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On the largest prime factors of n and n+1

PauvlL Erpos anD CarL POMERANCE

§1. Introduction

If n=2 is an integer, let P(n) denote the largest prime factor of n. For every
x>0 and every t, 0=t=1, let A(x, 1) denote the number of n =x with P(n)=x".
A well-known result due to Dickman [4] and others is

THEOREM A. The function

a()=lim x "A(x, 1)

is defined and continuous on [0, 1].

In fact it is even shown that a(t) is strictly decreasing and differentiable. Note that
a(0)=1 and a(1)=0.

If 0=t s=1, denote by B(x, 1, s) the number of n=x with P(r)=x" and
P(n+1)=x". One might guess that

b(t,s)=lim x 'B(x, t, s)

N—e

exists and is continuous on [0, 11*. In fact, one could guess that

b(t, s)=a(t)a(s);

that is, the largest prime factors of n and n+ 1 are “‘independent events.” We do

not know how to prove the above guesses. In fact, we cannot even prove the

almost certain truth that the density of integers n with P(n)>P(n+1) is 3.
However we can prove:

THEOREM 1. For each € >0, there is a § >0 such that for sufficiently large x,
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the number of n=x with
x *<Pn)/P(n+1)<x® (1)
is less than ex.

That is, P(n) and P(n+1) are usually not close. We use Brun’s method in the
proof. One corollary is that the lower density of integers n for which P(n)>
P(n+1) is positive (see §6).

If the canonical prime factorization of n>1 is [ p{, let f(n)=}¥ a;p;; and let
f(1)=0. Several authors have considered this function or the closely related
g(n)=3 pi or h(n)=7} pf, among them Alladi and Erdos [1], Chawla [2], Dane
(3], Hall (7], Lal [10], LeVan [12], and Nicolas [14]. In Nelson, Penney, and
Pomerance [13] the following problem is raised: does the set of n for which
f(n)= f(n+ 1) have density 0? If f(n)= f(n+ 1), we call n an Aaron number (see
[13]). We prove here the Aaron numbers do indeed have density 0. The result
follows as a corollary to Theorem 1 and

THEOREM 2. For every € >0, there is a 8 >0 such that for sufficiently large x
there are at least (1 — €)x choices for n < x such that

P(n)<f(n)<(1+x °)P(n). (2)

Theorem 2 implies that usually f(n)=~ P(n) and f(n+1)= P(n+1). But Theorem 1
implies P(n) and P(n+1) are usually not close. Hence f(n) and f(n+1) are
usually not close, and in particular, we usuvally have f(n)# f(n+1). This then
establishes that the Aaron numbers have density 0. However we can prove a
sharper result:

THEOREM 3. For every € > (), the number of n = x for which f(n)=f(n+1) is
O(x/(log x)' ™).

Actually we can prove the sharper estimate O(x/log x), but the proof is more
difficult than the proof of Theorem 3 and we do not present it here. We suspect
that the estimate O(x/(log x)*) is true for every k, but we cannot prove this for
any k>1. In fact, we cannot even get o(x/log x). On the other hand, we cannot
prove that there are infinitely many Aaron numbers (this would follow if Schinzel’s
Conjecture H is true —see [13]). But by a consideration of those n for which P(n)
and P(n+1) are both relatively small, we believe the number of Aaron numbers
up to x is 2(x' ) for every €>0.
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There are integers n for which f(n)=f(n+1)=f(n+2). The least example,
kindly found for us by David E. Penney in a computer search, is n =417162. We
cannot prove that the number of such n =x is o(x/log x). We conjecture that for
every k there are integers n with f(n)=f(n+1)=---=f(n+k).

§2. Preliminaries

In this section we record several lemmas which will be useful in our discussion.
The letter p denotes a prime.

LEMMA 1. There is an absolute consran!_C, such that if 3<u<wv, then

Z l(CHog (vfu)
ll‘EpEl}p logu .

This lemma is used when u is large compared with v/u. The proof follows easily
from the classical result (see Hardy and Wright [8], Theorem 427 and its proof):
there are absolute constants B, D such that if x =3, then

1
Z ——loglogx—B|<

S log x

Lemma 1 easily follows with C=2D.

1 1

LEMMA 2. .
pzz,p logp logt

Proof. If p, denotes the k-th prime, then p, ~ k log k and

gl . 11
Zoplogp Zoklog'k logw(t) logt

LEMMA 3. If P(n)=35, then f(n)< P(n) log nflog P(n).

Proof. We use the fact that #/log ¢ is increasing for t=e and 2/log 2 <5/log 5.
Write n =[] p{* where p, = P(n). Then

f(n)= Z ap = Z a;p, log p;/log p, = P(n) log nflog P(n).
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§3. Proof of Theorem 1

Let € >0. From Theorem A it follows there is a 8,= 8,(€) such that 1>8,>0
and for large x the number of n = x with

P(n)<x* or x> %=<P(n)<x"?*%
is less than ex/3. We now consider the remaining n =< x. There are 2 cases:

1 ) L1128,
(i) xP=P(n)<x'* %,

(ii) x'/“"%=P(n).

For each pair of primes p, g, the number of n=x for which P(n)=p,
P(n+1)=q is at most 1+[x/pq]. Then for large x, the number of n = x in case (i)
for which (1) holds is at most (assume 0 <8< §,/4)

> = &1+[xqu]<x"2'5“+s +x). é Zé
xMspax'?

px f<=g<=px®

) 1 C+log(x*®)
<xt Wiy S 2 B emma 1
) p log(px™®) ( )
) 1
<x' "5+ 35x log x
2 plogp
< xl —ab,t8 + 48‘[,!‘80 (Lemma 2) (3)
Hence if we choos: 8 so that
0<&<8€/13, )

then (3) implies there are fewer than ex/3 choices of such n.

Suppose now n=x is in case (ii) and (1) holds. Let a=n/P(n), b=
(n+1)/P(n+1). Then a=x"""" b<x'?"%*" and x %2<a/b<2x’. On the
other hand, given integers a, b, the number of n=x for which n=aP(n) and
n+1=>5bP(n+1) is at most the number of primes p=x/a such that (ap+1)/b is
prime. (Note that there is at most one such prime p unless (a, b)=1 and 2 | ab.)
All such primes p are in a fixed residue class mod b, say p = kb + ¢ for some k =0.
Let d = (ac+1)/b. Then we are counting integers k with 0=k <x/ab such that
kb+c and ka+ d are simultaneously prime. By Brun’s method (see Halberstam
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and Richert [6], Theorem 2.3, p. 70), we have the number of such k is at most

Ax ( _1)" o Ax
ablog® (x/ab) oy \ P ¢(a)e(b) log” (x/ab)

where A is an absolute constant (independent of the choice of a, b) and ¢ is
Euler’s function. Hence for sufficiently large x, the number of n = x in case (ii) for
which (1) holds is at most

Ax Z 1/¢(a)e(b) log® (x/ab) (5)
172 -8y

sy
ax "o he2ax

2Ax ] 1
cu&ﬁafmfxz¢m)z¢wf

We now use the result of Landau [11], that if E= £(2)(3)/{(6), then

Y 1¢(n)=E log x +o(1).

n=x

Hence for large x the quantity in (5) is less than

3EAx ¥ log (x*®)
(28,-8)"1og’ x = ¢(a)

__ 68EAx Z 1
(28,—8)*log x “~ ¢(a)
c(—z—&% log (x'/27%)
e
If we now choose & so that
0<8<8i€e/4E’A and &< 8,/4, (7)

then (6) implies there are fewer than ex/3 choices for such n. Hence if we choose &
so that (4) and (7) hold, it follows that the number of n = x for which (1) holds is
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less than ex for every sufficiently large value of x (depending. of course, on €).
This completes our proof.

Note that using a known explicit estimate for the upper bound sieve result we
may take A =8+o0,(1).

§4. The proof of Theorem 2

Sirce any integer n=x Is divisible by at most log x/log 2 primes, we have for
large x and composite n=x

f(rn)= P(n)+ f(n/{P(n))= P(n)+ P(n/p(n)) log x/log 2
< P(n)+ P(n/P(n))x>. (8)

If (2) fails, then, but for o(x) choices of n = x, we have

f(n)=(1+x *)P(n), 9)
so that from (8) and (9) we have

P(n/P(n))>x ""P(n). (10)

Let € >0. From Thecrem A there is a 6, = §y(€) >0 such that for large x, the
number of n=<x with P(n)<x™ is at most ex/3. For each pair of primes p, q the
number of n=x with P(n)=p and P(n/P(n))=q is at most [x/pq]. Hence from
(10), for large x the number of n=x for which (2). fails is at most (assume
0<8<8y/7)

oGitedis ¥ :xqu]<exfz+xZ§Z§

M=p
x Yp=g=p

1 C+log(x*)

<ex[2+x Z E log - %p) (Lemma 1)
1
<ex/2-36xlog x
) plogp
< ex/2--48x/8, (Lemma 2)

= €X,

if we take & = 3,€/8. This completes the proof.
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§5. Aaron numbers

In this section we prove Theorem 3. Let x be large, n=x, and f(n)= f(n +1).
We distinguish two cases:

(i) P(n)>x""?,

(i) P(n)=x'"?.
Let n be in case (i). We first show that

P(n+1)>=Pin)/3. (11)

Indeed we have
x'"?<P(n)=f(n)=f(n+1)=P(n+1)log (x + 1)/log 2
so that P(n+1)>x"?log 2/log (x+ 1). Hence Lemma 3 implies
P(n)< P(n+1)log (x + 1)/log (x'* log 2/log (x +1))<3P(n+1)
for large x, which proves (11). We next show that
|P(n)— P(n+1)|<4x/P(n). (12)
Indeed, f(n)= f(n+1) implies

P(n+1)= P(n)= f(n/P(n))— f((n + 1)/P(n+ 1)) = n/P(n),
P(n)—P(n+1)<(n+1)/P(n+1),

so that using (11) we have (12). We next show that
Plny<3i*7. (13)
We use the congruence

n+1
P(n+1)

(P(n+1)-P(n)) =1(mod P(n)). (14)

From (11) we have P(n) and P(n+ 1) both odd primes so the left side of (14) is
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not 1. Then (11), (1Z), and (14) imply

n+l 4x x+1
P(n)=|P(n)— P(n+ l)lP(n+ 1)+ 1 {P(n] ) P(n+ 1)+1
12x(x+1) 14x°
P(n)z P(n)z

for large x. so that (13) follows.

If p, q are primes with x'> < p, q> p/3, then there are at most 3 integers n = x
with P(n)==p and F(n+1)=gq. Hence from (11), (12), (13) we have for large x
that the number of n=x in case (i) for which f(n)=f(n+1) is at most

x/p
3 Z 1 « §< _— log [xjrp)

X“:’-:["‘ﬁ 3"_';{
lp-gl<<xip

where we use the well-known result of Hardy and Littlewood (see [9], p. 66) for
the number of primes in an interval and Lemma 1.

We now turn cur attention to case (ii). We have (see Erdos [5], proof of
Lemma 1 or Rankin [15], Lemma II) the number of rn=x for which we do not
nave

P(nJ-}xU.‘iloglogJ (16)

is O(x/log x). So we may assume (16) holds. Then using Lemma 3 and the
argument which establishes (11), we have from the equation f(n)=f(n+1) that

P(n)/41loglog x <P(n+1)<3P(n)loglog x. (17)

For each pair of primes p, g, there are at most 1+[x/pq] integers rn =< x with
P(n)=p and P(n+1)=gq. Hence from (16) and (17), for large x the number of
n < x in case (ii} for which f(n)= f(n+1) is at most

Y 1+[x/pg] = w(x"})mw(3x'?loglog x)+x), 119 ) é

x LiZog log cp= I!r:
pidloglog x<g<3ploglog x

3 . log log log x

(Lemma 1)
log x P log p
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e log log x log log log x
log x ’

(Lemma 2)

This completes the proof of Theorem 3.

§6. The probability that P(n)> P(n+1).

Using some computer estimates of the function a(f) made with the generous
assistance of Don R. Wilhelmsen, it can be shown that the number of integers
n=x such that

x[)..’u = P(ﬂ){ xu..m' (18)

is more than 0.2002x for sufficiently large x. By an elementary argument similar
to the proof of case (i) in Theorem 1 (see §3) one can show the number of n<x
for which (18) holds and for which

P(n)< P(n+1)< P(n)x"" (19)

is less than 0.0763x for sufficiently large x. Hence the number of n = x for which
(19) fails is more than

0.2002x -0.0763x = 0.1239x

for sufficiently large x. Now for every k choices of n=x for which P(n+ )=
P(n)x" %, there must be at least [0.08k] integers n in the same interval for which
P(n)> P(n+1). Hence the lower density of integers n for which P(n)> P(n+1) is
at least

(0.08) - (0.1239) > 0.0099.

Note that the same is true for integers n for which P(n)< P(n +1). Undoubtedly
improvements in this type of result are possible.

§7. Comments on three or more consecutive numbers.

It is easy to show that the patterns
Pny<P(n+1), P(n+1)>P(n+2);
Pn)>P(n+1), P(n+1)<P(n+2),
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both occur infinitely often. However we cannot prove either of these two patterns
occurs for a positive density of n, although this certainly must be the case.
Suppose now p i1s an odd prime and

ky=inf{k: P(p> +1)>p}

(note that P(p™+1)=1 (mod 2%*"), so k,<=). Then
P(p? = 1)< P(p™ )< P(p>°+1).

On the other hand, we cannot find infinitely many n for which
P(n)>P(n+1)>P(n+2), (20)

but perhaps we overlook a simple proof.
Suppose now

_[1, it P(n)>P(r+1),
"o, if P(n)<P(rn+1).

Then ¥, ,€,/2" is irrational. Indeed, suppose not, so that {e,} is eventually
periodic with period length K. Let p > K be a fixed prime. An old and well-known
result of Pélya implies that there are only finitely many pairs of consecutive
integers in the set M = {n: P(n) = p}. (In fact, from the work of Baker, the largest
consecutive pair in M is effectively computable.) Note that p', 2p’, ..., Kp' are all
in M for every i. Hence for large i, none of p'+1,2p'+1,...,Kp'+1isin M, so
that e,, =0 for m = p’, 2p, ..., Kp'. But these numbers form a complete residue
system mod K. Hence €, =0 for every large n, an absurdity.

For each k. let h(k) denote the number of different patterns of k consecutive
terms of {e,} which occur infinitely often. Surely we must have h(k)= 2" This is
easy for k =1, but already for k=2, all we can prove is h(2)=3. (If there are
infinitely many n for which (20) holds, then h(2)=4.) It follows from the
non-periodicity of {e,} that for every k,

hiky=k+1.

To see this, it is sufficient to show h(k) is strictly increasing (since h(1) =2). But if
h(k)= h(k+1) (clearly h(k)>h(k+ 1) is impossible), then sufficiently far out in
the sequence {¢,} we have each term determined by the previous k terms. Then as
soon as a k-tuple repeats, the sequence repeats and hence is periodic,
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We remark that h(k)=2* can be seen to follow from the prime k-tuples
conjecture.
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