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A basts i5a set A of nonnegative integers such that every sufficiently large
integer & can be represented in the formon = o, + a; with oy , y e A I A 5 a
basis, but no proper subsel of 4 s a basis, then o is a minimal basis. A nonbasis
is o s&t of nonnegative integers that is not a basis, and a nonbasis A is maximal
if every proper superset of A is a basis, In this paper, minimal bases consisting of
square-free numbers are constructed, and also bases of sguare-free numbers no
subset of which is minimal. Maximal nonbases of square-free numbers do not exist,
However, nonbases of square-fres numbers that are maximal with respect to the
set of square-free numbers are constructed, and also nonbases of square-fres
numbers that are not contained in any nonbasis of square-free numbers maximal
with respect to the square-free numbers,

1. INTRODUCTION

Let A = {a;} be a set of nonnegative integers, and let 24 = {a; + a5
consist of all sums of two not necessarily distinct elements of 4. The sum set
24 is an asymptotic basis of order 2, or, simply, a basis, if 24 consists of all
but finitely many nonnegative integers. The basis A is minimal if no proper
subset of 4 is a basis. Minimal bases were introduced by Stéhr [15], and have
been studied by Erdés, Hértter, and MNathanson [2, 3, 5, 10, 11, 13]. If the
set A is not a basis, that i3, if there are infinitely many numbers not of the
form a; + a, with a, , a; € 4, then A is an asymptotic nonbasis of order 2, or,
simply, a nonbasis. The nonbasis 4 is maximal if every proper superset of 4
i5 & basis, Maximal nonbases were introduced by Nathanson [13], and have
been stodied by Erdts, Hennefeld, Nathanson, and Turjdnyi [4 — 7, 12, 14,
472
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Although minimal bases have been constructed, and also bases no subset
of which is minimal, it is usually extremely difficult to decide whether a given
“natural™ basis for the integers does or does not contain a minimal basis, It
is not known, for example, whether the basis consisting of the set of sums of
two squares {m" - n®}; . , contains a minimal basis. In this paper we con-
sider the set O of squarefree numbers. Cohen [1], Estermann [8], Evelyn and
Linfoot [9], and Subhankuloy and Muhtiaroy [16] proved that O is an asymp-
totic basis of order 2, and have provided estimates for the number of re-
presentations of an integer as the sum of two square-free numbers.

We shall show that the set @ contains a minimal basis, More generally, a
basis A is called r-minimal if, for any a; . @y ... ap € A, the set A\{ey ... a,) is
a basis if & < r but a nonbasis if & = r. The 1-minimal bases are precisely the
minimal bases. We shall construct for every r == | an r-minimal asymptotic
basis of order two consisting of square-free numbers, We shall also construct
an ¥-minimal basis of square-free numbers; that is, a basis 4 such that A\4*
is a basis for every finite subset A¥ C A, but A\4* is a4 nonbasis for every
infinite subset A* C A4, In particular, an 8g-minimal basis is an asymptotic
basis of order 2 that does not contain a minimal asymptotic basis.

There cannot exist a maximal asymptotic nonbasis of order 2 consisting
entirely of square-free numbers. However, there do exist nonbases that are
maximal with respect to @. More generally, a nonbasis A is called s-maximal
with respect to 0 if. for any gy, s ..., gp € O\A, the set AW {g ... ¢}
remains a nonbasis for & < s, but becomes a basis for & = 5. The 1-maximal
nonbases with respect to @ are precisely the nonbases that are maximal with
respect to 0. For every 5 = 1 we shall construct a sel ol square-free numbers
that is an s-maximal nonbasis with respect to O, and also a nonbasis of
square-free numbers that is not contained in any nonbasis of square-free
numbers that 15 maximal with respect to 0.

Notation, @ denotes the set of positive square-free integers, and 2 =
Py < Py <<y = - denote the prime numbers in ascending order. The
cardinality of the set & is | 5|, and the relative complement of T in 5 is
S\T. By [a, b] (resp, [a, b)) we denote the interval of integers » such that
a=n=b(resp.a=n-==~) Forn=1,let Sin) ={ach2nlnn0|n—
a = (. Let f(n) denote the number of representations of n as a sum of two
square-free numbers. Then f{m) = 2 | S(w)| ifn/2 ¢ Qand f(m) =2 | §(n)| — 1
il m2e @, hence | S(n)| = f(n)/2 for n = 1. The integer part of the real
number x is denoted [x].

2. SoME LEMMAS

Lemma 1. Let my , Wiy ..., i be pairwive relatively prime integers == 1, let
s be any integer, and let B; S [0, m; — 11 fori =1, 2,..., 1. Let




BASIS AND NONBASES OF INTEGERS 199

Z = {ae[K + 1, L]| a = s (mod m,) but
a == r; (mod my) for all
i=l., tand r; e R;}

Then

fitg 4 g 2=l

Proof: Let 8, = {5} and let §; = [0, m; — 1]\R, for i =1, 2,...,t. Then
| 8| =m; — | R;|, and a == r; (mod m,) for all ;e R, if and only if a =
s; (mod m;) for some 5, €8,. Let m = mgmy -+ i, Since the moduli my
are pairwise relatively prime, the Chinese remainder theorem implies that
there is a set SC[0,m — 1] with | §| = |8y | - | S¢| such that Z ={ae
[K + 1, L] a = s (mod m) for some s € §}. The interval [K - 1, L] contains
[(L — K)/m] complete sets of residues modulo m, each of which contains | § |
elements of Z. Therefore,

!ZI;[L;K—]fsl,‘?(‘L;K—l)ISI

i

_'L_Klil |SF| _nlsil.

My =1 T {=1

- L—Kﬁ(l_%)—ﬂ{nu—sﬂm.

Mg f=1

Lemma 2. Let f(n) denote the number of representations of n as a sum of
rwg square-free nunibers. Then

= 2
) > T {1 — —=) — c)
) (H( FoFy ]
for evéry € = 0 and all n = ny(e). In particular, the square-free numbers
form an aspmptotic basis of order 2.
Proaf. Let € = 0. Choose p, so large that 3,1 U/p? < e/4. If a1, n]

and g ¢ Q or n — a¢ (, then a = 0 (mod p*) or a = n (mod p?) for some
prime p; < n*/%, The number of @ £ [1, n] such that 2 = 0 or n (maod p*) for

some p; = p, is at most

] ([%] = I) < E n -+ 2n*A, (1)

Prepganl®

LetZ={ac[l,n]| a = 0orn(mod p2) foralli = 1,2,.. th Letmy =5=1,
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let my; = p? for i =1, 2,.... f, and let R; consist of the least nonnegative
residues of 0 and n modulo p® Then | R; | = 1 or 2. By Lemma |,

zi=n]] (1 - L8 — 1T 2 — 1 &)

i=1
e 2 [ I -
}'ftg(l—?)—fll{p‘ =Y (2)

The number of a & [, n] such that both a = @ and n — a & 0 is precisely fin);
estimates (1) and (2) imply that '

foy = n T (1 = —2) = [T (o2 — 1) — 0 — 2000 |

=1 F‘I =1

{05l

for all m = mye). Since [Tioy (1 — 2/p,®) == 0, it follows that f(#) = 0 for n
sufficiently large, and so @ is an asymplotic basis of order 2, |

LEMMA 3. Let gy o G vens §a D€ Spueare-free numbers, and let R; consist af
the least nonnegative residues of @y o Gz g @y modulo p®. Then the number of |
W= nosuch that w — gy , W — i veey W — , are simultaneously square-free is

greater than
{10 -5 -9

for every € = O and all n = nle). In particidar, the numbers w — gy yery W — gy |
are simultancously square-free for arbitrarily large w.

Proof. Sinece the g, are square-free, O & &, and so | B; | =< min {5, p* — 1},
Therefore, [T, (1 — | R |/p#) = 0.

Let ¢ = max{g; . ggseeen§oy. If welg+ 1,0] and w — g; ¢ O for some
f=1l,..,4 then w=g;(modp? for some prime p; <<na%*% For e =1, |
choose p, so large that 3., 1/p® < ¢/25. The number of we[g + 1, n]
such that w = g, (mod p,*) for some j = l,..., sand { = ¢is at most

s([Fort] +1) <z + o @

et '
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let Z={welg+ 1, #llw=q (mod p®) for all f = 1,...sand i = L., th
By Lemma 1,

|Z| =@ q]f[(l—- f-‘F‘—] I"[(p — | B (4

Lemma 3 follows from estimates (3) and (4).

Lemma 4. Let n=1., and let p®* and p> be the two smallest
primes such that neither p® nor p,® divides n. Then p;p, < ¢ log* n for all
nz=mn.

Proof. Suppus& py << pu . Then [Ti. p/® divides npfp, and so ([T po)*
< npfpd < apd By Chebyshev's theorem, #(x) =%, .logp == ¢x for
some ¢ = 0 and all x == 2, Exponentiating and squaring this inequality with
X = p,. , we obtain

k ]
e = (n p.] < npy.
=1

But p,t < e for all k = ¢, and so0 '™ < g for k = t. If n == "™, then
g® < n for all k. Therefore, py < (l/c)logn for all n = ny = [e**]. For
¢, = 1/c* we have

PP < mt < ey log®

Lesmia 5. Let S(w)={ac w2, wln Q| w —ae Q. Let A w) consist
of all square-free numbers § = u except g = S(w), Le. A, (w) = O\(S(w)u
[1, u]). Theen w24 (w) I w = w* and if w = Bu - 4, then n = 24,(w) for
all'n = w2, n=w

Proof. IFw—=g -+ ¢" with g, ¢' €@ and ¢" < g, then w/2 < g < w and
g' = w — g = 0, hence g £ 5(w). Therefore, g ¢ A,(w) and so w ¢ 24 ,(w).

By Lemma 2, there exists 0 < ¢, < ¢a = [111 (1 — 2/p,%) such that f(n) >
con Tor all n = ny . 1f w = egnyf2 and n = 2wjc, , then f(n) = eyt = 2w. But
A, () is missing at most w square-free integers, and so ne24,(w) for all
0= 2wleg.

Suppose that w/2 == n = 2w/e,, and n == w. Then w =< | win — w)| <
2wic,. Let p;, pp be the two smallest primes such that neither p® nor p,*
divides win — w), If w == n; , then Lemma 4 implies that

pipt < o log! [ win — w)| << ¢, log® (2wifey) (5)

Let Z¥ ={gecu+ l,n—u— 1]l a= wimod p;® and a = n — w(mod
P Sinee (pEpH=1L2"={acu+ 1,n — v — 1] a = s (mod p/p; M}
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for some 5. If a & 2%, then w — a = 0 (mod p*) and so @ ¢ S{w). Similarly, if
aeZ* then w— {n — a) = 0{mod p;*) and s0 n — a & S(w). Therefore, if
geZ* and a, n —ac O, then a,n —acs A (w) and so ne2d (w). Let
aeZ*. Wa¢ @ orn— at¢ @, then a =0 (mod p2) or a = n (mod p?) for
some prime py = 12, By the choice of the primes p; and p,, if a € Z* then
a=w==0,n({mod g and a =n — w = 0, n (mod z2).

Let 0 < e << cyca/8. Choose p, so large that 377, 1/p? << €/2. If i 5 f, &,
then (p2 pip) = | and so Z* contains at most 2([(n — 2w — 1)/p*p pef]
4 1) numbers g such that a = 0, n(mod p;®). Therefore, the number of
a & Z* such that ¢ = 0, n (mod p,*) for some prime p; == p, is at most

2 ([ﬂ] - 1) {_"g € -+ it

P nt Pt PP
2ew 2w 428
2 [
ﬁ'anth‘u' ( iy ] (]

Let Z={acZ*|a=0,n(modp® for i< t,i=j k. It follows from
Lemma | and from w = 8u -+ 4 that

Zi> 2= 2oL (1 -2y~ [T (= D

PP i=1 T i=1
il Eed
w2 — 2u—1
= PPy ¢
Caly?
moaaar (7
dpipt *

Combining estimates (5}, (6}, and (7), we conclude that the number of o = Z*
with @, n — a £ (0 is at least

oL D 2ew (211.' )‘J”
4pip,* . e

(5 e 2 ()

o

for w = ny . Therelore, if w = w* = max {eyn,/2, my e} and w = Bu 4 4,
then i e 24, (w) for all n == w2, n == w,

Lemma 6. Let W= {w.p, be a sequence af integers such that wy, = w*
and wy = 8wy 4 for all k= 1.-Eet S(w) ={ac w2, w0 G | Wy, —
a € @}, Let A(W) = O\ i, S(wy), Then wy ¢ 24(W) fork = 1, biit n € 24(W)

ey i



BASIS AND NONBASES OF INTEGERS 203

Jor all n = wyf2, n ¢ W I Q= C [, wi 0 Q, then wy & 2(A(W) W Q%) for all
k=t but n e 204A(WNOF foralln = wiq 2, né W.

Progf. 1f ACQ and AnS(w)= &, then wy ¢ 24, Since (A(P) U
O*) N 8w = 2 for all k = ¢, it follows that wy ¢ 2(4A(W) v @%) for all
k = 1. In particular, wy & 24(W)for k = 1.

By Lemma 5, the sum set ZA.,*_]{wg contains all n = w/2, n = wy . IF
k=t and ne [wy/d, weal/2) n 7= wy, then n =g+ ¢’ where

g, g '€ Au, () M [weg + 1 weia/2)
== Q N [w?(.—l + ]-: th.|.1lf2}l'|5{1'1-l,l¢:' c J‘!{ Wﬂg*

and so me 2{A(WNO*) for all n 2= w2, n ¢ W, In particular, n=24(H)
forallnw = wy/2, n & W,

3. MmavaL ASTMPTOTIC BASES

Treorem 1. There exists an ®yminimal asympiotic basis of order 2
consisting of square-free integers.

Proof. 'We shall construct an increasing sequence of finite sets 4, C 4, ©
As C - whose union 4 = Ui, A, is an Ryminimal basis of square-free
numbers. Let w, = w*, and let 4, = @ n [1, wy]. For any ¢, € 4, , choose
Wy = 8w, - 4 such that w, —gye0. Then wy — gy =[wyf2, w,], hence
Wy — ¢y £ 8wy, Let

Ay = Ag U {[wg + 1, wi] 0 Q\SOw} U {wy — g4

If gp;.wyy, and A, ; have been determined, let g.= 4z, and choose
Wy = 8wy, -+ 4 such that wy — g € @. Then wy — g  S{w,). Let

Ay = Ay U {[Weq + 1, we] N OIS} W {we — Gal-

This determines gz , wy, , and A, for all k. Set A = Uy_q A; .

The sequence W = {wyli., satisfies wy = w* and wy = 8Bwy.y + 4 for all
k = 1. Moreover, 4 = A(W) W {wy — q]iay . The numbers g€ 4, were
chosen arbitrarily. Here is the crucial part of the construction: Choose the
numbers g; so that, if ¢ = 4, then @ = g, for precisely one k. Then 4 will be
an ¥,-minimal basis.

Let 0* be a finite subset of A, say, @* C [1, w,]. Since A(W) C 4, Lemma 6
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implies that 2(4\0*) contains all sufficiently large n¢ W. If w.= W and

k =1, then wy = (wy, — gi) + gy 15 the unique representation of we as a
sum of two elements of A, If & = ¢, then wy, — g, € A\ 0™, Since each ¢ £ 4 i8
chosen only once as a number ;. , and since 0% is finite, it follows that, for &
sufficiently large, g, £ A'QO* and w € 2(4\0%*). Therefore, 4|0 is an asymp-
totic basis for every finite subset O* of 4. But if 0% is an infinite subset of 4,
then g, = @* for infinitely many k, hence wy & 2(A4\0*} for infinitely many &,
hence 40" is an asymptotic nonbasis.

CororLLARY. There exists an aspmptotic basiv of order 2 consisting of
square-free numbers that does not contain a minimal asympiotic basiz of order 2.

Taeoresm 2. For every r= 1,12, 3,..., there exists an r-minimal basis of
order 2 consisting af square-free monbers,

Proaf. We shall construct an inc¢reasing sequence of finite sets of square-
free integers A, C A, C A, C -+ such that 4 = |Ji_, 4. is an r-minimal basis,
Choose w, = w* sufficiently large that 4, = @ n [1, w,] contains at least ¢
numbers. Choose distinet integers ¢, ¢i*...., gi™" € 4, . By Lemma 3, there
exists Wy = 8w, + 4 such that w; — g’ e @ forj = 1,....r. Let

Ay = Ay {Twe + 1wyl N @ISGe)} U fwy — g3

Suppose that the numbers ¢! , wy_; and the set Ay, have been determined,
Choose distinct integers gi'%..., g1 & 4, . By Lemma 1, there exists w; =
8wy + 4 such that wy, — ¢! € @ for j= 1,.., . Let

Ay = Ay g U A{lvs + 1, W] 0 OVS(wl W fwe — g2

This determines sets A, for all &. Let 4 = [J_, A; .

The sequence W = {wr , satisfies w, = w* and wy = 8wy, + 4 for all
k=1, and 4= AW) U (Ui v — ¢i)0;). Moreover, 4 N S(w) =
{wy — qi*}_y . The numbers gi™...., gi" € A, can be chosen arbitrarily for
cach k. Choose them in such a way that every set gy ..., g, 15 chosen infinitely
often for g{",..., qi"; that is, if 0% C A and | 0% | = r, then 0% = {¢}"}], for
infinitely many k. Then 4 will be an r-minimal basis.

Let O be a finite subset of 4. Since A(W) T 4, Lemma 6 implies that
2(A\O*) contains all sufficiently large né W, If wee W, k& = 1, then wy has
exactly r representations wy, = (w, — ¢') + g2’ as a sum of two elements of
A.If | @*% | = r, then not all of these representations are destroyed, and so
wy € 2(4\0%) forall k = 1. Butif | 0* | = r, then 0* = {g'}]_; for infinitely
many k, hence w, ¢ 2({A\0¥) for infinitely many &, Therefore, 4\Q* is a basis
if and only if | O* | << r, and s0 A4 is an r-minimal basis.
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4, MAXIMAL ASYMPTOTIC MNONBASES

Tueorem 3. There does not exist a maximal asymptotic nonbasis of order
2 consisting of square-free numbers.

Proof. Let ACQ be a nonbasis. Let ny <<, << 0y << -+ be the infinite
sequence of numbers not belonging to 24. If 4 is maximal, then n; — be 4
for every & ¢ 4 and 7 sufficiently large. Choose b so that b =0 (mod 2%),
b= 1 (mod 3®), b= 2 (mod 5%, and » = 3 (mod 7). Then, b, b — 1, b — 2,
b — 3 are non-square-free numbers, hence b —jé A for f=10,1,2, 3, and
son; —b+jed for j=0,1,2,3 and all { sufficiently large. But this is
impossible, since there do not exist four consecutive square-free integers.

TueoreM 4. For every s = | there exisis an asympiotic nonbasis of order 2
consisting of square-free numbers that is s-maximal with respect to the square-
Jree numbers.

Proaf, Let wy = w*, and choose w, = 8w, 4+ 4 5o that | S(w,)] == s. Let
Ay = [1, wq] n @\8(wy). Then By = [1, wy] N @\Ay = S(wy). Choose 0, € B,
with | 0a| =5 — 1. By Lemma 3, there exists wy > 8w, + 4 such that
w,—hbeQOforallbeB, . Let

Az = Ay Y {fwy + 1, we] N O\S0wa)} U {wy — Blien,\o, -

Suppose that wyy and 4,5 have been determined, Let B, ; = [1, wp ] M
@\4;_y . Choose @, C By_; with | 0y | =5 — L. By Lemma 3, there exists
W = 8wy - dsuch that wy — be 0 forall be By, . Let

Ay = Ay y J {[Wey + 1, wi] 0 G\SO0D Y (i — Bloes, 00,

This determines sets A for all k. Let A = iy A, .
The sequence W = {w )2, satisfies wy, = w™ and Wy = 8wy, 4+ 4 for all
k = 1, and the set 4 has the form

A= A[W] ¥ (U {H'# — E}h‘-ﬁb—illul)'
-2

Then S{wy) M A = {wy — blicp, 10, buth € 4 whenever wy, — b 4, hence

wi & 24 forall & = 2. Therefore, 4 1s an asymptotic nonbasis of order 2.

The (5 — l)element sets @, C B, can be chosen arbitrarily. Choose
them in such a way that every (5 — 1)-element subset of B = 4 is chosen
as a Oy infinitely aften. Then A will be s-maximal with respect to Q.

Since A(W) C A, the sum set 24 contains alln = wy /2. n¢ W. Let 0* bea
finite subset of B = 0\4, say, 0¥ C [1, ¢,]. Then 0% C B, forevery k = 1.
Suppose | 0* | =5 If k = 1, then A contains all but 5 — 1 elements of the
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form w, — b with b By, and so wy — be A for some e @* hence
wye2{4 W 0*). But if | @* | = s — 1, then O* = O for infinitely many &,
and for each such k the numbers in {wy, — B} g« do not belong to A, hence
Wy & 2(4 U 0%), Therefore, if 0* C 0\ A, then 4w 0% is a nonbasis il and
only if | % | < s, and 50 4 is a nonbasis that is s-maximal with respect to Q.

Tueorem 5. There exists an asymptotic nonbasis of order 2 consisting of

square-free numbers that is not contained in any nonbasis of square-free numbers
that is maximal with respect to the square-free numbers,

Proof. By Lemma?2, there exists ¢y =0 and ny such that | S{w)| =
FOWY2 = g2 for all w =mn,. Let wy = max {w*, n;}, and let w, > max
1By -4, dwylegd, Let Ay = [1, wil n OW8(wy) Since | S(wy)] = filwy)/2 =
eowy/2 = 2wy, there exists: gy 80wy M [(wy + 1)/25 wy —wy— 1. Then
Wy — qLEd;.

Suppose numbers w; and ¢g; and sets 4; C [1, w,] n Q have been deter-
mined for all § <<k Let By y = [, weq] 0 Az 5. By Lemma 3, there
exists wy, = max{8w. ; + 4, 4w /e such that w, — b Qforallbe B, .
Let

Ay = Ap ;W {[wey + Lowe] N OWSHe} W{we — B[ B e Bay\{gdia).
Since f{w 2 = egwy/2 = 2wy, there exists gy € [(wy, + 12 wp — wey
— 17 8wy, Then we — gu € Ax. Since wp — & [wp — Wiy, Wy for all
be B, , . it follows that w, — g, #= g, for all i <Z k. This determines wy , gy,
and A, for all k. Let 4 = |Jioy 4s.

The sequence W = {w,H_, satisfies wy > w¥ and wy > 8w,y - 4 for all
k = 1. Moreover,

A =AWV | fwe — B| b e B \MadED.
e
Then =24 for all n = w2, ne W, but w24 forall £ = 1. Let B =
O\ Ifbe B, say, be[l, ] n QA = By, and if b == ¢, lor any § =2 1, then
wy—beAd for all £>=1¢ and so wy = (W — b) 4 be (4 W {E}) for all
k = t. Thus, 4 U {b} is a basis. Tt follows that if Q*C Band 4 U O%isa
nonbasis, then O* O {g:35%, .

Suppose Q¥ C{g)7, and wye (4 W.G%). Since w, — . Q% for i =
1,2,,... %k — 1, but wy — gy & 4, it follows that the only possible representa-
tion of w; as a sum of two elements of AU 0% s w, = (W — @) - g -
Therefore, we 2(4 ' 0*) if and only if g, £ 0%, Consequently, 4 U @Fisa
nonbasis if and only if @* does not contain infinitely many elements of
{g:}7; . Since there is no such maximal-set @%, the nonbasis A4 is not con-
tained in a nonbasis of square-free numbers that is maximal with respect to
the square-free numbers,
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5. PROBLEMS

An asymptotic basis 4 of nonnegative integers is an infinitely oscillating
basis if it oscillates from basis to nonbasis to basis to nonbasis... as random
elements are successively removed from, then added to, the set 4. Equivalently,
A is an infinitely oscillating basis if, for all finite sets A*, B* of nonnegative
integers such that 4* C 4 and BY m 4 = =, the set (4'.47%) v B i3 a basis
if| B* | = | A*| and a nonbasis if | B* | < | 4* |, Similarly, an asymptotic
nonbasis 4 is an infinitely oscillating nonbasiy i A W {b} 1s an infinitely
oscillating basis for every nonnegative integer b & A. Erdds and Nathanson [6]
proved that there exist infinitely oscillating bases and nonbases, Moreover,
they constructed a partition of the nonnegative integers into two sets 4 and
B such that A is an infinitely oscillating basis and B is an infinitely oscillating
nonbasis, Does there exist an infinitely oscillating basis of sguare-free
numbers ? That is, does there exist 4 C @ such that, for all finite sets 4% T 4
and B* & O\ A, the set (4\4%) U B¥ is a basis if and only if | B* | = | A*| ?
Is there a partition of the square-free numbers into two sets 4 and B =
(4 such that A is an infinitely oscillating basis and B is an infinitely oscilla-
ting nonbasis?

A set A of nonnegative integers is an asvmptotic basis of order J if every
sufficiently large integer is the sum of /i terms of A; otherwise, A is an asymp-
totic nonbasis of order &, Do there exist minimal bases and maximal nonbases
of square-free numbers of orders i = 27
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