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ON THE GROWTH OF SOME ADDITIVE
FUNCTIONS ON SMALL INTERVALS
P . ERDŐS, member of the Academy and 1 . KATAT (Budapest)

1. The letters c, c l , c 2 , . . . denote suitable, a, el, E2, . . . , b small positive con-
stants . al, 62, . . . will depend on a. p„ denotes the n`h prime number, p, q, q1, q2, . . .

are primes . Z denotes a summation over primes indicated . r. (x)= Z 1. a)(n)
P

	

Psx

denotes the number of distinct prime factors of n . (a, b) and [a, b] denote the
greatest common divisor and the least common multiple of a and b, resp. [x] denotes
the integer part of x. For the sake of brevity we shall write x, +1 =log x i
(i=O, 1, 2), x o =x .

Let
(1 .1)

	

0,(n)= max co(n+j), o k(n) = min (o(n+j) .
J=1, . . .,k

	

i=1, . . ., k

One of us (see [1]) proved the following assertions . For every c-0, apart from
a set of Pi's having zero density, the inequalities

0.(n) -_ (1 +a) o l lol log n J
log log n, ok (n) = (1-a) P

(,ologk n
I log log n

t, g

	

g log

hold for every k=1, 2, . . . . Here o(u) (u--0) is defined as the inverse function of

0(r)=rlog?+1 defined in zm1, and o(n) (n--0) is the inverse function ofe
the same 0(r) defined in 0<z-- I . In the same paper it was conjectured that

(1.2)

	

Ok (n) -- ;(I -e) Q ( log logk n log log n,
g g

and

ok(n) - ( l +c) d
(logk

n J
log log n,

g log

for every k m 1 and for almost all n . Tlie last conjecture is false, since for
k=log n, ok(n)=0 would follow, which is impossible . Instead of it we state

(1 .3)

		

ok(rz) _ 15
(log k

J +
ej log log n,

log log n
where 5 (u)=O or

We shall prove

THEOREM 1 . For every a>0 the inequalities (1.2), (1 .3) hold for every k--I,
apart front a set of n's having zero density .

Acta Uatheinatica Acade •,niae Scientiarum Hurgari.cae 33, 1979



34.6

	

P. Eí2DbS AND I. KÁTAI

Let g(n) be a non-negative strongly additive function, i .e. g(p")=g(p) for
every prime p . Let

(1 .4)

	

fk(n) _ maxkg(n+j) .

It is obvious that fk(n)yfk(0) . We are interested in the conditions which imply
that

(1 .5)

	

A(n)

	

(1+E)fk(0)
holds for every k>ko, apart from a set of n's having upper density at most 6(E, kQ),
where 6(ejo)--0 as kp- - .

This question was considered for some special functions in [2] .
Let

_ g (P), if g (P) -_ 1,g+(P) {

	

1, if g(P) > 1,

and g+ (n) is defined as a strongly additive function generated by the values g+ (p) .
By using the wellknown Turán-Kubilius inequality

(g+(n)-A ~2 cXB,, ( :5 cXAT)
n=s

AX =

	

g+ (P) Bx =

	

g+2(P) (~ A
.),

P=x P

	

Psx P
and that g(n)~--g+(n), we immediately have that the convergence of

g + (P)

is a necessary condition for the truth of (1 .5) .
We are unable to decide if

(1 .6)

	

71 g (P)
P

is necessary for (1 .5) .*
Assume that g(p) tends to zero monotonically as p-- . We shall prove that

(1 .6) is not sufficient for (1 .5). This disproves the conjecture stated in [2], namely

that from the convergence of the series f g+ (P), 'Z 1 >-1 (1 .5) would follow .
P

	

g(P)>I P
Finally, assuming some regularity conditions on

A (Y) _ Z g (P)
P=Y

we shall show that (1 .5) holds .
Let t(x) be a real valued monotonically decreasing function defined for x--I .

Let

(1 .7)

	

A (y) _ 1 t (P),
P`=Y

* REMARK . We decided this question affirmatively . We shall publish this in a forthcoming
paper in this journal .

Z P
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and suppose that

(1 ..8)

	

Z _t (p)

and that for every positive constant 8

Y--

	

A (y)

	

_
yt (exp (eXp (yó )))

Let g(n) be the strongly additive function defined for primes as g(p)=t(p) .
THEOREM 2. Assume that the conditions (1 .7), (1 .8) hold. Let E be an arbitrary

positive constant . Then for every integer ko the inequality

f, (n)

	

(I+ E)fk(0)
holds for every k--k, and for all but 8(ka , e)x integers n in [1,x] . Here
6(ka , E)-0 (ko -) .

We shall prove these assertions in the following sections .
Now we make the following remark . In [3 ], IváNyi and K4TAI proved the

existence of a completely additive f(n) not identically zero for which f(n)=A j ,
n E [Nj , N, + r(N,)] on a suitable set N, < N2< . . . of integers, where z (N) _
=exp (c Y(log N) (log log log N)), A; are arbitrary complex or real values .

Now we prove the following

THEOREM 3 . Let E>0 and x>xo(E) . Then there exists a completely additive
function f (n) for which

f(n)=O in [N+1, N+ .l(x)],

347

where 2 ~N x and
(x) _ [exp 1( 1 _ E) (log	

2

	

x) (log log log x)
)]log log x

	

'
and which takes on a non-zero value in [1,

	

.

REMARK . Unfortunately we can not prove that there is an f(n) with infinitely
many such intervals .

PROOF . Denote by N(x, y) the number of integers n:x all prime factors of
which are not greater than y. By a theorem of RANKIN [4]

log log log y

	

loglog y(1 .9)

	

N(x, y) < x exp -	tog y	 log x+log logy +0 (log
tog lowgy

Let k= ; (x), x large . (1 .9) implies

N(x, k) <
[ 2k

] 7z (k) .

Thus it is easy to see that there is an interval [N+1, N+k] in 2=N<N+k-x,
8
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for which the number of integers all prime factors of which do not exceed k is
smaller than 7z (k) . Let n=A(n)B(n), where A(n) is composed of the prime factors
-k of n . Let n+li (i=1, . . ., h), h-<n(k) be the n's in [N+1, N+kl for which
B(n+l;)=1 .

The additivity leads to the following linear system of equations

(1 .10)

	

f(A(n+l,)) = 0 (j = 1, . . ., h),

(l.11)

	

f(B(n+r)) = f(A(n+r)) (r IjQ = 1, . . ., h)),

where the indeterminates are the values f (p) for primes p contained in (N+1), . . .
. . ., (N+k) . (1 .9) is a homogeneous system, the number h of equations is smaller
than n (k), therefore we can choose values f (PI), . . . , f (p R(k )) non-trivially such
that (1 .10) hold. This holds in the case h=0, too. To finish the proof we need to
take into account only that B(n+r) (rah, j=1, . . ., k) are mutually coprime,
so we can solve (1 .11) . This completes the proof of Theorem 3 .

2. Lemmas. Let k be an integer, Y be a finite set of primes greater than k .
Let 9r denote the set of integers of the form t,=q g2 . . .gr , g j EJ1, q; q ; (i ;j),

P = Z, 1/P, Tr = Z l It,
PC 19

	

t,E .-,

(2 .2)

	

a =

	

1
PE-9 P2

Let l7, be the number of elements of 9, .
LEMMA 1 . For every r ~i-- 2 we have

_ a pr-2

	

_. Pr
(2.3)

	

r1

	

2 (r- 2)1

	

T, - ! .

PROOF . The right hand side of (2.3) is obvious . We prove the left hand side
by using induction. The assertion holds for r=2, since

T2 = 2 (P2 -a) .

Observing that

TrP ~ Tr+1(r+ 1) + Z 12 { Z	 1 } - Tr+,(r+ 1)+aTr -,,
E9p (r,-vP)=I tr- 1

we get

and by the induction hypothesis
TI,

	

T, P

	

a
1 =' r+ 1 r+ I Tr-1 i

Pr a pr-2,1P

	

a

	

Pr-1

	

p, 1,

	

a Pr-1
TI +I - {r!

	

2 (r-2) . r+l

	

r+l (r-1)!

	

(r+l)!

	

2 (r-l)!'

By this Lemma 1 is proved .
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We shall use Brun's sieve in the form of Theorem 2 .5 in [5], or in the simpler
form of [6], Theorem 6.2. Namely we shall use the following result, which we
state now as

LEMmA 2. Let a,, a2 , . . . be positive integers, R a finite set of primes, all of them
smaller than z . Let

q (y, d) _ z 1 - y(d) y
a„-o(d)

	

d
a„=Y

,

where y(d) is a multiplicative function on the set of square free numbers all prime
factors of which are in 9 . Suppose that q(y, d)-y(d) for all such d, and y(p)=
=0(1), y(p)--p-1 for all pER. Putting R= jjp, for y7r we get

pE9

(2.4)

	

aZ 1 = y H
(1-YAP)) I1+0(exp(-

f
I
log
logy

z
)) j .

ta,,, R)=1
Let now -9 be the set of all primes in (k, r), where z,x'l4r . Let Q/ be the set

of integers n = tr b, where tr E .T , (b, jj p) =1 . Let
PE .

1, if nEsl,
V (n)

	

0, if n 4 ,,/,
and put

(2.5)

	

Z ( O ) _ Z V(n), Z(h) _ Z V(n) V (n + h) (h =1, . . ., k) .
n~x

	

n+h=x
Let

(2.6)

	

F,= Jj (1- 1), F2= Íj ( 1-2),
PE9

	

P

	

P( .

	

P ),

and 1(n) a multiplicative function on the square free integers defined for primes
p by ~(p)=(1 p)

(1- P)

1 .

For the computation of 2(0), Z (11) we shall use the previous lemma . Let
N(yj9) be the number of b--y, which have no prime factors in ':0. By (2.4),

N(yj-1~0 ) = yr1{1+0 (exp ( 2logxy ))~'
since Yltr~---x"". Consequently

(2.7)

	

~ca)=tr

	

N(x .~)=TrF,X(l+O(e-r)) .r

Consider now

	

First we count the integers n, n=t,' ) h,, n+h=
=t(2) ó2 -x with fixed t('), tl2) E9r . There is a solution only if (t (1) , t(2))=1 . The
solutions b, i b2 of t(I)b2-t(1)ó,=h are in the progressions b 2 = b2 0) +stt 1) ,

8 •
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if

(2.9)
We have

whence

Consequently

(2.10)

P. ERDOS AND 1. KÁTAI

b 1 =bi°)+ st, 1) (s=0, 1, 2, . . .) . Sieving those elements b1 b2 which have prime factors
in -9, we get that y(p)=2 if pftr 1) tr2', and y(p)=1, if pI tr 1'tr 2 > . Thus by Lemma 2,
(2.8)

	

Z(h) = XT2(1 +0(e r))A,
(trl ) tr 2) )A =

	

(1) (2)
~tri) r rz1~=1 tr tr

Since tr1 'tr 2'=t 2r has (rrl solutions for fixed t 2r we haveJ

	

A _ 2r

	

/. ( t2r)
( r

	

t'r

Let h(d) be the Moebius transform of (d) . Then h(p)=
p

	 1 2 , h(d) is multiplicative,
and we have

T2r - Z, t2r)

	

T2r+
z ~

;

IL qS)
T2r - vL

	

2r

	

v=1
"
C5- ,

Taking into account that

s

	

hab)
c tl!

	

P(P-2) Ivc v! ( k log k ) '

from Lemma 1 we get
	 (t2r)	p2r

	

2re
t2r - (2r)! exp Pk log k

Furthermore Lemma 1 implies that
4a r PerT2r

	

1 - P ) (2r)! ,

and so
	 1A=( Pr~) (1+O(Pk	 r

log k»'

Pk log k

logf2 = 2logF,+0(a), logF1 = -P+O(a),

F, = e-P(1+0(a», F= e-2p(1+0(a».

z(0=xe-PP2 (1+0(e-r)+O((

	

oP+1) klg k)~'

(2.11)

	

~(h) = xe-2p
p

I 1+0(e -r)+ 0 ((P+1)	k lo,a kl)L

	

l

	

r

if (2.5) holds .
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(2.12)

(2.13)

We have

and observe that

ON THE GROWTH OF SOME ADDITIVE FUNCTIONS

k

	

pr

Fk (n) _

	

V(n+i), A = ke- p -,
=1

	

r?

E =

	

(Fk(n)-A)2 .
n=x

E _

	

Fk (n)-2A

	

Fk (n)+A2 x,
n=x

	

n~x

Z
Fk (n ) = kZ(o)+0(k2)>

nZ~x
k

Fk(n) = k~(0) + Z2(k_h)Z(n) +0(k3)
n=x

	

h=1

Collecting our results we get

LEMMA 3. If (2 .9) holds, then

(2.14)

	

E = 0 (x(A 2 +A) (e- * + Pk log k )+k
3 +k2A) .

Let now

	

be an arbitrary set of primes, P= Z 1/p,
pE9

(2.15)

	

to (n I-)
Pln
pC9

(2.16)

	

0,(n)= , max co (n +J j J% Ok (n) = min w (n +J I -Y) .
1-1, . . .,k

	

i -1, . . .,k

Let Dk (x, L1,á) be the number of n--x for which Ok(nl,9)--L . It is obvious that
Djx, LI9) : Z-L Z zok(nl-q) C z - Lk

	

Zw(nl9)
nix

	

n=x+k
for z ~ 1. Observing that

Z zw(n 19) (r+k) ÍI
(1+z-1)

(x + k) exp (zP),
nix+k

	

PE9

	

p

by substituting z=L/p, we get immediately

LEMMA 4 . If 1--k- ., L P, then

(2.17)

	

Dk (x, L1 9) - 2x exp (log k-L log
P e)

.

3. Proof of Theorem l . First we prove (1 .2) . Let B be a suitable large constant
depending on a. First we shall prove (1 .2) for

(3.1)

	

k -- exp ((log log n)B) .

Indeed, if we define tk to be the largest integer I so that the product of the first 1
primes is smaller than k, then we get 0k (n) - Ok (0) = tk . From the prime number
theorem we get

t k
log k -

	

log pi ~ plk ^ tk log tk,.7 = 1

351
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whence
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log k

	

(
k

	

)
tk

	

log log k

Furthermore, as it is easy to show, e(u)^'u(u---), whence
g

	 u

o(logk )loglogn'(1 _f) loglo

	

'g log
	 n

	

g log k

if B is large enough . Thus (1 .2) holds if (3 .1) satisfies .
Let B be fixed, x large, and put

(3.2)

	

a = log k
x2

Observing that o( ;.)-I+),'2;. (;,-0), therefore by choosing el to satisfy
(1 + 2 ~EI) (1-2) < 1, we get (1-2 ) o (ej < l . We can choose e,

= 16 . By using
Hardy-Ramanujan's wellknown theorem that (o (n) -log log n for almost all n,
we get (1.2) in 0-a-r,

Assume that
(3 .3)

	

e,x2 -- log k - xB .

Let r be an integer for which

(3.4)

	

r = dx2 +0(1), d = (1- a2)o(7),

c, being a small positive constant .
Let Y be the set of primes in (k, x114') and Nk,,(x) denote the number of n :-5x

for which 0jn)<r. For these numbers Fk(n)=0, and by Lemma 4
3

	

2
(3.5)

	

Nk,,(x)

	

2
O x(1+

~) (e_r+ PkloPg k)+
k	
+1	 ~~'

From (3.3), (3 .4) we have

a XB-1 , d - Cx2-1 , log r = O (x,),

P = X2+ 0 (X3),

r+P

	

(d+1)x2
- O (XI a/2

Pk log k ~~ x2 e" x, ax2

	

x~

By using Stirling formula,

log A = log k-P-r log r +0 (log r) _ (a-0(d)) x2 +0(x3) .

Since
~ 0) _ (1-E2) (2)+E2 +(1- E2) e log 0 -E2)
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and 0(o)=a, therefore by using that Q(~)---1+ VDA ().-0), we get a-q(d)-
sV2, if Lt-422 ' E2 being small. Choosing E 2 ¢~2E 1, we get that A_-1 for all

large x and for all a in (3.3) .
Since e- '«e_ax2, we obtain that

(3 .6)

	

Nk,r(x) : c2x{e -ex2 +e-ax212)+0(x112) .

Let now a; =jE1 , k, _ [e aj x2], j=1, . . ., T, and T-1 is the largest integer for
which a T_ 1~ .rB _1 . Thus T=O (1 x2 -1), and from (3.6)

E1

T

	

_
(3 .7)

	

Nk .,,(x) << xe
i=1

Hence it follows that for all but O (xxl3) integers n in
12

, x]

(3 .8)

	

O k.(n) > (1 -2) o ( logk`)
2

	

x 2 (i = 1, . . ., T) .

Let kE[ki, ki+1) and suppose that (3 .8) holds for an n . Since Ok(n) ~;_ Ok_(n) and
j2(a)< (1 +c,E1) o (a i), therefore

Ok (n) (1-3E) o (a) log log n .

Since log log n increases very slowly therefore

Ok (n) (1-E)o (logk n) log log n

holds for all but 0(xx, 3) integers nE[
2

, x] . This assertion holds for x~Xo .

Choosing now x=2vXo (v=0, 1, . . .) and using our result, we obtain (1 .2) .

The proof of (1 .3) is very similar. Since (.?) 1- )2 (i 0), therefore (1 .3)
2

is obvious if a 3 .

Let Y be the set of primes in (k, x 114r ),

log k

	

r.2a=
x2

r be an integer for which r=Hx2 +0(1), H=~(a)+E, .
Let Bk , T(x) be the number of n--x, for which Ok(nl-,9;1) ::-r. For these n's

Fk (n) = 0, and by Lemma 4 we get

(3.9)

	

Bk,r(x)-c3x(1+ 1)(e-'+kl1 k)+c4k3 s122A
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From Stirling formula
r

log A = log (ke_p P) = a-1-Hlog H) x2+0(x3) _ (a-t (H))x2+O(x3) .
rT

	

(

	

e

Since - 0'(z) _ - log z is decreasing,
H

~ (ó) -0 (H) = f -log z dz -- (H- ~) logH = 8, log H ,
é

consequently

a-~(H) _ q(C)-q(H) a 83 in aCl-3
if 83 is sufficiently small .

Thus A ~-!! 1, and

(3.10)

	

Bk,,(x) -- c5x(e-"+k-1) .

Let 91 and 92 be the set of primes in the intervals [1, k], [X1i4r, x], respectively,
and

P,= Z1/p=loglogk+0(1), P2=

	

'Z lfplog4r+0(1).
p<k

	

x314r<p~x

Applying Lemma 4 by
4 log k

(L =)L, = log log k '
we get

(3 .11)

	

Bk (x, L, 19,) -- x10.

Observing that log k=aX2-
3

x2 , and P2=0(x 3), by choosing L=L,, we get

(3 .12)

	

Bk(x, Ll ~2) ~ c(8)k3
Since

Ok(n) - Ok(nl -9)+OkOnl 91)+Ok(n1 ,92),
from (3.10), (3 .11), (3.12) we have that for large x

(3 .13)

	

ok(n) r+2L, -- (~(a)+2£3)x2,
apart from at most
(3.14)

	

cl(s) x (e-(e (a)+E3) x2 + e-8x2/21

n in [1, x] .
2

Let a t=t12 (t=1, . . ., T), T= [E2] +1, k,=[xlt] . From (3.13) and (3 .14)

we deduce that

(3 .15)

	

ok7(n) -- (6(x;)+283)x2 (1 = 1, . . .,T)

holds for all but c 2 (g)xe- ' 3x2 n in [l, x], assuming that 8 3 is sufficiently small .
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(3.15) easily implies that

(3.16)

	

ak (n) n (a (a;) + 4) x2

for every kE[k I , kT] . This is an immediate consequence of the fact that 0 : ~(aj)-

-~(aj+~<
4

. Indeed, since 0'(2)=log z, -~' is increasing, we get

£ 2

	

1

	

£2

	

1

	

£ 2

	

£
0(a;)-~(a;+1) - C

,
(a1)12 = - log á(a1) 12 N log (1 - V2,) 12 < 4

Putting log log n instead of x, in (3.16), we get that

log
(3.17)

	

o k(n) c {~ (log log n +£} log log n

(x
holds for all but c2(£)xe-1 3x 1 n in L 2 , x .

Choosing a large Xa and putting x=2"X, (v=0, 1, . . .) we get (1 .3) immediately . .
Theorem 1 is proved.

4. A counter example . Now we give a non-negative strongly additive g(n}

for which g(p) is monotonic, Z gpp)

	

and (1 .5) does not hold .

Let R,=1, RS+ ,=exp (exp (RS)), Js =[R,, Rs+,) . We define g for primes,
p as follows :

ON THE GROWTH OF SOME ADDITIVE FUNCTIONS

for large µ .

Acta Mathematics Academiae Scientiarum Hungaricae 33, 1979

g (p) = R 1
2

(p E Js), s = 1, 2, . . . .
s

Sincc
1 _

	

logB

	

( 1
A< a p - log log A +D log A '

therefore
g(p)

	

1 2 f

	

1 , ,<

	

,= 0 1 .
p p = s, Rss p~ PJ

	

s

	

()

Let u be a large integer,

	

be the set of all primes in (k, R,, +2] . Let

I

	

1CC -
4 =

	

2'

355

r = 2Rú+ ,, log k = (2+-c)Rú +I log Ru +1~

Let x ~---Ru+5 ,
Now we use Lemma 3 . Its conditions are fulfilled . By an easy computation .

we get
(4.1)

	

1 { xe-Rµ+l
nex

Fk(n)=0



356

Let 6 be small, u be so large that S>e_Rµ*1 . Then for all but 6x n in [1, x]
Fk(n) 0. For such an n for at least one j, 1--j k, n+j has at least r prime factors
in [1, RP+2 ), and so

Let

Then

, (5 .2)

P. ERDŐS AND 1. "TAI

g(n+j)

	

r
RP+1 (p+ 1)2

Consequently
r

	

_ 2R(4.2)

	

fx(n)'
RP i1 (µ+1) 2

	

(u+1)2
Consider now fk(0) . Let tk be defined as above, i .e . p1 . . .&-k-p1 . . .Prkprk+~
It is obvious that ík(0)=g(tk). From the prime number theorem we get

log k p,, tk log tk (y - -) .

AS = II p ( s = 1, . . ., µ), B =

	

II

	

P.
P é JS

	

R µ ,~ 15 P`- Pr k

g(A,) = R 1 s 2 (nn(R)},
and so

s~ g(AS) - 25~	Rss'- Ry2 .

Furthermore, for an arbitrary but fixed E>0

g(B) =
RP+1(1+1)2

i~(Pr~-n(RP+1)} RP +1(~j +1)2
s

(1+E)	log k

	

(1+E)(1+ zl
RP +1

(loglogk)R P +1(N+l) 2 -

	

2 (ft
+1).,,

if u is sufficiently large . Consequently for large p

íx(0) < 1,6 ( Ru+l , and fk(ni) 2 (u+Tljz

for all but Sx of n's in [l, x] .
5. Proof of Theorem 2. Suppose that the conditions (1.7), (1 .8) are fulfilled. If

A(y) is bounded then the assertion is almost obvious . Indeed, if A(-)=B, then
supg(n)=B, i.e . fk(n)-B . Furthermore ík (0)-B, and so fk (n)-fk (0)<Efk(0)
for every n, if k is large enough .

Suppose now that A (y) - - (y- -). Observe that the prime number theorem
easily implies
(5.1)

	

ík (0) _ (l+o(1))A(logk) k(--).

Furthermore from t(y)-0 (y- -) we obtain

í2k(0) - ík(0)+ 0 (1) _ (1+0(1))ík(0) •
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Hence

(5.3)

	

fk(0) -- fk(n) -fk+x(0) cf,(0) -- (I+E)fk(0),

if k>x, n :x, k is large .
Now we assume that k--x. Let S be small,

H = exp (exp ((log k)s)),
and

(g(p), if p

	

1

-- H,
g1 (P) = 0,

	

if p H;

0,

	

if p -- H,
gz(P)

_ Ig(p), if p H,

and g1 (n), 9,(n) are the corresponding additive functions . Let

fk`) (n) _ , max gi ( n +j) (i = 1, 2) •l-1, . . .,k
It is obvious that

Let 8=1+2&,

r
L

_ r log k
e log log k •

Let C, (x) be the number of those n ~-x that have at least r prime divisors
11,H] . It is obvious that

(x)

	

[X]

	

xPY

	

P

	

1
~

	

= Z-.
t t t~

	

r.

	

p5H P
We have

and by

we get

fk(n) -- fk1) (n)+f91 (n)-

kCr(x) -- x exp (log k- r logPe +D (log r) I ,

P= (log k)s+O(1)

log k

	

r

	

8g

	

g
P e

+ O (log r) ~ -
4

log k,

(5.4)

	

kC,(x) -
x
VII

.

If the integers n+j (j=1, . . ., r) have no r distinct prime factors

fl' ) ( n) `= g(p1 . . . pr-1) -- (I +3E) A (log k) .

Thus we proved that

in

from [1, H], then

fk1) (n) -- (1 +3b) A (log k)

for all but x/k" integers n E [1, x] .
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Let now q be a small positive constant, d =ijA (log k) . We put z=e" (u~ 0)„

D(x, z) = 'Z Z92 (M) .
n~x

The function Z920 n> is multiplicative, and its Moebius transform l(n) is defined for
prime powers as

1(p")=0(a--2) .
Consequently

Let

for large k, i .e .

Consequently

{
e"9 (P) -1 p H,

Z(P) _ 0,

	

p--H,

rIxlI

	

e"9~P~ - 1) .
Z) _

	

1(d)
L J ,

x 11 (1+	p
dsx

	

d

	

H~p-x
D (x,

u= 1
2t(H)'

Then from e" 9( p ) - 1<2ug(p) it follows

D (x, z) - x exp 2u Z ' (P)(

	

.
H<p-x P

Let B(x, q, k) denote the number of those n--x, for which f2 (n)-- ,J . We obtain

B(x, q, k) -- k Z Z92(n)-d" -- x exp (-du+2u

	

t(P) +log k) .
n=x

	

H-p-x P
From (1 .9) we have

-du+2u Z t(p) +logk < -31og k
H-p-x P

B (x, n, k) - k3

that

fk (n) < ( 1+M +)I)A(log k)

for all but
(kó14

+k3) x integers n in [1, x], for every large k . Let M+r1~
4

.
(5 .1) we get

(5 .6)

	

fk(n) < ( I+ 2 )ík(0),

if k-c(s) .
We choose (k =)kv =2°ko (v=0, 1, 2, . . .) . Then

fk v (n) -( 1 + 2) fk (0) (v = 0, 1, 2, . . .),
allowing at most

2x

	

k-óJ4
~ cx

v

	

k0ó/4=1
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integers n in [1, xj. Suppose that (5.7) holds for an n . If k~k o kE[kY , k v+ ,), then
from

fkc(n) :f"'+ (n) :(1+2) f" +1(0)<(I+2) (1+4)ík(0),
the inequality

f, (n) (I+E)fk(0)
follows for every k~---k o , which completes the proof of Theorem 2 .
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