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ON THE GROWTH OF SOME ADDITIVE
FUNCTIONS ON SMALL INTERVALS

P. ERDOS, member of the Academy and I. KATAI (Budapest)

1. The letters ¢, ¢;, ¢s, ... denote suitable, &, ¢,, &, ..., d small positive con-
stants. &, &, ... will depend on &. p, denotes the n'* prime number, p,q,4;, ¢s, ...
are primes. > denotes a summation over primes indicated. n(x)= 3 1. w(n)

denotes the number of distinct prime factors of n. (4, b) and [a, b] enote the
greatest common divisor and the least common multiple of @ and b, resp. [x] denotes
the integer part of x. For the sake of brevity we shall write x; ;=logx;
(i=0,1,2), xo=x.

Let

(1.1) O(n)= max w(n+j), o(n)= min w@+j).
J=1,....k i=L..,k

One of us (see [1]) proved the following assertions. For every &=0, apart from
a set of »’s having zero density, the inequalities

- log k ] _ [ logk ]
O (n)y=(1+¢)o [m loglogn, oy (n)=(1—¢)p Tosiogs loglogn
hold for every £=1,2, .... Here g(u) (u=0) is defined as the inverse functjon of

i,b(r):rlog—z—-l—l defined in z=1, and g(n) (n=0) is the inverse function of

the same ¥ (r) defined in O0=z=1. In the same paper it was conjectured that

(1.2) O,(n)=(1-28e [%] log log n,
and

op(n) = (1-1-53)5[&] loglogn

Lk “\loglogn 2

for every k=1 and for almost all n. The last conjecture is false, since for
k=log i, o,(n)=0 would follow, which is impossible. Instead of it we state

_ . logk ] }
(1.3) ok(n)={g[loglogn +eploglogn,

where g(w)=0 or u=l1.
We shall prove

THEOREM 1. For every e=0 the inequalities (1.2), (1.3) hold for every k=1,
apart from a set of w's having zero density,
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346 P. ERDOS AND L KATAI

Let g(n) be a non-negative strongly additive function, ie. g(p*)=g(p) for
-every prime p. Let

1.9 Sem) = max g(n+j).

It is obvious that f,(r)=f,(0). We are interested in the conditions which imply
that

(1.5) Ji(n) = (1+8)1,(0)

holds for every k=k,, apart from a set of #’s having upper density at most & (e, k),
where (e, ky)—0 as k,— .

This question was considered for some special functions in [2].

Let

gp), if g(p=1,

1, if g(p=1,
and g*(n) is defined as a strongly additive function generated by the values g™ (p).
By using the wellknown Turin—Kubilius inequality

S (g*(m—A)P=cXB, (=cx4,)

n=x

A.= 2&1@, B = Z%(_pl (= A4),

g*(p)={

x
p=x P P==x

and that g(n)=g™(n), we immediately have that the convergence of
g*(p
2 p
is a necessary condition for the truth of (1.5).
We are unable to decide if
(1.6) SEE. g’) <o

is necessary for (1.5).*
Assume that g(p) tends to zero monotonically as p—-<=. We shall prove that
(1.6) is not sufficient for (1.5). This disproves the conjecture stated in [2], namely

+
that from the convergence of the series > g—p@, = %}1 (1.5) would follow.
g(p)=1
Finally, assuming some regularity conditions on
A = 2 &)
P=y

we shall show that (1.5) holds.
Let #(x) be a real valued monotonically decreasing function defined for x=1.

Let
() Ap) = Z (),

* REMARK, We decided this question affirmatively. We shall publish this in a forthcoming
paper in this journal.
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ON THE GROWTH OF SOME ADDITIVE FUNCTIONS 347

and suppose that

1
(1.8) S )
s P
and that for every positive constant &
A(y)

]il’n = ca,
y— yt(exp (exp (%))
Let g(n) be the strongly additive function defined for primes as g(p)=+(p).

THEOREM 2. Assume that the conditions (1.7), (1.8) hold. Let ¢ be an arbitrary
positive constant. Then for every integer k, the inequality

fi(n) = (1+2)£.(0)

holds for every k=k, and for all but &(k,,&)x integers n in [1,x]. Here
d(ko, 8) =0 (ko—<=).

We shall prove these assertions in the following sections.

Now we make the following remark. In [3], IvANYI and KATAI proved the
existence of a completely additive f(n) not identically zero for which f(n)=4;,
n€[N;, N;+7(N;)] on a suitable set N,<N,=<... of integers, where 7(N)=
=exp (¢¥(log N) (log log log N)), A; are arbitrary complex or real values.

Now we prove the following

THEOREM 3. Let =0 and x=x,(g). Then there exists a completely additive
Junction f(n) for which

S =0 in [N+1, N+i(x)],

where % =N=x and

10~ o egonoe)

and which takes on a non-zero value in [1, Vx].

REMARK. Unfortunately we can not prove that there is an f(n) with infinitely
many such intervals.

ProOE. Denote by N(x, y) the number of integers n=x all prime factors of
which are not greater than y. By a theorem of RANKIN [4]

; logloglog y , [ loglog y ]]
(1.9)  N(x, }-)-:xexp(— — log x+loglog y+0 Brioalozsl)”

Let k=2(x), x large. (1.9) implies
x

Thus it is easy to see that there is an interval [N+1, N+k] in -‘;—EN-:NJrkE.\‘,
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348 P. ERDOS AND I. KATAI

for which the number of integers all prime factors of which do not exceed k is
smaller than n(k). Let n=A(n)B(n), where A4 (n) is composed of the prime factors
=k of n. Let n+1l; (i=1,...,h), h<=n(k) be the n’s in [N+1, N+k] for which

B(n+1)=1.

The additivity leads to the following linear system of equations:
(1.10) SAm+1))=0 (j=1,...,h),
(1.11) JBm+r)=—f(An+r)) (r=L(j=1,..,h)

where the indeterminates are the values f(p) for primes p contained in (N+1), ...
v (N+K). (1.9)is a homogeneous system, the number 2 of equations is smaller
than =n(k), therefore we can choose values f(py), ..., f(Pr@) non-trivially such
that (1.10) hold. This holds in the case A=0, too. To finish the proof we need to
take into account only that B(n+r) (r#l;, j=1,...,k) are mutually coprime,
so we can solve (1.11). This completes the proof of Theorem 3.

2. Lemmas. Let k be an integer, 2 be a finite set of primes greater than k.
Let 7, denote the set of integers of the form t,=¢14,...4,, ¢.€%, q;=q; (i#]),

(2.1) P= Zllp, T,= 21/,
peEP ed,
1
22 -
(2.2) a pé; >

Let II, be the number of elements of Z,.

LemMA 1. For every r=2 we have

(2.3) B SR i

Proor. The right hand side of (2.3) is obvious. We prove the left hand side
by using induction. The assertion holds for r=2, since

1.
T, —2~(P‘*—a).

Observing that

] |
T P=T,,r+1D+ —2{
se2 P g

ro1:P)=1 rJl'—]

b= gt ntary,

we get
o TP a
T = r+1" r+l USE
and by the induction hypothesis
& }{Pr a Pr-z } P a Pr—l _ Pr—:—l _E Pr—]
M= T2 =Y+l T L =D e+ 2 =D

By this Lemma 1 is proved.
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ON THE GROWTH OF SOME ADDITIVE FUNCTIONS 349

We shall use Brun’s sieve in the form of Theorem 2.5 in [5], or in the simpler
form of [6], Theorem 6.2. Namely we shall use the following result, which we
state now as

LEMMA 2. Let a,, a,, ... be positive integers, R a finite set of primes, all of them
smaller than z. Let

2 11—
a,=ol(d)

a,=y

n(y, d) =

y(d
|

where y(d) is a multiplicative function on the set of square free numbers all prime
factors of which are in ®. Suppose that n(y,d)=y(d) for all such d, and y(p)=
=0(1), y(p)=p—1 for all peR. Putting R= ][ p, for y=r we get

pe®

e )

(a,, R)=1

Let now 2 be the set of all primes in (k, r), where z<x'*¥. Let .o be the set
of integers n=tb, where 1,€7,, (b, J] p)=1. Let
pe®

1, if nesd,
V(")_{o, if ng .o,
and put
(2.5) >0= ¥V, Z®= 3 V@mVm+h) (h=1,...,k).
n=x n+h=x
Let
1 2
26) n= (-3}, n=p(-3).
peP p pER r

and /2(n) a multiplicative ﬁmction on the square free integers defined for primes

p by A(p)=[1 = [1-—]

For the computatlon of >, > we shall use the previous lemma. Let
N(»|#) be the number of b=y, which have no prime factors in #. By (2.4),

’ _ 2rlogy )]}
N(}-[?)—yrl{l—{—O[exp( ~Togx II*
since x/f,=x%% Consequently

2.7) >0 = ZN[—L?] T,I,x(1+0(e™).

1.EF;

Consider now '™ (h=1). First we count the integers n, n=r"b,, n+h=
=t®p,=x with fixed 1V, 12 €.7,. There is a solution only if (¢!, #{*)=1. The
solutions by, b, of t®b,—tVb,=h are in the progressions b,=>h"+st{V,
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350 P. ERDOS AND 1. KATAI

by=b{" +st" (s=0, 1, 2, ...). Sieving those elements b, b, which have prime factors
in 2, we get that y(p)=2 if pftt®, and y(p)=1, if p|tfV1{*. Thus by Lemma 2,

(2.8) W = xI,(1+0(@)) 4,

J0 1)

{2) -
r

A=

[£3]
@3, 1%h L

] solutions for fixed 7,, we have

A=[2r]2%ﬁ.

; n 2r
Since V1M =¢,, has [r

r

Let /i(d) be the Moebius transform of A(d). Then #(p)= h(d) is multiplicative,

p—2’
and we have

At > h(o
T, = Z—LL) ZT 4 ;;LEZ %} T,
Taking into account that ) '
M _ L{ _1_} L[ ¢ ]
aeé—', 5 ~ v pg; p(p—2)) ~ v! \klogk)’

from Lemma | we get

A

PRSI exp[ 2rc ]

e (20! Pk log k
Furthermore Lemma 1 implies that
4ar) P¥
n=(-Far
and so
) (+olorms)
A_[r_!] [1+0 Pklogk ]’
if
(2.9) ek =0(1).
We have
logl'y = 2log ' +0(a), logl, =—P-+0(a),
whence
r,=e?(14+0(), I,=e*(1+0(a)).
Consequently
7 (+) 757
0 — yp—p -r o
(2.10) 2 xe™F - [l+0(e )+ 0 P-i-l kiogk))’

P A
@.11) 2""=xe‘“’75[‘+0(e“ W o[[—;+1] klog k]J
if (2.5) holds.
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ON THE GROWTH OF SOME ADDITIVE FUNCTIONS 351

Let
k Pr
(2.12) F(n)= 2 V(n+i), A=ke? e
i=1 .
(2.13) E= > (Fk(n)—A)2.
We have i
E= 3 Fi(n)—24 3 F.(n)+A%x,
and observe that - e
> Fi(n) = k 3010k,

> R =k>O+ j 2(k—h) 3™ +O(K?).

Collecting our results we get
Lemma 3. If (2.9) holds, then

_ r+P ] ]
- 2y 4 r 3472
(2.149) E O[x(/l + )(e +Pklogk + k3 k2A .
Let now 2 be an arbitrary set of primes, P= 3 1/p,
pEP
(2.15) om?)= 3 1,
reo
(2.16) O = max o(n+j|#). o(n) = min o(n+jl2).

Let D, (x, L|#?) be the number of n=x for which O,(n|?)=L. It is obvious that
Dy(x, L|Z)=z"L 3 200009 = 2Lk 3 o),

n=x n=x+k

for z=1. Observing that
3 o=@tk 7 (14521 < Ry exp P,
ped 4

n=x+k
by substituting z=L/p, we get immediately
LemMma 4. If 1=k=x, L=P, then

2.17 Di(x, L|2) = 2xexp [Iogk—LIog '}%_e]

3. Proof of Theorem 1. First we prove (1.2). Let B be a suitable large constant
depending on e. First we shall prove (1.2} for
3.1 k = exp((log log n)®).

Indeed, if we define 7, to be the largest integer / so that the product of the first /
primes is smaller than k, then we get O,(n)=0,(0)=t,. From the prime number
theorem we get

T
logk ~ 2'logp; ~ p, ~ tlogt,
j=1
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352 P. ERDOS AND 1. KATAL

whence
log k
T~ Toglog k U=,
Furthermore, as it is easy to show, g(u)mlogu (u— =), whence
logk ] - ( e ] logk
@ [loglog n loglogn = |1 ~2) loglogk”’

if B is large enough. Thus (1.2) holds if (3.1) satisfies.
Let B be fixed, x large, and put

(3.2) 5= OEK

Xs

Observing that g(A)~1+}27 (i~0), therefore by choosing e to satisfy

— 2
(14+2Ve) [l ——3—]{1, we get [l —%]g(el)-: 1. We can choose ¢=+-. By using

2 16"
Hardy—Ramanujan’s wellknown theorem that w(n)~loglogn for almost all n,
we get (1.2) in O0=a=¢,.

Assume that

(3.3) g x, =loghk = x5,
Let r be an integer for which
(3.4) r=A4x,+0(1), 4 =(1-g)o(z),

&, being a small positive constant.
Let 2 be the set of primes in (k, x**) and N, ,(x) denote the number of n=x
for which O,(n)<r. For these numbers F(#n)=0, and by Lemma 4

E — 1 2 r+P ] k+k2A
o) N =g = 0[ [ A] [“" T Pklogk) VT & ]
From (3.3), (3.4) we have

a=x2"1 A=cxfl, logr=0(xy),
P = x4+ 0(xy),

r+P P (4+1x,
Pklogk Xy €™ 00X,

= O{xr 9%

By using Stirling formula,

log A =1logk—P—r log%-}-O(log r) = (a— 1 (4)) X2+ O (xy).

Since
Y(4) = (1—edy(0)+e:+(1 —ex) g log (1 —eay)
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ON THE GROWTH OF SOME ADDITIVE FUNCTIONS 353

and y(g)=u, therefore by using that @(A)~1+}22 (A1~0), we get a—y(4)=
=¢2/2, if a=4e2, &, being small. Choosing & =}2¢,, we get that A=1 for all
large x and for all « in (3.3).

Since e "<e~ 4%, we obtain that

(3.6) N, (%) = cox{e~ 4% e~ /2 £ O (x12).
Let now o;=je,, k;=[e**], j=1,..., T, and T—1 is the largest integer for

which oy_;=x8-1 Thus T=0 [sixg“l), and from (3.6)
1

T _5_1x2
(3.7) DN (x)<xe 37,
i=1

_a . Ix
Hence it follows that for all but O (xx, 3) integers n in [%,x]

3.8) 0, (n) = [1—%]9[["52"*];;2 G=1,..,T).

Let k€[k;, k;.,) and suppose that (3.8) holds for an n. Since O,(n)=0, (n) and
o()=<(1+cz8)0(2;), therefore

O.(n) = [l —%E] o(x)loglog n.

Since loglogn increases very slowly therefore

logk ]
Ok(ﬂ) = (l S)Q [m lﬁg lOg n
holds for all but O(xx; ?) integers ne[%-,x . This assertion holds for x=X,.
Choosing now x=2"X, (v=0, 1, ...) and using our result, we obtain (1.2).
The proof of (1.3) is very similar. Since g(A)~1—}24 (.~0), therefore (1.3)
2
is obvious if =<,

3
Let 2 be the set of primes in (k, x'/¥),

HIA
(1A

a:m o

Xa

8?.
] ? l!
r be an integer for which r=Hx,+0(1), H=g(«)+e;5.
Let B, ,(x) be the number of n=x, for which o, (n|#)>r. For these n’s
F,(mM)=0, and by Lemma 4 we get

_ 1 [ i 1 ] I+ kA
(3.9 Bk,,(x)=c3x[l+A} e "+ AT +c4 T

Acta Mathematica Academice Scientiarum Hungaricae 33, 1979
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From Stirling formula

log A = log [ke’? ;] = [a— 1—Hlog g] X+ 0(x5) = (a— Y (H))x,+0(xy).

Since —y’(z)=—logz is decreasing,
- 1 1
w@)—w(m=5[—logzdzz(H—e)log—ﬁ=sslog§,
consequently

)= Y@ v =g in xc[-5,1],

if &, is sufficiently small.
Thus A=1, and

(3.10) By (%) = egx(e"+k™Y).
Let 2, and 2, be the set of primes in the intervals [1, k], [x'/%, x], respectively,

and
P,o= 3 l/p=loglogk+0(1), P,= 1,-.,2 1/plog 4r+0(1).

p<=k x =p=x

Applying Lemma 4 by

4logk

(L _) Ll. - m’:
we get
(3.11) B,(x, L,|?,) = x/k.

2
Observing that log kzczxgé‘% Xy, and P,=0(x3), by choosing L=L,, we get
x

(3.12) B (x, L|#,) = c(s)i-s.

Since
0,(n) = 0,(n|P) + 0, (n| P) + 0 (n| Z),

from (3.10), (3.11), (3.12) we have that for large x

(3.13) o(m)=r+2L, = (é(“)'l‘zsa)xz‘
apart from at most
(3.14) 1(e) x{e—@@+e xs 4 g—axy/2}
n in [1, x].
g 12

Let a,—r (t=l1; s T, T [ ]+1 k,=[x}]. From (3.13) and (3.14)
we deduce that
(3.15) ox,(n) = (@@)+2e)x. (j=1,..,T)

holds for all but ¢,(g) xe—***2 n in [1, x], assuming that &, is sufficiently small.

Acta Mathematica Academige Scientiarum Hungaricae 33, 1579



ON THE GROWTH OF SOME ADDITIVE FUNCTIONS 355

(3.15) easily implies that
= 3e
(3.16) o) = (2) + 7

for every k€[k,, k7). This is an immediate consequence of the fact that 0= g(x;)—
—‘g‘(aH,)-:%. Indeed, since Y’(2)=logz, —p" is increasing, we get

i i » g2 1 e 1 & _:
Q(gj)—g(acju)ﬁ—g(%)l—i =~ T logalay) 12 log(1—y22) 12 4

Putting log log # instead of x, in (3.16), we get that

(3.17) 0, (1) = { g [l—(%] —I-s} log log n
holds for all but c,(g)xe ** n in [%, x].
Choosing a large X, and putting x=2"X,(v=0,1, ...) we get (1.3) immediately.
Theorem 1 is proved.
4. A counter example. Now we give a non-negative strongly additive g(x)
for which g(p) is monotonic, Z.g%{ =, and (1.5) does not hold.

Let Ry=1, R, =exp(exp(R)), J,=[R,, R,;;). We define g for primes
p as follows:
|
s =pa (peJy), s=1,2,....
Sincc
I log B [ 1 ]
A<§<B p S log A +0 logA)’

therefore

g_(__ ZRS {Zi}{ﬁzsi:,:on).

=1 ped, P

Let pu be a large integer, 2 be the set of all primes in (k, R, ,]. Let

I 1
g ==

IIA
IIA

r=2R%,., logk=Q2+7)R%,,log Ry,

Let x=R, ;5.
Now we use Lemma 3. Its conditions are fulfilled. By an easy computation

we get

@.1 > 1=xefin
r,:('-?i:o
for large p.
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Let & be small, u be so large that 6=e ®i+1, Then for all but éx n in [1, x]
Fi(n)=0. For such an # for at least one j, 1 =j=k, n+J has at least r prime factors
in [1, R, ), and so

gntj)=—o->1

- -'R,u+1(1u‘{'[}2 '

r _ 2R,
Ro(u+1*  (p+1)*7

Consider now f(0). Let #, be defined as above, ie. py...p =k=p;... p, Pr 11
It is obvious that f,(0)=g(#). From the prime number theorem we get

Consequently

(4.2) Si(n) =

logk ~ p, ~ flogt, (p— =)

Let
= [Ip =1..,p, B= I »
ped, Ria=pr=p;,
Then
1
g(As) = W {R (Rs+ 1)"_ H(Rs)}!
and so

s+l. 3'Rpl+1
Zg(‘A’}_ZZ ng = RM‘uz.

Furthermore, for an arbitrary but fixed &=0

1 t
g(B) = RGrIE {n(p)—n(R, )} = '::[:Iﬁ_ —
logk i R,
= 049 iog DR, . T TP (l“)[” 2) i E’

if p is sufficiently large. Consequently for large p

/(@) < 1,6 j‘;l‘)z, and fy(m) > 27 :1;_

for all but éx of w’s in [1, x].

5. Proof of Theorem 2. Suppose that the conditions (1.7), (1.8) are fulfilled. If
A(yp) is bounded then the assertion is almost obvious. Indeed, if A4(<)=58, then
supg(n)=B, ie. fi,(n)=B. Furthermore f.(0)—B, and so f,(n)—f.(0)<ef.(0)
for every n, if k is large enough.

Suppose now that A(y)->eo (y-~<=). Observe that the prime number theorem
easily implies

(5.1) fu(0) =(1+o())A(logk) k(— ==).
Furthermore from ¢(3)—0 (y—<) we obtain
(52) f2(0) = £, (0)+0(1) = (1+0(1))i (0).
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ON THE GROWTH OF SOME ADDITIVE FUNCTIONS 357

Hence

(.3) £i0) = fi(n) = fi4:(0) = f2(0) = (1+2) £, (0),

if k=x,n=x,k is large.
Now we assume that k=x. Let & be small,

H = exp (exp ((log k)%)),

and
glp), if p=H,
1(?) { if p}H;
(p)_{o, if p=H,
B = ep), if p>H,

and g,(n), g.(n) are the corresponding additive functions. Let

fEm= max gn+j) (=12
It is obvious that o

) fim) = fP () +£2 (n).
Let 0=1+24,

Iog k
Iog log k

Let C,(x) be the number of those n=x that have at least r prime divisors in
[1, H]. It is obvious that

cw=z[Z =2 p- 32

p=H P
We have
kC,(x) = xexp [Iog k—r 10gé+0 (log r)] ,
and by
P = (log kP +0(1)
we get
logk—rloge =1 0loar) =— ok
gk—rlog5- gr) = ——logk,
ie.
(5.4 kC.(x) =

== kd,’-l
If the integers n+j (=1, ..., r) have no r distinct prime factors from [1, H], then
[P @) = g(py... p-y) = (1430) A(log k).

Thus we proved that
SfiP (n) < (1+35) A(log k)

for all but x/k%* integers n€[l, x].
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Let now n be a small positive constant, 4=n4 (log k). We put z=e¢* (u=0),

D(x,z) = 3 2™,

n=x

The function z%:™ is multiplicative, and its Moebius transform /(x) is defined for
prime powers as

1(p) = {eﬂgm_l, p=>H,
- p<AH,
I(p)=0(x=2).
Consequently
X eua(p |
Dix,2)= 3 1(d) F]Ex Jii [1+—].
d=x H<p=x P
Let ":fr-(_lﬁ)-' Then from """ —1<2ug(p) it follows that

D(x,z) = xexp [Zu r(p)]'

H< pP=x

Let B(x, n, k) denote the number of those n=x, for which f,(n)=4. We obtain

B(x,n, k) =k 3 z80:M—4 = xexp [—Au+2u > 1'(p)ﬁ-lctg A]

n=x H=p<=x

From (1.9) we have

—Au+2u 3

H=p=x

Egi)-+lc;g!qc =—3logk

for large k, 1.e.
X
B(x,n, k) = B

Consequently
fuln) <= (1+36+n) A(log k)

for all but [}:—M +%} x integers n in [1, x], for every large k. Let 35+ rr-::-z—. From
(5.1) we get

e
56 fm < (1+2]) 0,

if k=ec(e).
We choose (k=)k,=2'%%, (v=0,1,2,...). Then

57) S < (14520 ¢=01,2..),

allowing at most
/4 =
2 3 i s T
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integers # in [1, x]. Suppose that (5.7) holds for an n. If k=k, k<[k,, k,,,), then
from

10 = a0 = (142) 5,0 =< (14 2] (142 A0,

the inequality
fi(n) = (1+2):(0)

follows for every k=k,, which completes the proof of Theorem 2.
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