and
dy = x+y.
Then dl > 0 and d3 > 0 hold trivially while d2 > 0 will follow
from dl = d3 >0 and u-= d1d2d3 > n. Furthermore,

dl =z = [kl!2f3] < k holds trivially. Finally, in view of (35) and

(39), we have
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1/2

d, = x-y < xty = d3 <(x + x2 - %)

1/2
< /i« ((tnzz}”zﬂ)z = g)

wia et byt

S22 Sl \1/2 12
(—_FT_) +1+2G‘Tﬁ—) s
160k 2/3] 160k 2737

(140(1)) 3724 Ne+0 /2y = (140(1)) 31/ %71

]

fal

[}

k

for k -+ + =, Here 31/24-1 < 1; thus also d2 % d3 < k holds for

large k which completes the proof of (38) (provided that u > n).

By (40), we have

R =}
I
=)

(41) u = d1d2d3 = z(x-y)}(xty) = z(xz‘YZ) > z(xz- (xz— E)le)Q = z-

z

Finally, by (40),

K -2

hence

z(xz-(y+l)2) < n

Thus, from (35), we have

|

(42) u = dld263 = z(x-y) (xty) = z(xz—yz)

n

n + (Z(xz-yz)-n) < n+(2(x2~y2)-2(x2—(y+1)2)

= n+(2y+1)z < nt+ 2(x2_ %)1/2 . 1)
< n+(2(((niz)112+1)2 _ 5)112 & l)z
= Z(Z(nfz) lf2 )z ;
1/2
= 1?2 1;2 5 1)1;2 + 1)k3
!3]
5!2 1/2 1/2
< nt )"].6 K
( 1;2 + 1) + 1) 5
1/2 1/2
- n+(2(k+1) f2+1) k3 b2 S

for sufficiently large k.

(41) and (42) yield (36) and this completes the proof of Theorem 2.
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