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INTRODOCTION

Let f(2) = Yo @=" be an entire function. Denote M(r) = max,... [f(z)l;
then the order p is defined thus;

nsup ERE = (0<p < ) M

If0 < p < oo, then the type v and the lower type w are defined as
A £ 0<w=r< ) @)

Mw inf "

Let =, denote the class of all real polynomials of degree at most m, and =, .
similarly denote the colleetion of all rational functions

Fu.alX) = %[T}j PET, ,JET,.
For convenience we use r, for r,, , , then let

J'wu..u ﬂ[f 1} e

p 3
'mm"’--“ fix) ® gl 0} @
Throughout our work we use & &5, & ,.-. to denote some positive constants
(which may be different on different occasions). T (¥) denotes the Chebyshev
polynomial of degree n. 8,(¢) denotes the sth partial sum of f(x).

- Recently it has been shown [14] that

lim(Ag,ofe"))1 " =371
In [7], it has been established that forallm = 2
Agn(e") = (12805,
135
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136 ERD{iE, NEWMAN, AND REDDY

which clearly shows that the order of magnitude of the error obtained by
rational functions of degree » in approximating ¢ on the positive real axis is
not better than the order of magnitude of the error obtained to e by reciprocals
of polynomials of degree n on the positive real axis. In [5], we have shown that
&1 can be approximated by general rational functions of degree n with an error
¢y exp{—ea #4%) on (— oo, 4-00), but by reciprocals of polynomials of degree »
one cannot approximate ¢ 1% on (—o0, +oo) with an error betteér than egnt,
thereby showing that the rational functions of degree # are much better than the
reciprocals of polynomials of degree » in approximating ¢~1%! on {—oo, +o0)
under the uniform norm. In [8] we have discussed | x | ¢-1#1, For related problems,
cf. [5, B-12].

In this paper we show for certain elass functions the érror obtained by rational
functions of degree # in approximating on [0, o) under the uniform norm is
much smaller than the error obtamed by reciprocals of polynomials of degree ».
Most of the methods developed in this paper are new and may he applied sue-
cessfully to many of the related problems.

LEmnras
Lesnia 1. [1, p. 10]. Let f(z) = E:_ﬂakz”. be an entire function of order p
{0 < p < o) and type+ (0 = r < «0). Then
v = lim sup nfpe)? | a, |*" {4)
Lunmaa 2 [15, p. 68]. Let P(x) be any polynomial of degree at most n and

satisfies | P{x)| == M on the sepment [a, b), then at any point outside the sepment
we have

[P < M| T, (Ba=R) )

b—a
Lemna 3 [6, pp. 450-451] O <h <1, and
o | r(0] < M,
then
min | r ()] = M exp

Jnin, (ﬁ)- (6)

Lomma 4 [3, pp. 65-66]. Let f(z) = & = ¥\, az*. Then

P [r."xp (%]] (2mke log K12 (log K)*, (7
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Levma 5. There exists a sequence {P,(x)}7, of polymomials of degree n for
which for all n = 2,

” = %{-‘ﬂ"a,[u,;l s {Bj
Proof. Choose # even and

gt A e 1ot

This is a polynomial, since T, [ —cos(m2x)) = 0. Tt is casy to see that O0) = 1,
so that

P(x) — i%!f"]' (10)

is-a polynomial.
Set 8 = cos(r/2n) — cos{n/n), then on [0, 1]

1l (400w
P - 1—0

14 {—1)" Tylx — cos(m/n))

d+x

= S T (=11 T x/5)) Tafx — cosemim)
14-¢
—dta %

wheret & [—1, 1], # £ [(}, 1] and so M is bounded by 2. Henee
1

ﬂ#,_ihﬁ—!-x—ﬁélﬁ;
i,
z
FEERpeS

Hence the lemma is completely established.

Lemma 6. Let P(x) be a polynomial of degree at most n and | P(x)] < 6 for
0 <x=0L; then '

| P(—1) = PLEEE AL by

Proof. Observe that for 0 =~ x = L,
(1 — fLPL = o=,
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Hence, we have on [0, L],
(1 — 2/LyPP(x)] < 1.
Henee by Lemma 2

1 2

| P{—~1)] < | (1 - r) Lp{__l]l < Tn+=L(l _I_%) o g

THEOREMS

Turorem 1, Let f(z) = T gas®, a3 >0, ap =0 (k = 1) be an entire
Junction of order p () < p < oo) type v and lower type w (0 < w << ¢ < o). Then
Jor all large n

Ay (Xl f(x)) = eyflog n)len 2, (1

Proof. Let 8,(x) denote the sth partial sum of f(x). Then
| e T L |
flx)  O%x) Slx)
(12}

el d e i b 1]

F(=) O*x) Q¥ L Salx) T

where O%(x) = (3w tlog ) 2eP(x(3e—L log )2}, P{x) is defined as in
Lemma 5. Let 0 < 2 < (log s)t/"{(3w~1)1/*; then by Lemma 5, we have

I i e5( 3wt log n)Hr
s = — ———— 13
o I*— o | gt i
On the other hand, for sufficiently large n, we get for x > (3w~ log m)*/*, along
with the definition of lower type and the fact that O%(x) = (22)7,

"_'L" — -1—. = patafl-a) 1/ p =B
flx) |m O*(x) | S 3x < oflog a)ien ", (14)
Similarly, we can show for 0 < & < (log #)(3w-1)4/%, along with Le -
and 3, that AL

,.__! e .,]_ - _._I..__ e z';._."?il s 1 1/ap-0 15
@ | 7~ 5 | < Tow S < ornirt. (9
On the other hand, for all large n we get for ¥ = (3w log 2)'/?, along with the
fuct that O*(x) = (2=},

i

. B |_J____ B I_J|f, 1 * 1
1O L) Sl | QM) T @) Salx)

= _2"_ -+ i

TSl S

< % (16)
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Henee, result (11),

" f{%} » ﬁ ”L,.Iu.m}

follows from (13)}-{16).

“Qg H}I fm

= e !

THeorEM 2. There is an entire function of order p (0 << p << o0) and type
v = a0 for which, for all large n,

Ao.n < e5(log m)rn—¥(log log m)~H/e, (amn

Proof. Letf(z) =1 + Teil(log R)/k)eatis (0 < p < o). Clearly f{z) is an
entire function of order p and type v = oo. We consider here for simplicity
p = 1 only. As earlier, we write

Mz 1 [
(%) Salx) ¢%(x)
1

| ! 1 1
ST T |+ (%) | @) 8() |
where
=g Meglogn o xloglegs
(%) = e log n ( o logm )‘ (18)
Plx) defined as in Lemma 5.
Now for 0 = & = ¢ (log n)(log log n)-t,
1 1 LEAY
T 2 — - | = ¢ga(log n){log log n) a2, (19)

On the other hand, for x = ¢, ((log n)/log log n), we get by using the relation
that
Fl) ~ exloss,
1 1 3x
X— =
Flx) I () | = flw)

Similuarly, we can show as in the case of Theorem 1 for x £ [0, ) that

< dxete OBt < 3, (20)

q*l(x} | ftlx:l = Sﬂl(z} | < exlog a)log log ). 1)

Hence, result (17) follows from (18)-(21).
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Treorem 3. Let f(z) = Ty omst, ay =0, @y =0 (k= 1) be an entire
Junction af order p (0 << p <2 co) typer (0 < v << o). Then for all largen

= (log mj/e(10n%(27) Vo) {![( log n ]l-fn :I'!_:])_l_ @)

Proof. Let us assume, on the contrary, that

Mom < (log n)to(10n%2) /7)1 [f(( ]D:f,l_” )l-'n H"‘)]_J}

and assume that [P, (x)] deviates least from 2f(x); then we get on
[{(2r)? log m)t/en = 8.n2, B,],

| S iy o 5o B e
@ T e — ol © o,

i.e.,
o | Pa()] < (1009) 3500, B = f(Br2). (23)
Now, by applying lemma 2 to (23), we get
| (0] < (10/9) 6,67 "8 < 9™, 8.7 (24)
On the otherhand, we have
Ao < | Pul0)]. (25)
Therefore, from (24) and (25) we get
Aa.n = (log m)Ho(2ry2e((On) 16T,
which contradiets our earlier assumption that
Ao << (100 Y((2r) " Jog myHiedy? .

Hence, the result is proved.

Taeorem 4. There i an entive function of arder p (0 << p << co) and type
T = 0 for which for all large n,

.0 = (100 (log n)log log log n)]*/(f(log n(log log mr4)-%.  (26)
Proof. Let

flza) =1+ i ¥k log byt (D<Ip < o)

-3
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This is an entire function of order p and type r — 0. We consider here only the

case p = |, and all the other values of p can be treated in the same way. As
earlier, let us assume, on the contrary, that (26) is false; then

Ao < (10a%)Y(log u)(log log m)(f[(log n){log log n)a—])2, (27)
for a sequence of values of n.
Let us suppose that [P {x)]? devintes least from x/f(x) on [0, 0o); then by
definition
x | 28
17 = P s <o G
From (28), we get over the interval
[(log n)(log log m)a = an~*, w,]
along with (27), by using the fact that
F(¥) ~ exp (-iu:_x) and  , = f((log n){log log mpn=),

1 X i 1y 11
P = Toy Ao = (o™ — a (10n7) )0

Qe !
= Saap
ie.,
i-.?y.-..l | Pu(=)l < (10/9) a'al'h,, . (29}

Now by applying lemma 2 over the interval [0, a,], we got

| Pal0)] << 9l - (30)
‘On the otherhand, it is known that
Ao = | Po(O)]. (31)
Equations (30) and (31) Aatly contradiet (27); hence (26) is established.

Tueorem 5. Let f(z) =3, 4525 @, >0, gy =0 (k = 1) be an entire
Sunction of infinite order. Then for infinitely many n,

N () S (B2 Lan o, @)
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Proof. By assumption, f(z) is entire; hence

lim | a, " = 0. (33)

Let t, = a,;"". Then t,, — co. Now it iz easy to note from the convergence of

[T (1 + {& log k(log log £)*}) (34)

W=l

that there exist arbitrarily larpe values of n for which for each { > 0,

o > o T] (1 + [A(n -+ A1), (35)

a=]
where
Afn) = # log nllog logw)®

From (35) it follows, with [ = n — 1, that

g > t(1 + 2(log n)Y{log log n)3), (36)
Let
En—1

Pyfx) = ) ap¥,

k=0
a; Ty, 4l + 8 — xB)
Tyna(1 + 8) '

£ (-ﬂ%)ﬂl B = (2+8) | a, [V (1 + (log )11,

Pyfx) =

2P{x) = Pylx) — Falz),

Now we consider the values of x [0, 88-1]. 1t is easy to see that
P(x) = [Py(%) — Polxlle™ = ey | @ V0871,
Henee, over [0, 881, &/ f(x) and 1/| P(x)| arc less than
eyllog nfin—= | ay 71", (37)

Now let

8B < x < (24 8B
For these values of x, it is easy to verify that

| Pyle)| < ay | Tull + 8! < 2 W8P — 25902,
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On the otherhand, we get from (34) and (35) for all & = 20 — 1,
a, < 551 + [2 log n(log log #3121 {38)
Therefore, we get over [8B-1, (2 - 8)B-Y], along with (38),

i ( l -+ (log n)2— ]

| fix) — Pyix)| = E_Zh = o= \T12 log nflog log n)f )

A simple caleulation gives us

| f(x) — Py(x)| = exp(—n{log n)=*).
Hence
x | —2 —1in
A — ey | < et e, (39)
Finally we consider
(2-+3B1 < <o

On this interval
Py(x) 2 apx" = (1 A (log n)t==)"
= exp ({—]é-i:ﬁﬂ-;} >,
Py(x) < 0, since 2n — 1 is odd. Therefore x/f{x) and 1/| P(x)| are bounded by
ey | &, [N, (40)
Result (32) follows from (37). (39), and (40).
Remark. For f(z) = ¥y, @z® = exple?),

Aun (fgﬁ-] < eyy(log log njn=, (1)

The proof of (41) is somewhat similar to the proof of Theorem 1 (except for the
fact that here we use Lemma 4}, that

n ’ ;
iy [ﬂcp (m}] (2mn log n)~2%{log n)—.
The rest of the details are left to the reader.
Taeorem 6. Let f(z) =35 qas®, a, =0, ay =0 (k= 1) be an entire

Sunction of order p (0 < p =< o) dype v (0 < v == o0). Then for all large n and
everpalll <a= ),

honl=U)) = ewflog m)Pn—e. (42)
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The proof of this theorem is very similar to the proof of Theorem 2; hence the
details are omitted,

TueoreM 7. Let f(z) =i o™ ay =0, ay =0 (k= 1) be an entire
Sunction of order p (3 = p = o2) type v and lower type w (0 < & =< + < o0). Then
for all large n,

x

T~ T et

Proof. Set Pyx) = Ei_q @t

ayTy(l + 8 — xB)
T.0 L5 ! it odd,

4 (45;]  xP(x) = P(x) — Pyfx).

= exp(—egn'?), (43)

Pulx) =

For x€[l, (2 4 8)&1],

| Py(x)] << @ | Tl 4 8)L < 2age-tninet
< 2ay exp(—(n-14a){dprt ),

and

— P = ¥ ko < Pf‘-'_‘“ -+ EJEET.,E!T“: Kfo

fO-P@I< ¥ as< 5 (2 L )
< Y (M) < (3.
b1

Hence

e — _P;T} | < exp(—au-itt) (44)

On [(2 + 8§, )
Py(x) > Py(57(2 + 8)) = 471(267)

il 2o 3] — ) ,
and Plx) < 0.
Similarly, we can show that on [§-Y2 - 8), o)

fl[.x} = expl— '), (45)

The required result (43) follows from (44), (44°), and (45).
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Tueorem 8. Let f(z) =i @z a3 =0, a, =0 (k = 1) be an entire
Sfunctionof order p (0 = p << ) type v and lower typea (0 < w = v < o), Then
for all large n,

o lpn <= babmm)) @

Proof, Letd = ntlogn, nodd,
; Tl 4 & — x8)
= % N — o Tull + 8 — x8)
Pylx) E{. axt. P —a, =
As usual, on [1, (2 + 8)87],
| By#)] < ay | Tall + ) < 20,10

<= Mﬁ—[nlunh”'_
On the other hand,

|f) =Bl < ¥ awt

Eomming-1

< 3 fper(l + ) kmeellog nype

KL
= egsflog m)n.
Therefore on [1, 842 4 &)1, we get

&

i #{x} = expl—cag(n log m)/%). (47)
On [(2 -+ 8)5%, o)

Py(x) = Py((2 + 8)81) = Py(267) = M_‘f n)™)

> exp (2 (o) @l —9),

logn

Py(x) < 0, and hence on [(2 4 &5, oo), 1/P{x) and x/f{x) are bounded by

o (e () @

The required result (46) follows from (47) and (48).
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Tueorem 9. Let f(2) = ¢, Then for all large n,
" ﬁ‘;T = P—n}m] ||!. b = exp(—a(log n)~*), (49)

Proof. f(s) = e = XL qax",

P} = Tant By Tl 8 ) 2.
{‘j Eﬁ dl"‘.xk {#} Tﬂ{l + a'} o

3P(x) = Py(x) — Pola), 8= (24 8 [log (‘I;;a'g ﬁ)]_l‘

Then for x[1, (2 + &5,

-y )

| Pya)] < & | Tofl + B)* < 20 — gy exp (. Tlog(n/(log )]s

and by uding Lemma 4, we get

e — P < Y ],1;1“* i (m] (log ,,}_lr

R=aniA-1

< 3 [0+ 200gnyy (1 — 2RE B2

il log n
< 4 log log n \*
= 1 — g
k_g!:ﬂ ( (log n)? )

< &gy exp(—n(log n)~).
Hence
1

X —n
" flx) P Lh.ma:rrj < &P ( (log n? ) ()
On the otherhand, for
re[(2 4 8)5, w),
Py(x) = Py((2 + 8)872) = 471 exp(e!*9)
= e 5P (g 77 ) (51)

Pyx) < 0 and
#[f (%) = ey expln(log n)~%). (32)

Hence the required result follows from (50), (51), and (52).
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Tusoresm 10. Let fz) =Y sas® a3 = 0,8, =0 (k= 1), and f(—1) =
¢ = 0 be an entire function of order p (1 < p < o) type v (0 < = << 00). Then
Sor every polymomial F,(x) of degree n and all large n, there exist positive constants
€5y ind ¢y for which

il A = SRR Eyes
1760~ B b = WA OB
Progf. Let us assume that
1+ 1 | =
|5 = Py o = s B (54)

From (54) along with the assumption that f(2) is an entire function of order p
{1l =< p < oo)and type v {0 = = < o), we get

£ oy exp(—egn'~1) (55)

e+ ) P~ 3 et

L Jo.nte -8

Now by applying Lemma 2 to (55) over the interval [—1, a7 =797 we get
it = —1],

[ (1) = eu exp(—ecoyn=1/%),
which obviously is false for all large #; hence (53) is proved.

Turones 11. Let f(2) = Ty a5 ay = 0,8, 2 0(k = 1), and s,(—1) =
¢ = 0 be an entire function of erder p (1 = p << o). Then for every polynomial
P (x) of degree n, we have for all large n

||M

1
A IR "-L.,;Iﬂ 2l N B

The proof of this theorem is very similar to the proof of Theorem 10; hence the
details are omitted.

Turorem 12. Let f(2) = T a8®, ap =0, ay =0 (k= 1) be an entire
Sunction of order p (0 < p < 1/5) and type (0 = + << @), Then for all large n

i () = e expl—cantom. (36)

Proof,  Let us assume (56) is false. Then for a sequence of values of »,

Agm << Egp EXPl—egnt ),
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In other words, there exists a sequence of polynomials P («) for which

"I-l—.x

I
fl=) Px) "L,[u WliE-1ie] < gy exp(—eynt 03 (57)

From (57), we get
(1 + %) Puls) — F(0)]g Lo nrierrimy < 6y exp(—eggn %) (58)

As earlier, we get from (58), by using the assumption that f(z) is an entire
function of order p (0 << p << 1/5) and type « (0 <<+ < o) for 0= & = pl/2e 18

(L + %) Py(x) — }, ap® | £ g exp(—ey 20Ty, (59)
==t}
Now applying Lemma 2 to (539) we getat ¢ = —1,
| Su(—1)] < eaexp(—egnd®-=/2),

which is false; hence (56) is established.

Turorem 13. Let f(2) = Yigala®, a, = 0,0, = 0(k = 1), and S, (—1) =
¢ = 0 be an entive function of order p (0 < p << 1/5). Then every e = 0, satisfying
the further assungption that p e < 1, there eaast infinitely meany n for which

x4 1
R“'“( flx)

) = coa exp(—cantit-cton), (60)

The proof of this theorem is very similar to the proof of Theorem 12 and henee
is omitted,

Trrorem 14, Let f(2) = ¢ = Yo o @z Then for every polynomial P,(x)
of depree at most n, we have for all large n

] 4% | || . — Mgy
=T e- ). 6l
%@ ™ e ) W
Proof, Let us assume
1 + x 1 — Mgy
- = Cgg exp |[—=—|- {62)
u " F(x) uf.m[mt""lugwi 2 ({1133 njt®

From (62), we get

€1+ %) Pu(s) = @ legtoionn) < e P (o) (63)
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A simple manipulation based on (63) gives us, along with Lemma 4, for 0 < x =<
I llogn,

(1 ANk B
h{i + x)P(x) ?:n a " S £y EXP ( (Tog A)\7E ) (64)
Now by applying Lemma 2 to (64) over the interval [—1, log #/2], we get
. gl S
| 81 < cu exp (s, (65)

(65) is obviously false, hence the result is proved.,

Remark, The method adopted in proving Theorem 2 of [2] may also be used
to prove (61).

THeorREM 15, Let f(z) = & = ¥._, as*. Then for all large n,

14 v
Ay (H—xj) = exp(—12n{log log n)). (66)

Proof.  Let us assume (66) is false. Then there must exist an infinite sequence
of natural numbers # for which

A, == exp{—12n(log log n)-1). (67)
In other words, there is a sequence of rational functions {r,,(x)} for which

H %x_ = ul®) "L.,.:u ., < exp(—12n(log log )). (68)

Let g(x) = (1 + x)~* exp(e®).
x=(1+1t)logn, —1<t=<1, O0=<x<2logn
Now set ¢ = —k, & — (log log log a){log n)~!, Then at

x=u = (1 — k) logn,

- gt 3 n
) = T e < = iesr)
It is easy to verify that
1 "
s Talx) I <l ( log log +log n)' (70)

oy /zg/2-2
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If (70) were not true, then

67| = explatiog log m)? - tog ) (1)

max
[0,z ]

Let us agsume that the maximum iz attained in (71) at ¥ = x,: then from (59}
and {71}, we get at ¥ = 2, , by noting the fact that g(a) < g{ay),

exp (i) = exp — exp (_—ﬂ — log n)

b e
log logn log logn log log n

e
Sy Tk 2

Equation (72) clearly contradicts (68); hence (70) is valid. Now set # = &; then
=11+ &) logn and

log |
##) = exp(2 4 > exp (BN ), (73)

But according to Lemma 3, we have

ﬁﬁ“xp[ﬂg;l?Jf% T g 1k ].fk) (74)

min
[y, 2 Togn]
Let us suppose for xy e [xy , 2 log a], that [r,(x)]-" attaing minimum value. If
[ra{*)]-* a=sumes minimum value at more than one point (which is very unlikely),
then we pick the one which is closest to 2 log #, Now we get from (73) and (74)

win
ral%) — g{x i ( log 1 ]ng EsR Sas log((log n){log log n) )

) —n log log n )
— exp 2

= exp(—12(log log n) ).

This contradicts (68); hence the theorem is proved.

Taeorem 16. Let f(z) = S ot ay =0, a, =0 (k = 1) be an entire
Junction of order p (0 < p < o) type 7 and lower type o (0 < o = 7 << o). Then
Jor all large n, there ts an o (0 < a << 1), such that

Al 1 () < o (75)
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Praof. For 0 = x < (n){per - p))/*, along with Lemma 1, we have for all
large n,

T S % L e

k=n+1

x

et s

3 = per(l + ejn (&0
= e
. g X R‘%ﬂ- ( §|:P1'P+ _pt.ul} )

<ot O<u<1) (76)

On the otherhand, for & = (n{pre + pe)214%, along with (2), we get for all
large n

fims : (e -+ puy )
O S a R S T,a S T, alnlere + e

- (n(pre + pu)-Tye
<4 (Falore Ty )

=" (0 <a<l) (77)
Equation (75) follows from (76) and (77).
Tarorem 17. Let f(2) = ¥ @2, g, >0, a, =0 (k = 1) be an entire

Sunction of order p (0 <= p < o) type = and lower Wype w (0 < w =< + = o).
Then for all larpe n, thereis a f (0 < B < 1) such that

Yo () <P (78)

The proof of (78) 1s very similar to the proof of Theoremn 16; hence the details
are omitted,

Tueorem 18, Let f{2) = T, @2t ay =0, @ = 0 (k = 1) be an entire
Junctionof order p (0 =< p << o0) tvpe + and lower tvpe w (0 < w = r == o). Then
for all large n, there is a cgy = 1, such that

Aual¥l f(x)) = ca'. (79)

If fiz) satisfies the assumptions of Theovem 18, thea woith the help of Lenona 3, we
have established in [12], for a £ = 1,

AalLLf()) = €70 (79')

The proof of (79) is very similar to (79'); hence we omit the detals here.
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Turorem 19 Let f{2) = e Then

lim (R, (1 -+ A)e=) e = 1. (80)

Progf.  First we get a lower bound. Now suppose foran ¢ = 0,

I i . i .
| P(x) e "L,Ju,m} < exp(—(1 -+ )(2n)**). (81)
Hence it must be obvicusly true even for [0, (2n)2¥]. Thus on this interval

1 i+« 1

> ;,, — exp(—(1 + 2P > (x + 12 = 5. (82)
Hence
€% — (1 + ) P)] < 2 exp(2x — (1 4 €)(2n)*3). (83)
Set
" L xk "
Eﬂ{x} = HET:U ? ]
then we abtain on [0, (2n)*4],
|| Suf) — (1 + %) P(a)] < 3¢ exp(—(1 + )2n)*). e

Now by using Lemma 6 to (534), we get
b < | So(—1)] < Jexp((2n)*® + 42a)'7 — (1 + )(20)*7),  (85)
which is false for each € = 0 and all large #. Hence for all large n,
dauol(1 + ¥)e7) = exp(—(1 + €)(2nP7). (86)

MNow we get an upper bound, Let us assume # odd and set

2
E(.'C) == Tﬂ (W_ 1),,
B.(%) - ct{x)
=0

We choose ¢ such that P(x) is a polynomial,

. Su{" | }
o Ty(1 + 2/(2n)*5)

£

re exp(—1 — (20)¥7).



RATIONAL APPROXIMATION, II 153
Therefore, we have

(a+= |
Il

” Px) & =i o

=+ 1| es{an{chsmh G+ )
(87

For 0 =< x = (203,

L1 &t — S.(x) €
"_P—U&i-—THg{x-l-l} 7E) Ty =% (89

For x = (20)*3,

I | x + | e — S, (x) ﬁ
|7 — | <0 {Fm+)
< EF) < oo, (89)
Hence the result
_l e =4 23 /3
o = |, S SR — P (90)

follows from (88) and (89). Our result (80) follows from (86) and (90).

Tusorem 20. Let f(2) = T a2®, g, =0, ap =0 (k = 1) be an entire
Juniction of zero order satisfying the further assumptions that

l = 1iIE sup Eg log M(r)

0 < lim *P log M{r) =

b L e @)

Then there exists a sequence of polynomials (O, (x)}5_, for whick for all large n,
=] < explanllogmpan —210gm). (92)
fl:xj Qn{#} UL}

Proof. As earlier, for 0 <= » << oo,

lrr s

1 1 1 I 1
<l —Ferml e —swlee @
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Let 0 = x = exp(de! log n)t/44; then by Lemma 5, we have

_ explegs hog njt/at

o

I~ rwrw | < vl el <%

(94)
For all sufficiently large n and & > exp(dw log )1 we oot by using (91)
and the fact that {P («)}~! < 2x,

ﬁ " i ﬁ || = exp(—(log £} (1 — o))

AL
< exp (_ WJ < wb, (95)

Similarly we can show very easily by using the known fact [13, p. 499] that

. oy e (A4 1y
Eﬂ]:, sup [log [1ja, & i A4

1 1 1
R NIRRT ”L_,ru.ﬂ, < explealloga)’o — 2logn). (96)

Hence the result (92) follows from (94), (95) and (96).
Taeorem 21. Let f{z) = Ty, aus®, ay =0, ap =0 (k = 1) be an entire

Sunction satisfying the assumptions of Theorem 20. Then for every polynomial
O.(x) of degree n, and all large n,

= 1 logs LAk g
|75~ o .Lm,.,,} = (167 exp ((FF) " — 31ogn) = -
Progf. Let us aszsume, on the contrary, that i
1
75— 0 oo < T %)
Then for
exp (( lofr" )1M+1 o “) e (( h}z‘gj )1:A+1) —
we get from (98) for all large n,
1 y n d (.
Ol i B e (g
Le.,
| Oule)] =< 20%h(n)]. (99}

max
In2utnd, wind]
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By applying Lemma 2 to (99) we obtain

| Qu(0)] < 15T = 150 exp (—(“2£2)"). (100)
On the otherhand, we have by (98)
160 exp (—(~22)7) < | 0,001 (101)

Clearly (100) and (101} contradict (98); hence (97) is valid.

Tueoren 22, Let f(2) satisfy the awsumptions of Theorem 20, Then theve
exist a sequence of rational functions r,(x) of degree at most n for which for all large n,

" % 0 ||I-m1'ﬂ.uni < exp{—cent 1), (102)

Proof. Choose
Tal¥) = x/Sy(x),

where 5,(x) as usual denotes the sth partial sum of f{x). Then by adopting the
proof used in [13, Theorem 7'], we get the required result (102).

ConcLuping ReMarks
It is interesting to note that

Han [y e} 1B108" — ¢t — Bim(d, (1 + w)e=)rem™e,
From a comparison of Theorems 3 and 16, it is obvious that rational functions of
degree » approximate certain functions much better then reciprocals of poly-
nommials of degree o, Similarly, Theorems 10 and 17 give us the same information.
By comparing Theorems 9 and 15, one easily notes that for f{z) = exp(e),
there is little difference between the errors obtained by rational functions and the
errots obtained by reciprocals of pelynomials.

One cansee very easily from Theorems 20,21, and 22 that one can approximate
certain class functions better by rational functions than by reciprocals of poly-
nomials on [0, o).
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