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Abstract

For positive integers n and k, with n>-2k, let (k) = uv, where each prime factor of u is less

than k, and each prime factor of v is at least equal to k. It is shown that u < v holds with just

12 exceptions, which are determined . If (k) = UV, where each prime factor of U is at most

equal to k, and each prime factor of V is greater than k, then U< V holds with at most finitely
many exceptions, 19 of which are determined . It is conjectured that there are no others .

Subject classification (Amer . Math. Soc . (MOS) 1970) : 10A05, 10A25 .

1. Introduction
In this paper our basic concern is with the product of the small prime factors in
runs of consecutive integers . Let us fix a positive integer k and examine runs of
consecutive integers having no prime factor greater than k . Such runs cannot be
very long (see Ecklund and Eggleton (1972)). Indeed, a theorem of Stormer (1897)
shows there are only finitely many pairs of consecutive integers with no prime
factor greater than k . Moreover, it was proved independently by Sylvester (1892)
and Schur (1929) that any run of k consecutive integers, each larger than k,
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contains at least one multiple of a prime greater than k . This may be expressed as
follows :

THEOREM (Sylvester-Schur) . For positive integers n and k, with n > 2k, the binomial

coefficient (k) has a prime factor greater than k .

An elementary proof of the theorem in this form was given by Erdős (1934) and
a proof of a stronger theorem, also essentially due to Erdős, appears in Ecklund
and Eggleton (1972) .
By a theorem of Mahler (1961), for any given real a > 0 and positive integer k,

the largest divisor of
(nk

consisting eritülely of primes not exceeding k is less than
nl+E, provided n is sufficiently large . Note also that the largest power of 2 dividing
n2 cannot exceed 2n . Thus with Mahler's Theorem we deduce the following

result, which contains more quantitative information than the Sylvester-Schur
Theorem, though it lacks an effective bound on k .

THEOREM . For positive integers n and k, let (k = UV, where the prime factors of

U do not exceed k and the prime factors of V are all greater than k. Then U< V
provided n is sufficiently large compared with k .

Of course U and V depend on n and k in this theorem, but it is convenient not to
make this explicit in the notation .

When discussing the prime factors of runs of k consecutive integers, it is in fact
natural to distinguish between primes which could possibly divide two or more
members of the run, and those which are larger so can divide at most one member
of the run : in other words, to distinguish primes strictly less than k from those at
least as large as k . In this paper our main theme is the proof of the following fact .

THEOREM . For positive integers n and k, with n >, 2k, let (k) = uv, where the prime

,factors of u are all less than k and the prime factors of v are all at least as large as k.
Then u > v holds in just 12 cases, namely

(3
8)' (49)' (150)

'
(l2
5 )' ( 71 )' ( 81 )' (370)'

(33
13)'

(33
14)'

(36
13)' (3617),

	

(56
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Using the notation (k = UV, as in the earlier theorem, we shall show as a

corollary to part of the proof of the above theorem that there are only finitely
many cases with n > 2k for which U> V. Seven cases where this occurs, in addition
to the 12 with u > v, are the following :

1,3,' ( 13 )'

	

3 (18), ( 5
8)'

	

7 (54),

	

3 )'
(1
3
62) .

(

	

(514)In addition, we note that
3

is a near miss, with V U< 1 .06.) However,

Mahler's Theorem does not give an effective upper bound on the solutions, and
we are unable to prove completeness of our list for cases with k = 3, 5, 7, though
it is complete for all other values of k . We strongly conjecture that the list is also
complete for these three problematic values of k .

2. Plan of attack

For convenience, we shall frequently replace n by ck, where c > 2 is a rational

variable such that ck is always an integer . We wish to show that if (k ) = UV,

where the product separates prime factors less than k from those greater than or
equal to k, then u> v holds in only 12 cases . To do this we divide the problem into
five distinct parts, represented in Diagram 1 .

In Region I, where k and c are both large, we show that
(k)

> u2 by comparing

the binomial coefficient with the square of a simple overestimate for the product of
its small prime factors . In Region II, where k is large and c is small, we show that

k/ < v2 by comparing the binomial coefficient with the square of an under-

estimate for the product of its large prime factors . In Region Ill, where k is small
and c is large, we need to make a careful overestimate of u and compare it with the
corresponding underestimate of v, showing that c is large enough for v to dominate .
In Region IV, where k and c are both relatively small, all cases are directly examined
by computer. This checking is carried out for each k in the range 1 S k S 494 . For
certain k S 24 it turns out that the lower bound on c (which we calculate to ensure
that u < v) lies above the top of the search range for Region IV, obtained by extrapo-
lation of the lower bound used for Region 111 . Region V comprises these remaining
cases, which we finally eliminate by more sensitive systematic estimates of the size
of u. In fact, to get the upper bound for Region V in three cases, we reduce the
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possible instances to occurrences of special configurations of numbers with no
large prime factors, and use the tabulation due to Lehmer (1964) to locate and
examine all such configurations .

2635

1946

c

2-

Region V

	

Region III

c = 4 .68+2630/k

c = 6 .07+ 1940/k

Region IV

	

Region II

25

	

175

	

494

	

649

Region I

c = 11 .53

o. k

DIAGRAM 1 . The regions for the various arguments used in the proof .

3. Region I : k and c both large

A basic estimate, given in Erdős (1934) and Erdős and Graham (1976), shows

that ifp" is a divisor of (n , then pa 5 n . Hence

(1)

	

)

	

u~nn(k-1)

where 2r(x) denotes the number of primes not exceeding x . By a result of Rosser
and Schoenfeld (1975), we have

(2)

	

7r(x) < (1
+ 21ogx) log x

for x > 1 .

Thus, if we anticipate the bound on k for Region I and take k > 649 and n = ck,
it follows that

(3)

	

log u < 1 .23165k log ck/log k .
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To get a suitable bound on the binomial coefficient (k), we use Stirling's

formula,

(4)

	

n! _ ~(27rn)(é)nes/12n for n, 1,

where 8 is a real number depending on n, and satisfying 0 < 5 < 1 . With k, 649
and c, 11 .53, it follows from (4) that

(5)

	

klog (k) > c log c- (c-1) log (c-1) - 0.00641 .

The desired inequality is u < v, which is equivalent to

(6)

	

(k ) > u2 .

By (3) and (5), this certainly holds if

(7)

	

clogs-(c-1)log(c-1)-0.00641>2.46330(l+logs/logk) .

A routine calculation with k, 649 verifies that (7) holds for c, 11 .53, so it follows
that u < v (and indeed U< V) holds in the region determined by these bounds on
k and c. (Of course, we arrived at these particular bounds on k and c for Region I
by successive approximation, with an eye to the bounds forced on us by our
methods for dealing with Regions 11 and 111 . If we reduced the bound on c in
Region I, it would be at the expense of increasing the bound on k.)

4. Region H : k large, c small

(kWith

	

) = uv, the definition of v ensures that it is divisible by every prime

between (c-1) k and ck, for any c, 2 . Indeed, for any positive integer r < c, we
see that v must be divisible by each prime which is between (c-1) k/r and ck/r
and which is at least as large as k. Let Pr denote the product of the set of primes p
satisfying (c -1) k/r < p < ck/r andp,>- k, for any positive integer r<- c. Then we have

(8)

	

v, 11 Pr .
r-<c

A recent result of Schoenfeld, reported in a footnote added in proof in Schoenfeld
(1976), gives a sharp upper bound on O(x), which is the sum of the logarithms of
all primes not exceeding x. This bound is

(9)

	

B(x) _

	

loge < 1 .000081x for x, 1 .
p-<x

In order to estimate the product Pr we also need lower bounds on B(x) for values
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of x up to about 104 . Write
(10)

	

B(x)

	

logP >' ax .
P<_x

A short table of values of a, and associated lower bounds on x, is given by Rosser
and Schoenfeld (1962) and supplemented in Rosser and Schoenfeld (1975), where
the bound
(11)

	

O(x)>-0.990x for x >- 32057

is given . The best value of a available, when a lower bound on x is given, can be
deduced from these bounds of Rosser and Schoenfeld in conjunction with the
tabulations of Appel and Rosser (1961) . However, since the latter are relatively
inaccessible, we present a table of values of a when the lower bound on x lies in
the interval up to 32057 (see Table 1) . This table is based on direct computation

TABLE 1

Values of xo and successive infima for a such that 8(x) 3 ax for all real x > xo

xa a xo a x o a x o a

2 0.231 593 0.9291 5381 0.97526 14387 0.98551
3 0.358 599 0.9367 5387 0.97577 14401 0.98576
5 0.485 601 0.9380 5393 0.97628 14407 0.98578
7 0.486 607 0.9383 5399 0.97642 14533 0.98608

11 0.595 809 0.9409 5407 0.97693 19373 0.98628
13 0.606 821 0.9449 5413 0.97749 19379 0.98669
17 0.662 853 0.9455 5639 0.97869 19381 0.9868973
29 0.703 1423 0.9480 5641 0.97886 19387 0.9868979
37 0.722 1427 0.9517 7451 0.97903 19417 0.98720
41 0.761 1429 0.9541 7477 0.97970 19421 0.98760
59 0.792 1433 0.9550 7481 0.98011 19423 0.98791
67 0.807 1447 0.9573 7487 0.98092 19427 0.98821
71 0.816 1451 0.9576 7499 0.98094 19681 0.9884167
97 0.828 1481 0.9600 7517 0.98110 19687 0.9884169
101 0.843 1973 0.9609 8597 0.98129 19697 0.98862
127 0.8499 1987 0.9618 8623 0.98189 19913 0.98872
149 0.8694 1993 0.9629 8627 0.98199 19961 0.98878
163 0.8695 2237 0.9632 8663 0.98228 20873 0.98897
223 0.8780 2657 0.9654 11777 0.98291 20879 0.989074
227 0.8940 2659 0.9669 11779 0.98337 20887 0.989077
229 0.8980 3299 0.9688 11783 0.98346 20897 0.989080
347 0.9096 3301 0.96952 11801 0.98376 21481 0.989268
349 0.9130 3307 0.96962 11807 0.98405 21487 0.989548
367 0.9134 3449 0.96973 11813 0.98418 21491 0.989835
419 0.9160 3457 0.97097 11821 0.98420 31957 0.989845
431 0.9194 3461 0.97107 11897 0.98441 32051 0.989984
557 0.9208 3511 0.97130 11923 0.98487 32057 0.990
563 0.9222 3527 0.97306 11927 0.98500
569 0.9264 3529 0.97427 12097 0.98509
587 0.9278 3533 0.97475 12373 0.98513
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of B(x)/x for the primes up to 32057, and uses (11) to cover the region beyond this
point .

Recall that the desired inequality is u < v, which is equivalent to

(12)

	

(k) < v2 .

From (4) we have

(13)

	

klog(k)<clogc-(c-1)log(c-1) fort>l .

Now, using (8) and (13), if m < c < m + 1 for some integer m >, 2, the inequality (12)
is certainly satisfied if

(14)

	

2(log(m+1)-mlogm+
(3m I 1 <', a(r)

m+1

	

m+1r r

	

r '<'

	

m

where = 1 .000081 comes from (9), and a(r) is the value of a in (10) which holds
for x > mk/r. By successive approximation using Table 1, we obtain a lower bound
on the value of k for which (12) certainly holds when m < c < m+ 1 . This infor-
mation, for 2 < m S 11, is given in Table 2 . The left boundary of Region 11 is
determined by this data (see Diagram 1) . Thus (12) is established over a range
of c which reaches (and overlaps) the range covered by Region 1 . The method
clearly establishes U< V at the same time.

TABLE 2
Values of m and ko(m) such that inequality (14) is satisfied if k > ko(m)

5. Region III : k small, c large

By expressing
(nk

in the form uv = n(n-1) . . . (n-k+ 1)/k! a good overestimate

for u can be obtained as follows. For any prime p < k, let A(p) be the maximum
exponent of the powers of p occurring as factors of any of the integers
n,n-1, . . .,n-k+l . Thus

A(p)=max{µ(a) :p,"(x)lla, n>,a>n-

M ko(m) m ko(m)

175 7 398
3 153 8 433
4 206 9 494
5 278 10 571
6 300 11 649
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Also let ap be the corresponding largest multiple of pA (p ) , that is,

(16)

	

ap = max{a : p~1(p ) l a, n>,a>n-k}.

We consider the set of these multiples of maximum powers of small primes,

(17)

	

S(n, k) _ {ap : p < k},

where the cardinality of S(n, k) is at most 7r(k-1), and may be less since it is
possible that ap = aq occurs for distinct primes p, q .

For any prime p < k, we define the intrinsic exponent K(p, n, k) ofp in the product
n(n-1) . . . (n-k+ 1) to be the maximum exponent K for which pK is a factor of
n(n-1) . . . (n-k+ 1)/ap . Note that if n-ap >i>n-k-ap and i 0, then plllap +i
implies pw ll i, since no i can contain p to a higher power than A(p) . Thus K(p, n, k)
is equal to the maximum exponent for which pK divides the product

(n-ap)!(ap-n+k-1)! and this product divides (k-1)! since
(
k-1 ) is an
n-ap

integer . Now letP(n, k) denote the intrinsic part of the product n(n-1) . . . (n -k+ 1),
defined by

(18)

	

P(n, k) _ 11 pK(p>n,k) .

p<k

Then we have just shown that

(19)

	

P(n,k)l (k-1)!

If k is composite, all prime factors of k! are less than k, so u<P(n,k)II(S)lk!,
where H(S) is the product of the integers in S(n, k) . Taking the largest possible
elements for S(n, k), and the greatest possible number, and using (19) to provide
the bound P(n, k) < (k-1) !, we get

(20)

	

a<n(n-1) . . . (n-qr+l)/k forkcomposite,

where w = rr(k-1) . Similarly, if k is prime, the product of prime factors of k!
which are less than k is (k-1)!, and the corresponding estimates lead to

(20')

	

u<n(n-1) . . . (n-,7r+l) for k prime,

where 7r = rr(k-1) as before .
It is now clear from (20) and (20') that the desired inequality u < v follows if

(21)

	

(k-1)!n(n-1) . . .(n-rr+1)<k(n-qr)(n-7r-1) . . . (n-k+1)

for k composite,
and if

(21') k!n(n-1) . . . (n-7r+1)<(n-rr)(n-rr-1) . . .(n-k+l) forkprime .
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If k > 27r(k-1), the left members of (21) and (21 ') are of lower degree in n than
the right members : this actually holds for all k except k = 4, 6 and 8. So for each k,
apart from these three exceptions, we can determine the smallest value of n = ck
such that the corresponding one of (21) and (21') holds. To deal with cases not
covered in Regions I and II, we computed this smallest n for k < 649, and for
simplicity determined the following linear bound from our data, so (21) and (21')
hold if

(22)

	

n = ck > 6 .07k + 1940 for 25 < k < 649 .

This determines the boundary of Region III . For k < 25, the corresponding lower
bounds are given in Table 3 . Apart from the three cases in which the method does
not apply, it is evident that (22) is actually a justified bound except when k = 7, 9,
14, 18, 19, 20, 21 and 24 .

TABLE 3

Values of k and n l (k) such that inequalities (21) and (21') are satisfied if n->n,(k)

As indicated in the Introduction, we are also interested in determining all

instances of
(nk

with n > 2k for which U> V. When k is composite, these are just

the instances for which u > v . When k is prime, (20') is replaced by

(20")

	

U< n(n-1) . . . (n-7r)/k for k prime,

where 7r = 7r(k-1) as before . We can ensure that U< V by requiring

(21")

	

(k-1)!n(n-1) . . . (n-w) < k(n -7r- 1) . . . (n-k+l) forkprime .

The linear bound

(22')

	

n = ck > 4 .68k + 2630 for 25 < k < 649

corresponds to the bound (22), and ensures that (21 ") holds. The left member of
(21 ") is of lower degree in n than the right member for every prime k > 7 . So apart
from k = 3, 5 and 7 (where our methods do not yield an explicit bound), the lower
bounds on n for validity of (21 ") for odd prime k < 23 are given in Table 4.

k n, (k) k n 1(k) k n 1 (k)

2 3 10 207 18 2137
3 9 11 356 19 2639
4 - 12 1847 20 8865
5 128 13 1860 21 2618
6 14 21121 22 1180
7 5055 15 1823 23 1620
8 - 16 557 24 3236
9 4504 17 835 25 1615
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TABLE 4
Values of k and n 2 (k) such that inequality (21")

is satisfied if n >_ n 2 (k)

6. Region IV : k and c both small
To investigate the Region IV, where k > 1 is subject to the upper bounds in

Table 2, and c > 2 is subject to the upper bound (22), a simple computer-assisted
search was carried out . In practice, for c we used the bound (22'), so that instances
for which U> V holds were also determined . All the instances listed in the Intro-

duction were found this way . (Indeed, the near miss (5314) is the only other instance

in the region with V/U< 1 .1) .

7. Region V : k 5 24, c large

Here we sharpen the techniques applied to Region III . The intrinsic part P(n, k)
of the product n(n-1) . . . (n-k+ 1) was defined in (18) . We now also define the
extrinsic part Q(n, k) of this product, by

(23)

	

Q(n, k) = H(S)/ rl pA(p) ,
p<k

where 11 (S) is the product of all the integers in S(n, k), given in (17) . Thus Q(n, k)
is the product of prime factors greater than or equal to k in the numbers ap .
With 7r = 7r(k-1), we can now write

(24)

	

u\ n(n-1) . . . (n - 7T + 1) P(n, k) for k composite,
k!

	

Q(n, k)

and k times this bound for k prime. Since (k = uv, the desired inequality u < v

certainly holds if

(25)

	

n(n-1) . . .(n-7r+1)<(n-~r)(n-~r-1) . . .(n-k+1) •R(n,k),

k n 2 (k) k n 2 (k)

3 13 36846325
5 17 10748
7 19 69626

11 329926 23 8702



where

(26)
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k! (Q(n,k
/2

	

for k composite,
P(n, k)

k-1)! (Q(n, k2 for k prime .
k

	

P(n, k
»

We use (25) to deal with the troublesome cases
(k)

= uv with k = 4, 6 and 8 . To

illustrate the method, the case k = 8 will now be discussed briefly .
Using the notation introduced in (17), if I S(n, 8) I < 3 it is easy to verify that

u < v must hold if n > 36 . So now suppose I S(n, 8) 1 = 4. If P(n, 8) 2 < 8!, it follows
from (19) that P(n, 8) < 180, and then R(n, 8) > 56/45, using (26) . In this case, (25)
holds if n >, 77 . For larger P(n, 8) we still have P(n, 8) < 7 ! by (19), so if Q(n, 8) >, 29
then R(n, 8) > 841/630 > 56/45, so (25) certainly holds if n > 77 . It remains to check
the cases with Q(n, 8) < 29 . By (23), the only possibilities are

Q(n, 8) E{I, 11, 13, 17, 19, 23} .

Moreover, the direct search reported in the previous section was carried out up to
n = 2667 for k = 8, according to (22') . Thus it remains to locate all those runs of
k = 8 consecutive integers, with largest member n >, 2668, which contain three
numbers having no prime factor greater than 7, and a fourth with at most one
prime factor (counting multiplicity) greater than 7, but none greater than 23 .
Either the first three contain a pair of the form a, a + d with d = 1, 2 or 4, or else
the first three are of the form a, a+3, a+6, in which case the fourth is necessarily
adjacent to one of them . All occurrences of such configurations can be deduced
from the tables in Lehmer (1964), by first locating all possible pairs described .
Each potential configuration is easily tested and rejected, so no further instances of
u > v with k = 8 exist .

The other cases to be checked for u > v are k = 7, 9, 14, 20 and 24, and those to
be checked for U> V are k = 11, 13, 17, 19 and 23 . Tables 3 and 4 give the
upper bound on n for each case, while (22') gives the lower bound . Again we
illustrate the method by brief discussion of one case : we choose k = 14 for this
purpose .
Let A(n,14) denote the product, running over each prime p < 14, of the largest

prime-powers p" < n . Combining this with (18) and (19), we observe that

u < A(n, 14) P(n, 14)/14! < A(n, 14)/14 .

Table 3 gives the upper bound n < 21120, and A(21120,14) = 214 395 67 511 4133 .
Correspondingly we have v > (n - 6) (n -7) . . . (n -13)/13! so u < v holds provided
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n > 13669. Iterating the calculation with this new bound,

A(13668,14) = 2 133 85 5 74 11 3 133

shows that u < v holds provided n >, 5198. A further iteration leads only to n > 4157,
and A(5197,14) = A(4156,14) . However, we can get down to the lower bound
n ,2695 coming from (22) by noting that P(n, 14)-0 (mod 13) holds only if
n=_ 0 (mod 13). Thus, for n < 4156 we have either the bound u < A(4156,14)/13 .14,
which is sharper than (27) by a factor of 13, or else one of n and n-13 is a
multiple of 2197, the largest available power of 13 . In this example, observe that
there is in fact no multiple of 2197 between the current search bounds . The sharper
bound on u ensures that u < v holds throughout the current search range, so the
checking is complete . (We also made a separate check using more intricate
combinatorial arguments, in conjunction with Lehmer's tables, for all the relevant
cases in Region V.)

8. Remarks and unsolved problems

Here we shall use notation which makes explicit the dependence of U and V on
n and k, where as usual we have n > 2k .

The most obvious outstanding problem is to obtain an effective upper bound
on n for which U(n, k) > V(n, k) when k = 3, 5 or 7 . More generally, note that
Mahler's Theorem that U(n, k) < n 1 +e is not effective . It would be very interesting
to obtain an effective result of the same kind, even if the result in question were
much weaker. For example, it would be useful to have U(n, k) < nki2 for k > k o,
with an explicit ko .

An inequality of the form U(n, k) < n 2 ek, which may hold for n < ek, would be
useful . Perhaps such an inequality even holds if n 2 is replaced by n .

It would be of interest to strengthen Mahler's Theorem . For fixed k, perhaps
there are positive constants c, and C2 such that we have U(n, k) < cl n(log n)C2, for
all sufficiently large n .

Consider, for fixed k, the sequence of integers n(k, r) with r = l, 2, . . ., defined
by taking n(k, 1) = 2k and thereafter

n(k, r + 1) = min {n > n(k, r) : U(n, k) > U(n(k, r), k)} .

It would be interesting to study the properties of this sequence, which is analogous
to Ramanujan's sequence of highly composite numbers . Also of interest would be
the properties of the strictly increasing sequence N(k, r) with r = 1, 2, . . ., where
N(k, r) is the rth positive integer for which there is some constant c(k, r) > 1 such
that U(n, k)lnc ( k ,r ) achieves its maximum at n = N(k, r) . This sequence is analogous
to Ramanujan's sequence of superior highly composite numbers .

In closing, we mention that other results closely related to the present paper
are given in Erdős and Graham (1976) .
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