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1. #,-phenomena. Our set theoretic notation will be standard with one ex-
ception. Since this paper is largely concerned with powers of ordinals, the symbol
& will always denote ordinal exponentiation for ordinals £, 1. Thus, in particular,
if f=a, then @ is an ordinal —=wo,.,. When we use cardinal exponentiation
we shall either say so or, if there is no danger of confusion, we write 2%» or &¥» (despite
the fact that w; and #, otherwise denote the same object). We shall assume the
reader is familiar with the special symbols as defined e.g. in [6] to denote ordinary
partition relations, polarized partition relations and square bracket relations.

We begin our discussion by recalling a theorem of Micner and Rapo [13)
which asserts that, for any cardinal x=uwm,

(1.1) E+(¥hen i E=2n".

This implies that £(=<»") is the union of e “small” sets 4, (n=e), where we mean
small in the sense that the order type tp 4,<x" (n=w). Four our present purposes
it is usually more convenient to consider another sequence B=(B,:n=w) defined
by B,=4,U...UA, (n=w). The sets B, are still “small”, ie. tp B,=x" (n=w),
and they have an additional property, which we call the w-covering praperty, that
the union of any w of these sets is the whole set £. For brevity we shall say that
a sequence B=(B :n<=w) of subsets of { is a paradoxical decomposition of
¢ if it has the - two properties (1) tp B,=x" (n=wm) and (ii) the w-covering pro-
perty. The existence of such a paradoxical decomposition (which is only interesting
for x*=£E<x"*) implies the polarized partition relation

11
(1.2) [?]+{:.,, ‘f] for &=x*,
and also the square bracket relation

(1.3) £ 4 [ Ry <, for E=x*.

In our paper [7] we investigated the following problem: Let #=wm; and let
A={(A,:#=x) be a sequence of subsets of 5 of length x=w or w,; such that
each set 4, has order type tp A,=c. Under what conditions can we then assert
that there is a subsequence (A, :v—=gp) of length p whose union has a “large”
complement in g, say tp (5 U {4,,:v=g})=17 This amounts to an investigation
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of the polarized partition relation

@-(9

for y=w, and x=w or w,.

In [7] we gave a complete discussion for (1.4) in the case when i is a power
of w, (although even for this case there remain unresolved questions if the 1"
in (1.4) is replaced by a larger finite ordinal). Now in combinatorial set theory
most theorems like these have higher cardinal analogues which are usually obtained
by replacing each cardinal by its successor. However, when writing [7] we realized
that an investigation of (1.4) for the “next higher case™, Le. for n=wm, and x=wm,
or w,, leads to entirely different results and problems which we refer to as "N.-
phenomena'. The main reason why we could not simply extend the results of [7]
is that one of the principal tools we used there was the Milner—Rado paradoxical
decomposition {1.1) or rather its square bracket analogue (1.3),

£ e[, <n, for &=

Now the “higher cardinal” analogue of this is

(1.5) § - [Ty, for & =g,

and this is not true (e.g it is false if we assume 2%=4,). We summarize here the
#a-phenomena as it relates to the relation (1.5). For {=wmf* we do get the ex-
pected result, i.e.

(1.6) § [0ty for &= of

However, we also have the following.
(LD (a) if 2}1=%.. then there is some C=wy such thai
I (%
(b) It is consistent thai
M=y and E - [0fD0,

holds for all {=uw;.
{1.8) Both the relations

wy® 4= (08 T4, 8, and  @i® = [wP .,

are true in different models of set theory. (The relation —+- holds, e.g. in the
constructible universe L, and — holds e.g. if Chang's conjecture is true.)

These “#,-phenomena™ enter into almost all the results and problems considered
in this paper, and so it is not possible to give an entirely naive presentation. Al-
though we discovered most of these results as early as 1967, the presentation we
give here will rely upon more recent work done by others. In particular we will
use the methods worked out in the paper by Garvin and Hainar [9], and we shall
give references to other results later.
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ON SET SYSTEMS HAVING PARADOXICAL COVERING PROPERTIES o1

The remainder of this section will be devoted to a detailed description of the
#y-phenomena as it relates to the relation

s (o) = o 1)

for y=w,. For the sake of clarity this will be done rather slowly and somewhat
redandantly.

Clearly P(y) is equivalent to the assertion: whenever A={d.a—=w,} s
a sequence of subsets of o} such that tp A, =8 (x=u,). then A does not have the
w-covering praperty, fe. there is De[og]® suech that \J{4:2eD}=w]. On the
other hand, in order to establish the negation

270 (50) - o )

we have to show that there is some sequence A={A,:a=a,;) of subsets of w]
such that (i) tp A,=o (t=w,) and (i) 4 has the w-covering property. We shall
say briefly that the sequence A establishes <1 P(y) if (i) and (ii) hold.

Before we state and prove our first relevant result, it is convenient to introduce
some special notation. If » is an infinite cardinal and 0=y=x* we choose a fixed
sequence S'=(Sl:v=u) of subsets of 3’ having the following properties:

(1.9 ® = LJ{ST:v < u};
(1.10) S =8=..=8=...,

where X=1Y means that all the elements of the set X precede all the elements of
Y in the ordering of »7;

(L.11) (@) if y=58+1, then p=x% and tpSi=su’ (v=x);

(by il v is & lmit ordinal, then wu=cf(y) and tp SI=x", where
{y,:v=p) is a fixed increasing sequence of ordinals with limit y.

We call this sequence S” the standard decomposition of x' (although it depends
upon the choicce of the y, in (1.11) (b)).

TaeoReM L.1. 1 P(y) holds for 7=y, ie

(o) (3o /o

REMARK. The following proof can easily be adapted to prove the more general
result Theorem 2.1.

Proor. We prove the result by induction on 9. For y=w, it is obvious that
=1 P(y) holds. Now assume that w;=y-<wm, and distinguish the three cases
(i) y=06+1, (i) cf (p)=w and (i) of (y)=w,.

In the first two cases there is no difficulty in carrying out the inductive step.
We give the details here, but in later proofs where a similar type of argument is
needed we shall omit the trivial details and simply instruct the reader *to take cross
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sections”. The main idea of the proof of this theorem is in establishing the inductive
step for case (iii).

Let S7=(SI:v=pu) be the standard decomposition for wi. By the induc-
tion hypothesis for each v=u there is a sequence A"={Al:z=m,} of subsets
of 8§ which establishes —1P(y,), where tp Si=wl-.

Cuase 1. In this case p=w, and the sets 57 (v=w,) are order isomorphic
ie »,=0 (v-=m,). Therefore, for each a<=mw, we can assume that the sets A are
also order isomorphic for v=ew,. Now put A,=lU{4l:v=w,) (x=w). For
each =, there is f{z)=w; such that tp 4J=e® (v=e,), and therefore
tp A,=wf® =w§. Therefore A=(4,:az<w,) establishes —1P(y) since each A"
has the w-covering property for 87 (v-=0,).

Case 2. In this case pg=w. Again we define A,=U{4%:v=p}). Then A=
=(d,:x=uw;) has the w-covering property and moreover

A, = S{p Ay <o) =of (@=o)
since tp Al=om§' (v=ew; e=uay)

Case 3. In this case p=e,. For each v=ay, let B'={(Blin=w) be a
paradoxical decomposition of S7 as described after (1.1). Then B” has the w-covering

property (for S7) and tp Bl=ud (n=w). Also, for each v-=m,, let @, denote
any one-to-one function from v into w. Now put

A, =U{dy = afu LB ie = v =)

for %<w,. We show that A={4:nx—=e,) establishes 1 P(y).
If v=a—=aw,, there is some f(v,a)=wm, such that tp AZ=w{"*. Also,
there is f(o)=w, such that f(v, 2=/ (x) for all v=zx Therefore,

tpd, = of ™ .a+of -0, = o (2=o)

All that remains is to verify that .4 has the w-covering property. Let Defay]”. We
must show that
A(D)y =LA 2e DY = w}.

For v=uwy, let D(vi={zeD:a=v}. Then either D{v) or D~D(v) is infinite. If
D{v) is infinite then
A(D) = By, (o:ae D(¥)} = 8],

since B* has the w-covering property. Also, if D D({v) is infinite, then
A(D) o U{d5:aeD\D(v)} = 8]

since A" also has the w-covering property, Thus, in either case A(D)=8! for each
v=oy. It follows that A(D)=w].

The inductive step used in the above proof breaks down completely if of (y)=wy.
The trouble is that, unlike case (i), the sequences A*={Alix=wm,) (v=w;) ob-
tained from the induction assumption are no longer identical copies of each other.

Our next aim is (o say something rather more precise about the order tvpes
of the sets A, of a sequence A={d,:a=ay) which establishes the negative
relation — P(y). But in order to state our results we must first recall some defini-
tions from [9] concerning the rank of an ordinal function (at least in a generality
sufficient for our present purposes).
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OM SET SYSTEMS HAVING PARADOXICAL COVERING PROFERTIES 93

We denote by Stat (e, ) the set of all the stationary subsets of m, . Let XeStat (wy).
Then we define a partial order =y on “m,, the set of all functions from e, into
w;, by the rule

f=xg = {2EX: f(@) = g(@))§ Stat(w,).

It is easily seen that <=y is well founded, and because of this we can define the rank

function, [ -lx, by
Iflx =sup{lelx+1:2 =S}

We shall write || - || instead of || - ||, and = instead of =, . We need the following
easy consequences of this definition (see [9], p. 495).

(1.13) (7p = w)(iflx = pe {2e X f(a) = pleStat (w,)).
(1.14) Ifllx = @y < foe X: f(a) = a}eStat (o).
We need also the following simple fact:

(1.15) If XeStat (o)), and {xc X:g(x) = f(2)+ 1} Stat (o), then [gly=[Fiy+1.

Proor. Let hi=yg. Then M=yh=h=f, and so [h;=)fly. Thus
lghx=lSlx+1. But f=xg and so || flx+1=lglx

Next we define a special sequence of functions /€ *uw,; for y—=w. by translinite
recursion on y. For each limit ordinal y<e, we fix a strictly increasing sequence
(p:v=p) of length p=cf(y) having limit y. We agree that this is the same
sequence as that associated with the standard decomposition for @i appearing
in (L.11){(b). Now define 4, by:

hafl}: h?+15hl—+l;
hy(2) = supfh, (@) n=w) if (=0
h(x) = sup {h, (@):v =2} if cf(y)=o.

The function h, defined in the case cf (y)=w, is called the diagonal supremum
of the h, (v{m]] Note that, if XeStat (@,), il &, is the supremum or the di-
agonal supremum of certain /t, , and if g=xh,, then g=yh,  for some vo=cf(y)
and ¥€Stat(e,). This fact ensures that 4! X is “the y-th function on X' for any
X&Stat (o), ie

{1.16) Ihds =3 for y=wm. and XeStat(m).

As a corollary of this we have, for y=w., XEStat (o) and f&€%m,,
(1.17) Ifl = 7 = {2€X: (@) = h,(@)}eStat (o,);

also,

(1.18) h,=yhy for 3<6=<my.

We make one final remark. For a limit ordinal y (w-=y=<ex) the above sequence
{y,:v=cl(y)) can be chosen so that w=y,=7,=.... This ensures that

(1.19) him=e 0<=t<o;o=y<ay).
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We shall also make use of another, stronger partial ordering on “im,, ==,
defined by
f=ge [{a=0;fl@ =gk} = R,

Le. g eventually exceeds f. Again, it 15 easily seen that == is wellfounded and f=g—=
=f=yg for any X¢Stat(e,). The functions h, (y—w,) defined above are also
increasing in this stronger sense, ie.

(1.200 h=h=.=h=..

We can associate with any sequence 4=(A4,:a=w,) of sets of ordinal numbers,
an ordinal function / defined by

FA(e) = min{d: tp A, = wi).

MNote that, il A4,= ¢, then (x)=0.+1 lor some ordinal o,. Also, if 4 establishes
~1P(y) for some 3, then f4€*“,. The next theorem shows that, if 4 establishes
=1 P(y) for some large v, then the associated function /" is-also large in some sense.

TueoreM 1.2, Let y=wy. ff A={dia=wy) is a sequence of subsets of wj
such that || fA|=v. then A does not have the o, covering property.

Proor. We prove this by induction on y. It is trivial for y=0 sinee, by (1.13).
the hypothesis implies that A,= & for a stationary set of «'s. Now assume 3=0.

Case {. y is a limit ordinal. We can assume that the sets 4, are non-empty
for all but countably many o, and so /4 (x}=g(x)+1 for all but a countable number
of 2. Therefore, by (1.15), | /*|=[gll+! and hence |f4|=y=7. By the in-
duction hypothesis 4"={4, M 2=wm,) does not have the wm,-covering pro-
perty and hence neither does 4.

Case 2. y=94+1. Let (Si:v=wm,) be the standard decompesition for wj.
AsinCase |, M {x)=g(x)+ 1 for all but countably many a’s and || 4| =| gl +1=d+1,
so [ gll=4. Now for each « there is v(x)==w, such that

tp (A, NS = wf® for wla) =rv= Wy .
There is vy=c, Such that v(x)=v, for all x<wm,. Consider the sequence A4'=

={A,(18] ;@=ey). Clearly! fYscpg and so | f*|=|g|=6. Therefore, by the
induction hypothesis A" does not have the o, -covering property and hence neither

does A.
&) 4 2

Proor. If A={4,:x~=w,) is any sequence of subsets of e such that tp A,= i,
then fA{x)=h.(2)=y (x<w,). Hence |/ =|h)=7 and so A does not have
the oy -covering property.

CoOrROLLARY [.3.

hedds for =,

U Naturally, i = f means e filg)= i)} = #o.
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CoROLLARY 1.4, If | fl=ws for all fe%uwm,, then

(o8 = %)

Proor. Let A={d,:x=e,) be a sequence of subsets of w§* such that
tp A,=wi, Then f4c®w, and so || fY| =y for some yp=w,. It follows that
| f*)| =y, where A'={A4,MMw]:x=w,;. By the theorem 4" does not have the w,-
covering property and so neither does A.

It is easily seen that Theorem 1.2 is best possible for y-=m, since there is a
system A'={Al:a=ay) which establishes —1P(y) and is such that j(x)=
=iy qla) (2=aoy) and hence by (1.16) and (1.17), || /4| =y+1. This result can
be proved by exactly the same induction argument that we used to prove Theorem
I.1; we only have to make sure that the A2 chosen in the various places have order

types less than ey B+ and this ensures that the A, defined there have order types
less than wiv®=*1, We omit the details since this result is also a Corollary of the
following more genemt result Theorem 1.5.

We make one preliminary remark., We say that a function gc™w, establishes

the negative relation —1P(7),
(") 1 m 1.1
Cu; -t m?:“ l 1

if there is an A={A,:2=aw;) which establishes it and is such that f(x)=g(x)
forall @—=w,. Now if g establishes —1.P(y) and g=#h, then the function /1, defined
by hy(a)=max [h(x), @} also establishes —1P(y). For suppose A={d:a=wm,)
establishes 1 P(y) and f(x)=g(2) (x=w,). Then there is oy—<w, so that f(z)=
=h(x) (xp=a=<uy). Let ?B,,:nc:m} be a paradoxical decomposition of w] and
consider the system A'={A_:y=wm,) defined by

. [H4s for tp=a—=uaw,,
A, =

By for e—=uy,

where i is any one-to-one map from & into @. Clearly A’ establishes —1P{y) and
F*(@)=hy(a) (2=ox). Thus /i, also establishes —1P(y). It follows from this that,
if g, he“a,, g establishes —P(y), g==h and hi{x)=w (x=uy), then h also es-
tablishes 1 P(y).

THEOREM 1.5. Let y=w; and suppose that {f,:0=y) is a strongly increasing
sequence of infinite-valued functions, fe. f(o)=w (6=y; a=uwy) and fl=fi=
Then f,+1 establishes —1P(y).

Prooe. This is trivial for ¥=0. We now assume that y=0 and use induction

on }r
t {(Si:v=p} be the standard decomposition for wl, where tp Si=wmi
{-.'-:,u} Then y,=3 (v=p) and so by the induction hypothesis there is a system
A'={dj:e=wmy; of subsets of §7 which has the w-covering property and is such that

tp AL = @™t (x =y v = ).
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Case . y=dé+1. In this case p=w, and 7p,=8 (v=uwg) Put A,=
= {4 v=an) (x=e). Then A={4,:x=wm,> has clearly the w-covering pro-

perty. Moreover,

tpA: = 0P (m =y
Therefore f;+2 establishes 1 P(y) and f,+2=<f,+1. Therefore by the remark
preceding the theorem f, 41 also establishes =1 P{y).

Case 2. cf (y)=w. In this case p=w and y,7y. Again put 4,=U{4}:v=mw)}
(x=a). Then A={d,:2-=w, has the w-covering property and

tpd, =™,

where g(z}—sup{ Sy (@) +1) (x=e,). Hence g+ | establishes =1 P(y) and therefore

Ji+1 also :.;ta!:rhshas —1P(y) since g=f,.

Case 3. cf (Y)=w,. In this case p=w, and y,77. Let B'=(B:n=w) be
a paradoxical decompesition for 5] (v=c), and for each v=w,; let , be a one-
to-one map from v+1 into e. Put

(@) = min ({2} LU {o = «: f,, = f,(0)}) {2 =),
r,=sup{f =w;: 0(F) = v} (v=uy)

and define

MNow deline
‘ Ay = U{du(@): v = 0@} U By 0 0(x) = v = o).

First we observe that for v<m, there are only countably many ordinals f—=uo
which satisfy #{f)=v. Otherwise, there would be ordinals f; (F=w,) so that
B(f,)=t=v=pfy=<fi=...=f,=...=w,. But this implies that £ (f,)=f(f,) for
o=y, a contradiction against the hypothesis f, <sf.. It follows that there are
only countably many f=wm; for which 8(fi=+ and so T, =y (v=a). Moreover,
if a=w, and @{z)=v=w,, then r,=z Thus i, (2) is defined and the above
definition for 4, is meaningful.

Now we have

tp A, 52{:;:{?1'{“’“: V= 0{a)}tws o) (z=ay),
and since f, (2)=f() for v—=0{z), it follows that
tpd, = 0™ (2 < wy).

To complete the proof in this case it is enocugh to verify that A(D)=U {A
ae D} 5] whenever v=w, and Defey]® Let Dy={aeD:v=08(z)}. If D, is
infinite, then S(D)> U {Al(x): x€Dy}=§] since A" has the w-covering pro-
perty. On the other hand, if D, is finite, S{(D)=U (8] o ae DND,}=S8] since
B' has the ew-covering property.

Case 4. cf y=w,. In this case ji=w, and y,.y. Now for each v-=cy there

is f,=m, such that
fh{u} ":jj'{.u} (ﬁr =a< lﬂﬂ.
Also, there is fil<w, such that f,=B for &, different values of v=w,. Now put

Actit Mothomatios Acedemicg Scientiarum Hungarcoe 11, 1878
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St=U{S]:8,=p), A3=1U{A}:5,=B} (t=ay). Then A*=(A}:x<an) clearly has
the w-covering property for §*. Moreover, tp S*=w! and

tp Ay = Flaf @+ g = gl = @,

where glo)=f,(a) (F=2—=uwm,). Thus g+1 establishes 1 P(y) and hence so does
£ +1 since g=f,.

CoroLLary 1.6, For y=w, the function h,+1 establishes = P(y).

Proor. For y=a, this is obvious since h,=y. For y=w, the result follows
from the theorem and the observation that ,,<<h,, ,y-%...=h, is a strongly increasing

sequence of length y and the values & (x) are all infinite for a—=w; and w=v by
(1.19),

CoroLLary 1.7, If there is a function he®w, so thar ,=ch for all v=uw,, then

Wy 1 an)i?
opt) *lep 1) -
Proor. This follows from the theorem and the fact that

hymhy = sh=.xh ()<

The results of this section concerning the §,-phenomena for the relation

P (of) = oe )

are summarized in the following theorem.

Tueorem 1.8. {a) 7 P(y) helds for y=cwy.

(b) If y=wy and there is a strongly increasing sequence {f,:c=7v) of length
Pl odn =y (Le. fossfi=...<f)), then 1 P(y).

(€) If 2%:=Rs, then there iz some y—<io, such thar P(y) is true.

(d)Y It is consistent that 2%t=g, and VP(y) for all y-=uo,.

(&) Plwg) fails in L amd Plwy) holds if Chang’s conjecture is true.

Proor. (a) and (b) are respectively Theorems 1.1 and 1.5. The first part of
{e) follows from Corollary 1.7 since, by a theorem of BaumGartier [1] in £ there
i5 an Ay such that A=k for all v—=a,. The second part of () follows from
Corollary 1.4 and a result of BAUMGARTNER [2] and Benpa [4] which tells us that
Chang's conjecture implies || £ =w, for all f&=4w,. (d) follows from Theorem 1.3
and a theorem of Laver [11] (and BaumcarTner [2]) which savs that it is consistent
with ZFC and 2%=4, that whenever Fc—®w,, |F|=#, then there is some
gE£%4, which eventually majorizes every fEF, ie. f=g for all fcF.

To see (e) let us remark that by Lemma 3 of [9] | <=(2*)*, where w, is
the constant function e,. Hence by the hypothesis of (c), | |l =|w;| =& =w, for
all f£%g, and then by Theorem 1.2, P(&) is true.

We do not know if the converse of Theorem 1.5 is true, i.e. if y=wy and 1 P(y)
holds, does it follow that there is a strongly increasing sequence of functions [,
le=7v) of length y+17 However, as the next theorem shows, we can prove that
under the stated hypothesis there is a weakly increasing sequence of length y+ 1.
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Tororem 1.9. I y=wy and 1P{y) ther there are functions j,6%%w, (a=+)
such that fu<fi=...=f,.

Thiz is an immediate consequence of Theorem 1.2 and the lollowing theorem
on the rank function which has an independent interest.

Tueorem 1.10. Lét fe™my, | Fl=y=wy. Then there are functions f,€™a
(e=v) sueh that fo=h—=...<f,, awd morecver,

(1.21) fo00) = 0™ f(0) (< ).

Proor. For any function g€®w,, let & denote the function w**. The result
is true for y=m, by (1.17) and (1.18) since h,=f=/+f for v=y. We now prove
the theorem by transfinite induction on y. Assume @,=y=e, and that the result
holds for all smaller ordinals. We distinguish the two cases (1) y=84-1, (2) y is
a limit ordinal.

Before giving the induction details we make a remark about the choice of B
in (1.21%, We use two elementary facts about ordinal exponentiztion

(@) E=n=at=ao,
(b) ¢ =™ =<0

Property (b) actually characterizes ordinals of the form @, and it is precisely
this which allows our induction proof to work. To see (b), suppose g—=a®". If
£=0, then g=w and g*=<w. If (=0, then o° is a limit ordinal and so pg—=w°
for some o-=wf. Then =" =™ by (a)

Case I. y=56+1. Thereis = sux:h that IIIII—E -Now the result follows
immediately from the induction hypothesis since _f of =i j"

Case 2. y a limit ordinal. Let cf (y)=p. By assumption p=«, wy or e,
Let {y,2v-=p) be the fixed increasing sequence of ordinals with lmit ¥ mentioned
m {i 11) (b), and let f,c™w, (v—=p) be functions such that f,<=f and | f,[=7y

=u). By the induction hypothesis, there are functions /Y€, (o=1,) such thal_

fl'l {II = "-‘f:r ey ":f 'fv {_ﬂ' 'ﬁ}rl}

Let N={{g, v):ia=7y, A\ w{,u} Then the order type of N under the usual anti-
lem:::ugraphm ordering, =,, is tp N{=;)=y. Thus it is sofficient to define fone-
tions fi,, for (o, V)EN so that f, ,,=<f-f and

{1.22) (o, ¥) =g’ V') = fi 0 = Siwrv-

For any ordinals ¢, w, there is an order preserving map ¢, , from ¢y (ordered
by =) onto the ordinal &g
We now define fi, . &™w, for (@, v)EN by

©re, peolfo@k b)) iF (£ b () (@) xf (),

0, otherwise.

Fie o) = {

MNote that
Ste 08 = @p ey, o (e (@), By ()

holds for all but a non-stationary set of o's, since f*<f,-f,<f,-fi=f and h,<f

Arta Mothemalice Acedeniae Sciendiorum Hungaricae 11, 1878
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Thus fi, o</-f for (g, VJEN. Also, if (7, v), (67, v)EN and (7, v}=4 (s, v), then
gither (i) v=1v" or (ii) v=+" and e-=0¢’, and hence

(f2(z), b (o)) =o (£2(e), By (20))
holds for all but a non-stationary set of o’ Thus fi. ow=fi -

We remark that, analogously to theé rank functions || - || defined before (1.13),
we could also define a rank function ||| - ||| corresponding to the partial well-ordering
<. This rank function has not, however, been so thoroughly investigated as the
ordinary rank function || - |. The reason for this is that the ideal of the non-stationary
sets 15 normal and this aceounts for many of the pleasant properties of || -[. But
the ideal of the countable sets 1% not normal, and we cannot expect |||+ ||| to behave
s0 well. In particular the functions #, do not have the nice propertes (1.17), (1,18)
for this new rank.

It 15 clear that |||f|||=0S) since g==h=g-=h, we and remark that we could
improve Theorem 1.2 slightly by replacing || /| by [|Lf]l|. However, this would not
help to solve the problem mentioned before Theorem 1.9 since it is not known
{in ZFC) whether |||f]||=ws and fe™w, implies the existence of a strongly in-
creasing sequence of functions f,e®iq, (e=w,) of length w,.

2. Some extensions of the results of the previous section, General lemmas. In
43 and §4 we are going to pive discussions of the relations

i) [ ]" i m;]

and

@2 ) = s &)

for §, 7=w,; and o=w,. The restriction to the case o=, is notentirely necessary,
but an apalysis for the case e=w, will inevitably be complicated by the same kind
of %.-phenomena that we encountered in § 1 in connection with the case s=uw;,
1=0. Infact most of the results 10 § 1 find natural extensions to higher order types
and we begin this section with a brief indication of these.

The following is an easy extension of Theorem 1.1,

Toeorem 1. If e=wy, cf(e)=w, and y=ay then

o)+ oz )
a);-l-;l -+ m; I “

PROOF. We prove this only for the case y=0. The general result follows by
induction on y just as in the proof of Theorem 1.1. Let %S 1v=gy) be the standard
decompaosition of wf as described in § 1. For v—=w;, let (B,:n=w) be a paradoxical
decomposition of §, and let @, be a one-to-one map from v into m. Now consider
the system {A,:u«:m,} of subsets of w3, where

A, =S v = wjuU{B] (ot x=v=um,).
This system clearly establishes Theorem 2.1. for =0,

7 Acta Mathematice Academias Scientiorum Hungaricae 31, (978
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There is a sharpening of this last theorem which is analogous to Theorem 1.5,

THeorEMm 2.2. Let o-=wmy, cf (g)=c;, and let (6,:v=0,) be a closed, cofinal,
strictly increagsing sequence in a. Let v =y and suppose that { fl:v=7y) is a sirongly
inereasing .requfnce of functions in i, of length y+1. Then there is a system A=
=({A x=w) of w, subsets of wi*" having the w-covering property and such that

o A (a1

ip 4, = {2 =an)

ProoF. The case y=0 follows from the last proof, for, by the definition of A,
above, we have

tp "".1: = m;=+m:.m1 - m:’,-F] = m;’.-ﬁf:(ﬂ-l—li

MNow an induction argument similar to that vsed to prove Theorem 1.5 works here
as well,
Theorem 1.2 has a similar generalization.

THEOREM 2.3. Let w=t—<wy, y=uwy, fe®ay. If | fll=y and 4={d:a=w,)
is a sequence of subsets of wi*? such that

tp A, = oF 1 (z < ),
then there is Defw ) such that
{2.3) tp (it L4, acD)) = @i,

Proof. For y=0 this is obvious since f(x)=0 for all but a non-siationary
set of «’s and hence there is an uncountable set D ey such that tp 4, =of (xe D),
for some fixed n=m. This implies (2.3}, The general result follows by an induction
argument similar to that used to prove Theorem 1.2,

These results enable us to state generalizations of Theorem 1.8. Thus, from
Theorem 2.2 it follows that

@A o) (og )

holds in L if 6=m; and of s=m;. Whereas, from Theorem 2.3 we see that Chang's
conjecture implies that

(o) 1 &)

holds for all T=w,. 1tis interesting to note that (2.5) and 2¥°=y, implies a strong
negation of (2.4) with o=, namely

PURE

For suppose that (2.6) is false, Then there is a sequence 4={4,:z=am,) of subsets
of wf* such that tp .= (x=wy) and such that

tp (@ U {4,: 2eD}) = wie

Avte Mathamaoltidin Acodemine Seipnlisriem Hungaricoe 51, 19504
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holds for all De[w]®. In view of the hypothesis 2%=4,, it follows from this that
there is some t—e, such that

tp @\ U {4, 2ED)) = o

also holds for all Deles )™ But this contradictls (2.5). Hence (2.6) is consistent (with
Chang’s conjecture and say G.C.H.). However, we do know that the stronger

relation
(o) = opr o)
awy | " mﬂu
is false assuming 2%:=g, (se¢c Theorem 3.1 (a)).

We need the following corollary of Theorem 2.3.
CoroLLary 2.4, If w=t1=w, and yp-=w, then

(@)~ (s "

We now deseribe a general method to obtain polarized partition relations.
First we introduce a new partition relation.

@ () -G Bl )™

By definition, (2.7) means that the following statement is true: Jff is a partial function
fram Exw inte x then EITHER there is Xox Yoo &y such that tp Xu=&,,
tp Yo=ny and X% ¥, is disjoint from D(f), the domain of f, OR there is X; % Y,
SDUS) such that tp Xy=§. tp Yi=mn, and | f (X% {v)| =24 for all vEY,.

A more general symbol than (2.7) can be defined but we do not bother to do
this since (2.7) is sufficiently general for most of our present purposes.

We now give two lemmas establishing connections between polarized partition
relations and the new relation (2.7).

4 Lemma 2.5. Suppose x is an infinite cardinal and

(28) [ﬁ] ¥ ['Iln f‘i‘i]w cmr]m "

Let Z, (v=n) be ordinals such that S,=z"Fand let T=23[E,:v= q} Let
O denate the set of all ordinals of the form o'= 2 {p,:v=n) where @, =5, and

8) o, =5, =g, =% (v=n)
b) tpfv =n: @ =2} = np.
Let ®=sup {¢'+1:p'et} and P=sup{F{S,:ve¥}+1:YTnhtp ¥=u}. Then

(2.9) [E__.] 2 [éi fﬁ]m ,

Froor. By the hypothesis (2.8) there is a partial function f from £y into
o such that

Avta Mathomatics Acadefnioe Scientigrum Hungorlogs 31, 1078
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(i) (e} ¥o)D(f)=2 whenever aef and ¥ocw, tp Yo=n,, and .

(i) whenever Xi X ¥,CEXy, tp X;={,, tp ¥y=n,, then there is some v ¥
such that either X, {v}&D(f) or |/ "(Xix {v})|=m.

Let (S,:v=n) be a decomposition of = such that tp §,=5, (v=#) and
Sg=S5;=.... Let B'=(B!:n=w) be a paradoxical decomposition of S, such
that tp Bi<=x" for n=w. Now consider the subsets 4,32 (x=£) given by

4, = U{S\.: (2,34 ﬂ{f}} U U{B}tu.v!: (=, V]Eﬂ{f}}

By {1) it follows that tp A.€¢ (x=¢) and hence tp A, =@ (x=£). Now let
Xicg, BcZ with tp Xy=¢, and tp B=¥. Put Y,={v=n:B(18,2@); Then
tp ¥1=#,, by the definition of ¥. Hence, by (ii), there is v2Y, such that either
A {v} & D(S) or | (X% {v})|=aw. Since B' has the w-covering property for
5, this implies that in either case §,= U {4, :ac X;) and hence B | {4, :acX,)=@.

Lesma 2.6, Suppose thar x is an infinite cardinal and

@10 () (a5, )

holds. Let Z, (v=n) be ordinals such that w=E,<x* (v=n) and let Z=
=3 {efviv=n). Let W=min {3 {x*:veY):Yon, tp Y=n,}. Then

I g
a (&)~ (et ¥)
holds,
ProOF. Let (4,:2=<¢) be a system of subsets of = such that tp A, =x®n, (x=£).
Let { S,:v=n) be a decomposition of Z with tp S,=x" (v=#) and §;=5,=....
Define a partial function f from £3n into w having domain
D(f) = {(ee, v):tp (4,11 S,) = =}

Sl v) = min {n: tp(4,MS,) = %"}

and such that

for (e, ED(S).

By (2.10), and by the fact that tp 4, =x%n, (2=~) it follows that there are
Xicf and Yyon such that tp Xi=,, tp ¥i=m, and X< Y,cD(f) and
|F X )| =w for all ve¥;.

For each v ¥, the set L) {4, 5,:a€X,) has order type less than #® and hence
S U{4,M8,:a€X;} has order type x%. Put B=U{S,:v¢ Y}\U{A.,ZGEEL}.
Then tp B=% and BMd,=0 for zcX,. This establishes (2.11).

3. Discussion of the relation (2.1). The aim of this chapter is to give a discussion
of the relation

e ot) = oz )"

for p,T=m; and o=ey. We are going to give a complete discussion under the
assumptions M=y, =g
Our main positive result is

Acin Maornomaned Apedetnios Scienhiarum fTungdricas 37, 1074
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Turorem 3.1.

1al
a) [a}:] [l m, Jor n=w ‘and n=ET=y
1 .
b) (m?-ll.-y]_"[ﬂm:rl-‘.' ﬁi] for t=uwy, tHy=wty and y <o
1,1

c) [ 14 r] [m?ﬂﬂ 3 for wdl=1=wyof(wl) =y and 7= w.

PrOOF. a) 15 a trivial consequence of the fact that the union of w, sets of type
=i has type —=wf.
b) is a restatement of Corollaty 24 if w=r. If 1=w then t+7y=w+7y im-

plies y=wm+y and hence the statement is true by the special case (n:lrg*”] -

|
v (ﬂ??” ;,ué.] of Corollary 2.4.

We prove ¢) by induction on . In case 3=0 let {S,:v—=ay) be the standard
decomposition of @i and assume that 4,cwi, tp A, =P for x=w,.
Now for each a—=m; there are n(x)=w and waj<wm, such that

tp (4, M8,) = wi™ for W) =v<ws.

There is a Defwy]* such that n(x)=n [or w£D, where n is some fixed integer,
and then it is easily seen that

tp (i~ U {4 oeD)) = wi.

We now prove c) by induction on y—=c. Assume the statement is true for
Let (5,:v=mw,) be a standard decompesition of wi*7*'; and assume A cCwi*?t,
tp A, =1 1* (y =@y}, Then for each 2=y, thereis v(x) such that tp (A4,MN8,)=
=@g 1t for v{z)=v—=w,. Choose v so that tp (4,N8)=wf ™" for all a=a,.
By the induction hypothesis there is a Dé[w ] such that

tp (S)\ {4y 2€D)) =

MNow our aini is to show that the rather simple positive results of the last theorem
are best possible.

TuaroreM 3.2. Adssume 1=y,
(3.2) If 2% = @, and of (t}) = » then

[ﬁ] 2 [m:;ul a:-J

ﬂh oy LI
[ ] +[m'f'-“: wi) -

(3.4) IF 2% = W, and cf (f) = o, then

(@) g )"

Actd Mathematica Acadatnioe Setentlgrum Hungarioge 31, 1078
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Proor of (3.2). Let (§,:n=ew) be the standard decomposition of e and let
tp S,=ws~ (h=w). We apply Lemma 2.5 with E=ay, 1=w, =1, &=y, =,
With this choice of the parameters the @ of the lemma is of+1, while ¥=wi,
Henece, by the lemma, we only have to prove that 2= implies

a9 (@)+G L)

We prove this relation under the weaker hypothesis: There is a sequence of functions
«5%0 (x=ex) having the property that for any ge%w, there is f=w, such that
{n=w:glm)=f,(m)} iz finite for all a=F (ie. there is an w,;-scale).

Assuming the f. (x—=oy) satisfy the above, we now define a function o
Xm—+w by

{3.6) Sl vy =100,

Let Defoy]™, Nefw]® and suppose that f"(Dx {n}) is finite for all nEN. Then
there are integers g(n) (n=e) such that f{n)=g(n) for all €D and nEN, a con-
tradiction. Thus {v=w:|f ”{D){{v}}iﬂm} must be finite.

Proor oF (3.3). The idea of the proof is very similar to that used in the proof
of Lemma 2.5, and supggests how that lemma can be generalized. We did not bother
to state the generalization since this is the only instance where the stronger statement
would be needed.

First we prove:

(3.7) There iz a function fro,xoy--w such that for all A, Be[a]® there is vEB
with | f*{{AND> )| =c.

Incidentally, we remark that (3.7) implies the relation
Gy == [Q’J]?J.-cw

which does not seem to have been noted previously.
To see (3.7) choose a sequence of functions f:e—+w for x=ew, in such a way
that, for all fi=z=aw,, f(¥)=F(v) for all but finitely many v. Now put

.ru{"l} rﬂr P == wi:r
0 otherwise.

Jlav) ={

Let now A€[m]™ and put T={v=w:|{f(z v}:aEA\v+l}|-:w}, We want
to verify that BNT=¢ for Be[oy]™ and this follows if we show that [T|=wo.
Assume |T|=w,;. Then there are T"¢[T]™ and n—=w such that

W00 gedy+1)] =n for veT"

Let vy=<..<Vy=..=#=..=<% be ordinals such that weT’ for k=w and
@64 for i=n. Then there are {#j=n such that £ (vw)=£.(v) for
infinitely many k, a contradiction.

To finish the proof of (3.3} let {S.:v—=e," be a standard decomposition of
wi. For v=em, let {B):n=w) be a paradoxical decomposition of §, for v=a,.
For a=ay let A,=U{Byn:v=a}, where [ satisfies (3.7).
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It follows, just as in the proof of Lemma 2.5, that (A4 :e<e,) establishes the
negative relation (3.3).

ProoOF OF (3.4). Let {(S,:v=w,) be the standard decomposition of mg. where
tp S,=wi- for v=wm.. We apply Lemma 2.5 with E=ui, y=ws, ma=1, &=y,
Ny=t,. Then @ and ¥ of the lemma are respectively @®*'+1 and wi.

Hence by the lemma it is sufficient to prove that 2% =i, implies

a9 v R L P O

This isa trivial corollary of the fact ([6], Theorem 17A) that 2% =g, implies

FEER

We need the following extension of Theorem 3.2.

THEOREM 3.3, Assume T-=wy, 7=y,
fa) fff 2%o=% and cf(t)=w then

{ 1 L3
Sl
(by If cf {t)=cwy; and y=0 then

(3.11) [ m] [ o] m“]l'1

(&) If 2M=4, and cf (=, then

1.1
(3.12) [mm) [m,&,ﬂﬁ“g] ;

Proor. We prove all these statements by induction on y-=c,. Since there
are notable differences it will be convenient to give the proofs separately.

Proor oF (3.10), For y=0 this is (3.2). Assume y=0. In the case y=d+1
we can take identical cross sections. Now assume ef (y)=w. Let (S,:n=a) be
the standard decomposition of mi*?, tp § =wi*". Let A4"=(AZ:a—=w,) establish

1 3
[ﬂ];’ﬂl'rp] —}= [ﬁlg’+""r=+ 1 ﬁ%] m SH for n—=qb.

Let (Bf:k—=w) be a paradoxical decomposition of 8, for n=w. Let [t &y Xw—w
satisfy’ (3.6), For e—=wy put A,=U{4:: u-:m}U{Bﬁ“}:n-r.m}. Clearly
tp (AN (U{S;i=n)<wi*? for n=w, *and henee tp A, StV (x=m,). Assume
Defeny]®e. Then, by the choice of the A%,

tp (S, Ufd,: aeD}) = wf
for all n=wm. Also, by the choice of the 87 and f,

Bt 2D n = w}

Artd Mathomations Academiae Sclentlarum Hiungarioaoe 37, 1078
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covers an end section of wi*Y. It follows that
tp (w5 "\ U {A,: 26D)) = of.

ProoF oF (3.11). Let {S,:v=w,; be a standard decomposition of wji**. In
case =1 take identical cross sections of systems establishing (3.3). In case 3=
=#+1=1 take identical cross sections of the inductive systems. In case cf (y)=w
take cross sections, It is easy to check that this system satisfies all the requirements.
(In case cf (y)=w we need the fact that cf (r)=w,=w.)

ProoF of (3.12). For y=0 thisis 3.4. For cf (y)=w take cross sections. Now
suppose that y=8&+1 and let (§,:v=ew,) be a standard decomposition of wi*7.

L
Let A*={Al:x=w,) be identical copies esatblishing [w(gia]—r-[m?+1£a+| m;]

on §, for v=w,. Let (B:n=o) be a paradoxical decomposition S for v—=e,.
Let fimy <oy establish (3.8). For g=e, let

Ay = U A v = o UU{B} g0 v = oo}

For each v=ay, A, NU{S;:p=v}=0g*"*%.(v+1), and hence tp A,=q*'+4+1
for m=w,, Now, by the choice of B! and f the union of every w, A, covers an
endsection of wi*® By the choice of the 4} the umion of every ey 4, omitsa set
of type less than wifromeach §, (v=wy). Since cf (wf)=ay it follows that

tp (et U {d ae DY) = wf
for all De[w,]™.
We claim that, assuming 2% =4g,, 2%=4,, Theorems 3.1-—3.3 provide a
complete discussion of (3.1). We may of course assume that ¢, t1=¢. Incase c=w
(3.1) is true by Theorem 3.1 a) and b). So we only have to investigate the relation

1 L1
(3.13) [& [ mﬂf;:

for 1=p=uy, y=0; and @+1+y=p. If r=o the statement is true by Theorem
3.1 b). Hence we may assume t=¢. { can uniquely be written as g=t+¢g". If
cf (t)=w or cf(z)=w;, then (3.13) holds iff 14+y=¢. I cf{wi=w,, then
(3.13) holds iff y==g’. These follow from Theorems 3.1 and 3.3 and the elementary
fact that p'=y<sd+p =d+y for any 4. To conclude this chapter we give some
results about possible improvements of our theorems.

An easy iteration gives the following improvement of Theorem 3.1 c);

If w+l=1=aw,, cf (Wi=wy, 0=y=ay, and n=aw, then

£y 1 Lo it
m;+r - ‘_u;u+t+w UJEH A

1.1
m+9.] —'-[ 42 n.!-l-l ] for n-=w.

In particular,

We omit the proof of this, but it is intriguing to note that this cannot be im-
proved by replacing n by w.
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THEOREM 3.4

L1
m+1] [ eIy | mm+lm]
iv consistent with G.C.H. (e.z. holds in L},

ProoF. We apply Lemma 2.3 with' =y, =y, 1=y, =1, §;=uh, |=
E=wi*? =@ for v=w,. Itis easy to check that ¢=of 1+, F=wf"w
Hence we only have Lo establish the consistency of

() (e )"

This follows from the following statement:

(3.16) There is a function iy Xwe—w such that for all Ac[m )", Belw” there
i a veB 5o that f7{Ax{v))=w,

This has been proved to be consistent with G.C.H. by Prigry [14]. Later Junsen
[10] showed using morasses that Prikry's result (3.16) holds in L. )
Finally we are going to prove that (3.3) of Theorem 3.2 is best possible.

THEOREM 3.5. dssume t=ay, cf (ti=m,, E=w,. Then

(08) = loge )™

In order to prove this we need a lemma on set mappings which is similar to
a theorem of ErpGs and Specker [15].

Lemma 3.6. Let E=w, and let fiw,—Plw,) be a set mapping on wy such that
tpf(x)=<E for all xEaw,. Then there are X, Ye[on|™ such that f(X)NY=@. where
Y denotes the closure of ¥ in wy.

Proor. We will assume that the lemma is false and obtain a contradiction.
For U Vca, let SU ¥V)={xcU:f(x)NVP=@)}. Suppose 4, Bt[m,]"
and that

(3.17) |S{A4, ¥) =%, whenever Y B and D =[¥| = Re

Choose x,6 A, ¥o6 B so that f(x)={y}. Now let O0=v=wm, and suppose that
we have already chosen x,€4, 3,8 for p=v so that f(X)1¥,=@, where
X.=lx.:p=v) and Y,={p.p<v}. By (3.17) there is x,€S(4, ¥)\X,. Choose
y.EB so that ¥, UF(X, LJ {x, f}c:{ w,}. Then, contrary to our assumption, the lemma
is satisfied with X={xv=a, and Y= [v,:v=w}. It follows that, whenever
A, Befuy]™, then there are x(d, BYcA and ¥(d, B)C B such that 0=|Y(4, B)|=
=4, and

SX)NY(4,B)=@ for all xcA suchthat x = x(A)
We now define ordinals a,=w, for w-=g, by transfinite induction as follows.
Let v=ewm; and suppose that we have already defined o, for p=v. Let f,=
=sup {a,: f="v}, B={p:fi=p=0y) Let Y, =Y¥(B,B) x=x(8,.8) and

Actd Mitlhemativg Acodetnioe Scientiorum Hunjericae 12, 1578
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choose a,<=w, so that ¥l {x}f(x,)={x,}). This defines ¥, and =, for all v=ey
so that =¥, =... and

fONY. =@ for p=v and w2, =x-<a,.
It follows from this that tp f(x;)==¢, and this is the desired contradiction.

ProOF OF THEOREM 3.5, Let {§,:v=cw,) be the standard decompesition of wj,
and let {A,:x<w,) be a system of subsets of w] such that tp A, =l (x=uw;).

For a=<wmy, let fa)={v=o:tp (4, S)=wf). Then tpfla)<E (x=w,).
Therefore, by Lemma 3.6 we can assume that

(A, N8)=wf for ov=uy.

There is no loss of generality il we assume that 4, & (x-=w,) and then for
#, v-=¢y; there is an integer n(x, ¥) such that

(3.18) W = tp (A, 15,) = @0+,

MNow for a—=wmy thereare g{g)=£ and t(z)=wf such that tp 4 —efala)+
+7{x). Hence, there are ordinals pu? (o=oc(x)) such that pf—=pf=....glz)=
= [y :o=o(a)} is closed in w, and

tp(ANTULS: e =v =0 = w8 for o= ofu),

tp (4, NS g = v =y)) = 1(2).

Since tpgla)=¢, it follows from Lemma 3.6 that there are D, E€[un]™ such tha
2(D) N E=.

Suppose that for some xeD the set {n{x, v):vEE)} is unbounded. Then there
are weE such that vy=w=... and n(z, vo)=n(x, v)=.... Therefore, by (3.18),

tp (A, NU{S,: | = o)) = of

and hence v=sup {v;:i=w}eg(x). This contradicts the fact that g(z)NE=a.
It follows that, for each 2D there is n(x)=w soch that sfx, v)=n{x) for all
v£E. There is D, e[D]™ such that n(x)=n for all €D, and hence tp (S, ML
| H{A4:ae D)) =0k (veE). It follows that tp (i {4 12cD))=

4, A discussion of (2.2). In this section we discuss what happens when the term
ey on the right-hand side of (3.1) is replaced by wm, i.e. we are going to investigate
relations of the form

l w 11
@) (@) oz &2

for o, t=ws and o—=wm,. We have already indicated in §2 the need to restrict
our atiention to the case o-=w,. For this case we shall give a complete analysis
of (4.1} under the assumption 2¥=g,. The main part of this section and the next
is devoted to proving the positive relations stated in Theorem 4.1. The negative
relations given in Theorem 4.6 are much simpler to prove.
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THEOREM 4.1. Assume h= 8. Let o=y, pg=w 4y, where E=wy and
1 9
v=uy., Then

(4.2) [E]*[;JE]: k<o and E=D0,
@43 ()~ (o)™ v d@=0 o .
)5 e

Remarks. 1. We do not know if the 1 on the right-hand sides of (4.3) and (4.4)
can be replaced by wm.

2. The relations (4.3), (4.4) show that the situation here is significantly different
from the case of (2.1) (at least under the assumptions 2%=g, and 2M=g) By

Fth“[t"m .!,l thﬂ rﬂ]a‘.iﬂ”

holds for y=w+1, but it is false for y=w+2. In fact, by Theorem 3.3, we even
have the stronger negative relation that (assuming 2Mi—g.)

|
(agte) = lag11 ot
holds for all d=ay.

Our proofs of (4.2)—{4.4) are quite complicated, and we need several lemmas,
The main idea is most clearly seen in the proof of (4.2). The reduction lemma (Lemma
4.3) enables us to faithfully represent a system of §, “small” subsets of w] (=w1)
by @ system of “small” subsets of a countable set of type w’. Using this we ecasily
reduce (4.2) to a known theorem for countable ordinals due to BauMGARTNER
and Haiwar [3] that

e} i) 1.1
{4.5) [m:] - [my]a (k= ; 4 = o).
The same ideas are needed to prove (4.3) and (4.4) but we need generalizations
of (4.5) (Theorem 4.2) and the reduction lemma (Lemma 4.3).

We first introduce some special notation. Let | =a=wm and let E=(;, ..., £,_,)
be a sequence of indecomposable ordinals of length n. Put ME)=&x ... X1,
the cartesian product. If n=1, we write § to denote the sequence (&,, ... &,
obtained by deleting the last term. Also, for X< IT(E) we denote by X the projection
of X into (), For wef, , and XcCII(E), define X'=XT(5X ... % o {u))

and Foi=X7

We now generalize the concept of a fill-sized subset of an ordinal, ie. we shall
define a relation X€F(E) for subsets of IT(E} by induction on the length of E=
={Cgy--1bn-1)» FOr p=1, X€ F(E) if and only if X 15 a subset of &, such that
tp X=£;. Now assume that a=1 and that F(n) has been defined for sequences
of indecomposable ordinals of length n—1. Then Xe F(E) il and only if X< IT(E)

and tp {ucé,_,:R@cFE)}=¢,_,.
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We now define the polarized partition relation

@)  (a)"!
) (&)= ().
for a sequence E=(Egy ... £yoq) of indecomposable ordinals as follows. The rela-
tion (4.6) means that whenever oy, XE—=k then there are De[on]® and a full-sized
ser Xe F(E) such that DX.X iy homogeneous for f. In the case n=1 this definition
agrees with the normal polarized partition relation.

In order to prove (4.3) and (4.4) we need (4.7}, a generalization of (4.5), and
i4.8), a consequence of (4.5).

THEOREM 4.2. (a) Let 1=n, k=w and let §=(&y, ..., £,-1) be a sequence of
indecomposable denvmerable erdinals. Then

47 (2) - &)

(b) If y=ey, then
L1
s o 18 0 . R

We postpong the proof of Theorem 4.2 until the next section and proceed
with a statement and proof of the representation lemma (Lemma 4.3) and its ge-
neralization (Lemma 4.4).

LemMa 4.3, (Reduction lemma.) Let y=w; and let {(A;ia=an) be a sequence
of subsers aof wi swch that tp A,<wi. Then there is a countable set X< wl such
that tpX=w" and tpANX)=w® for all x=wm;.

Proor, We will prove a slightly stronger statement, Let g,=min {g! tp 4, =g
(z=uwy). Then there is XCwj such that tp X=w® and

i34 tp (AN X) = w? (- wy).

The proof is by induetion on 4. For 3=0 the statement is trivial. Now let
0=y=w, and assume the result is true for smaller ordinals. We can assume that
A,= @ (e=e,) and hence that p,=p/-+1. We distinpuish the two cases (1) y=
=d+1 and (2} of (Y)=w.

Case 1. Let {5,:v=w,) be the standard decomposition of wi. Then tp &5, =
=i (v=an). Wow for each z-=m, there 1§ v,~=wm, such that tp (4. 8,)=wi
for v,=v=a. Choost a set Dcw, such that tp D=w and such that v.=v
for all x=ey and veD. By the induction hypothesis, for each veD there is a set
X,c8, such that tpX,=o® and tp(Ad,NX)<=w’ (x<w;veD), Put X¥=
=\ J{X,:veED). Then tp X¥=w' and (3.4) holds.

Case 2. Let (S,:n=w) be the standard decomposition of wi. We can assume
that tp §,=wi-*! (n—=mw), where {y,:n=wm) is gn increasing sequence of ordinals
with limit y. Let (§,,:v—=m,) be the standard decomposition of S,. Then tp §,,=
=wi* (n1=w; v=w,). For each z—=w, thereis v,=w, such that tp (4,115, )=cl=
for all p=w and v,=v=a,. Choose ¥ <w, 5o that v,—=7" for all x=uw,.
By the induction hypothesis there are sets X,C §,,- (n=wm) such that tp X, ="
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(n=w) and tp (4, X)=w% (a=w;; n=w). Put X=U{X n<=w). Then tp X=
=w! and tp (4, MX)=wlk <=wt (a=wm,).
We now prove the generalized reduction lemma as follows.

Levma 44, Let l=n=w, E=(&, ...afiq)y wWhere Ei=ali, y=wy and xE
=dw, w,) for i=n. Suppose {A,:¢=w,) is a sequence of subsets of I(E) such that
no A, & full-sized in TI(E). Then there iz o sequence X=(Xy. ..., X,_,) such that

kb, tpXi=w® (i=n) and no yer A, I(X) it fill-sized in IT(X),

Proor. For n=1 the statement is either trivial (if xy=w) or follows from
Lemma 4.3 (if #y=w,). We now assume that n=1 and use induction.

For cach a=w,, put B,={ucé, ,:AEFE). Then by the assumption
that A,§ F(E), it follows that tp B,=<¢&, ;. Therefore, by Lemma 4.3, thereis X, _,
=&,—y such that tp X, _j=wmh-1 and tp(B.NX,_)=awi-1 forall a=e,.

Now consider the system of sets (AY:x=ay, ucD,), where D, ,=

={ucX, ;AN GF {E]}. By the induetion hypothesis it follows that there are sets
Xi=¢&, for i=n—1 such that tp X;=w" (i=a—1) and such that

AP OIX)EFX) (2= o ueD,),

where X=(X;, ..., X,_)) and X=(X, ..., X._a).
To complete the proof we have to show that for each a=ew, theset A,M111(X)
is not full-sized, i.¢. we have to verify that the set
C,={uck,_,: A" NoX)eFX))

has order type less than w1 Now, if u€C,, then u€X, D, and so A™ ¢ F(E).
Thus C€,=B,MX,., and so has type less than w’-1.

We now use the reduction lemmas to obtain “higher analogues of (4.7) and
(4.8). The special case n=1, #,=cw. of Theorem 4.5 (a) gives (4.2).

THEOREM 4.5. Assume 2Pe=n, .
() If I=n, k=w, E=(&, ..cx ficrh Si=uf, Yi=wy, #€ {w, we} for i=n, then

“9 (%)~ (&)
(b) If 4 =aay, then

(- (1)

PrOOF, (a) Assume this is false, Then there is a function ey X JI(E) -k which
disproves (4.9),
For each Defwy]™ and j<=k, put

A, J) = {xeME): F (Dx{=) = {J}}

Since f disproves (4.9) it follows that the sets A(D, j) are not full-sized in IT(E).
By the hypothesis 2%=#, there are at most #, sets A(D, j) and hence by Lemma
44 there is a sequence X=(Xp, ... X,y) such that X cxl, tp Xi=w% (i<=n)
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and A(D; 7yNIIX) is not full-sized in [T(X) for Defe]® and j=<4k. It follows that
Sy (X)) disproves
(3) -G
n nh

where n=(w", ..., @™-1), and this contradicts Theorem 4.2(a),

(b) The proof is essentially the same as the proof of (a), Assume that there
is a partial function f from m, ¥ w} into @ which disproves (4.10). For each D¢ [a,]”
let AD)={=wl:(DXENND(f)=@} and B(D)={=wl:Dx{cD(NA
Al (D% )| =w). By the assumption on f, A(D) and B(D) have order type
=mi for Defeny]® Therefore, by Lemma 4.3, there is a set Xcwl such that
tp X=w' and A(D)NX and B(D)X both have type =o' for each DE[w,]"

Thus flay ¥ X disproves
0y o [w ks
' e w'r et PR '

contrary to Theorem 4.2(b).
We now prove the main result.

Proor oF THEOREM 4.1. As we already remarked, (4.2) is a special case of Theo-
rem 4.5(a).

Also, (4.4) follows immediately from (4.10) and Lemma 2.6 (apply the lemma
with x=w,, é=w,, {;=0, 1=my=m=o} and = =g¢—7 (v<o}).

It remains to prove (4.3). Let x=cf (). Then x=w or w,. Let {r;:v=x) be
a strictly increasing sequence of ordinals with limit ey . Then 1,40 7w, & (v=x)
also. Thus we may write wf=wf " =(3{oi* iv=x}) 0. Put {=0f, &=x
Ga=w}, E=(&, &, &). Let =, denote the antilexicographic ordering of IT(E).
Now there are pairwise disjoint sets S, ((u v, HEM(E)) such that

of = U{S,, o0 (1, 5‘]5”@} P Sy v l—"”
(4.11) [gf“ﬂ.cs':h,,, for (u, v, 9}-%{,":&. 6).

Suppose (A,:xz<wm,) is a sequence of subsets of wf such that tp 4,<w]
(=ay). In order to prove (4.3) we have to show that there are D€[my ] and Coodf
such that tpC=af and A,NC=g for all ach.

For z=ay, let B,={(p. v,Ncl(E):A,NS, ,n=E} Clearly, for fixed
v=x and B-=mi,

tpfu = wi: (v, DEB) =tpAd, = w3 (x =y,

and so the sets B, (@x<=w,) are not full-sized in IT(E). By Theorem 4.5(a) (for k=2)
it follows that there are Défan]® and BcH(E) such that B is full-sized and
B,NB=g for all zcD. Put C=U{S, ., »n:(L v, OB} Then, by (4.11) and
the fact that B is full-sized in IT(E)., we see that tp C=wf. Moreover, by the defini-
tion of B,, we have A, (NC=¢ for all zeD.

We conclude this chapter by showing that the positive results of Theorem 4.
are best possible.

THEOREM 4.0. Lot t=wy, cf{t)=w,, O=y=ay. Then

(4.12) [Q " [ﬂ,g.a!]Jr, :f;]m,
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and

o I ) y % |
4.13) m;*{?] 4 [-:o;’*"f+l m;] :

Proor. It is easy to see that (4.12) follows from Lemma 2.5 and the relation

(4.14) [ ] [I [m, w.mr]

(Apply Lemma 2.5 with {=w,, &=w, n=pm=a, =1, E,=wi" (v=m,), where
7, 7. An easy compuiation shows that E=%¥=uf and d=ww,41). Now
in order to prove (4.14) consider the function ey Xoy—~w given by fiz, v)=
=/f.(v) where the f, are pairwise almost disjoint functions in 2. Now for A €[m,]”
and Befen]™, there is va€ B such that f.(ve)=f-(vy) whenever «, o are distinct
elements of 4. Thus f"(AX {v.}) is infinite. This proves (4.14) and hence (4.12).

To prove (4.13) use induction on y. If y=0-+1 take identical cross sections
of the inductive systems establishing the negative relation for wi*s If of (y)=w
take cross sections.

We remark that if we assume the transversal hypothesis, TH(w,): there are
wa almast disjoint functions in 4o (which is known to be true in L and false if Chang's
conjecture: holds), then the argument used abowve yields the following stronger
statements:

@19 i S A T 8
(4.16) [ﬁ} =i {m‘z'*mli+] rﬂ]m if cf(t)=w,,
@) o) (e of ' d@=a, 0<y<ay

Finally, we note that in the case t<ew,, cf (t)=w, there is a gap between the
positive result (assuming 2% =1,)

(o) = oz o)
i) T o of
given by (4.4) and the negative result given by (4.12). This gap is edsy to fill as the

following theorem shows. Although this does not follow from Lemma 2.6, the
proof is similar,

TueoreMm 4.7. If t=my, of (t)=w,, and b-=wm,, then

(-l
i) T \ago, mf) -

Proor. Let (S,:v=w,) be the standard decomposition of wi and let
{A,:a=ew,) be a system of subsets of wi such that 1p 4,=w¥w,. For each a—um,
there are (o=, and nlx)=m such that tp (4, ﬂS,}c'mEf"J' for vlal=v=ue,.
Now there is Do, such that tp D=4 and n{a)=n for all xzeP. Clearly
tp {oi U {4, ;o€ DY} =wh.
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5. Proof of Theorem 4.2. As we have already mentioned, both statements of
Theorem 4.2 are generalizations of (4.4) which 5 a result of BAUMGARTNER and
HaiwaL [3], and both can be proved with the methods used there. Since [3] appeared
F. Garvin [§] developed an elementary method to obtain the results of [3] and
after we obtained Theorem 4.2 he kindly informed us that his method can be used
to prove this theorem as well. However, we decided to give our original proof since
it can be explained in less space.

As in [3] both statements will be proved first under the assumption that MA,
holds (for Martin's axiom sce e.g. [12]). Then we exhibit partial orders which are
well-founded iff the corresponding statements are false. This will show that if the
statements are true in the standard model of Solovay and Tennenbaum yielding
the consistency of My , then they are true in the ground model i.e. they are true
in ZFC.

First we describe the partial orders.

a) Let E=(w:i<n), D=y,=ay (f=n) and let iaXIT(E)—~k be given,
Let ¢ be a one-to-one mapping of @ onto I1(E). For m=w and i=n we write
@{m, 1) to denote the i-th coordinate of o(m)cII(E). Let P be the set of all pairs
of sequences (fa;: j=</), (u;: j=1)), where /=w, the @; are different ordinals
<y for j=<I, w;=(uy 0, ...y, }EM(E) for j=<I,

uy, < up,i iff @4, 1) = @(f',§) for j=<j" <1,

and such that f is homogeneous on {a;:j=/}x{u;:j=<I). The partial order is
defined on P by the rule that ((a}:j=I"), (ujij=I")) is an extension of
({2 j=0), (w;zj=<I)) i (oj:j=I") is an extension of (x,:j=/) and (u}:j=[")
18 an extension of (w;:j<I).

b) Let y=¢, and let f be a partial function from ;w7 into w. Let ¢ be
a one-to-one mapping from @ onto w'. Let P consist of all pairs ((z;:j=n),
(u: j=1)), where I=w, the o; are different ordinals =, for j<I, u;=w", u,=u,
iff p(f)=p(j) for j=j"=I, and such that either ({a;: j=I}{u;:j<iHND(F)=0
holds ‘or {u;: j<I}X {u;: j<I}cD(f) and f(a;, u)=f (@, u;) for j=j', f'~L.
The extension is defined as in case a).

We leave the reader to check that these partial orders have the desired pro-
perties and proceed to derive the statements (4.7) and (4.8) from MAy .

ProoF oF {(4.7) FROM MAy . Let E=({;:i<=n) be given, where =w’, 7=y
for i=n<=m.

For XcII(E) we denote by X the projection of X into &,_,. A subset YcX
will be called a seetion of X (in [ (E)) if X=U{X":u¢8} and S is a section of X,

Instead of (4.7) we are going to prove the following stronger statement.

(5.1) Assume froyXIE)~k, where k=ew. Then there are a full-sized subsct
X&), increasing sections XycXyC... of X (in II(8)), and functions
mien—~w, jien—k such that (i) X=U{X;:i=w} and (i) " ({e}x
XX Xu@))=1/ () (e {a}xX (X~ X,») 15 homogenzous for [ in
the colour j(z)).

We prove (5.1) by induction on n, the length of £, For n=1 this is just Lemma
3 of [3]. Now assume n=].
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Since f may be considered as a map from (e, % ,_,) X JI(f) into k, and since
wy % £,y has cardinality cwy, it follows from the induction hypothesis that there
are sets ¥, ¥, (i=w) and functions myie,X&,~+® and jien X, ,—+k such
that Y is a full-sized subset of IT(E), the ¥; are sections of ¥ (in IT fE}}, W= Xy
Y=U{¥:i=w} and
(5.2) F () XY\ Y, i) % () = (o (o, w))

holds for all &=, and wef,_,.

Applying the induetion hypothesis once more for the function j; ey X &, -k,
it follows also that there are sets Z, 7, (i=w) and functions myle,-+o and
Jimy—k such that Z is a full-sized subset of £,_, (i.e. has type §,_,), the Z; are
sections of Z, Z,cZyc.... Z=U{Z;si=w} and

{5.3) Ale,w) =jla) for @ = oy and weZNZ, 0.

Put @.(u)=mylz, &) for e=o;and ucZ. By a lemma of K. KuUNeEN (see e.g.
[3]), MAy implies that there is a function ¢@:Z-—-w such that

(5.4) o ()=o) for all bur finitely many weZ

holds for each o=, y

Let X be the full-sized subset of IT(E) such that ¥=Z and X"=¥"Y,u
(wcZ). Let X; be the section of X determined by Z; (i=w). By (5.4) there is
iy - such that mix)=m(e) (x=w;) and such that ¢, (w)=@(u) for all
MEZNZ ey (@=on). Now for m=ay and w€ZNZ, i, we have ¥\Y, D
S ¥\ Yow=2"™ and hence, by (5.2) and (5.3),

S (e B u) = Ll 00} = {it)},

I X (XN X)) = (@)

PrOOF OF (4.8) FROM M Ay, . Let now f be a partial function from oy X @’ into
w. By MAy we know that
o AL
[m' - [w'f B

This 15 a theorem of [3] and in fact is a corollary of (4.7) just proved. Therefore,
we may assume that D{f)=m,®Xw* We can also assume that y=0. Let
X n=w}l=w' be a one-to-one enumeration of w'. We define a sequence
} Voin=a} of elements of w; and a sequence {¥ :n=w} of subsets of @, by in-
duction on m=cw as follows, ¥,=m,. Assume that n=w and that ¥ cw]™
and y; (j=n have already been defined. Choose a subset Z £[¥]™ such that
£, % {x,} is homogeneous for f. Let y, be an arbitrary element of Z, and ¥,.,=
=Z.x{n). Let 4,={n:in=w} and Bi=w". If x,EB;, then f"(4dix{x.=
=f"({y;i=n}x{x,}) 15 clearly finite. This proves (4.8).

Mote that in both (4.7) and (4.8) the e« on the right-hand sides can be replaced
by any a=m;, but we do not need this.

6. The case of ¥, sets. The first aim of this chapter is to prove an analogue
of Theorem 1.1 for the case of &, sets. This will show that the critical number for
which the **R,-phenomena™ appears in this case is w;+2 instead of e,.
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Tueorem 6.1 Jf y=y, then

" 1 11
o e

Proor. We use induction on y. The statement is clearly true for y==w, +1,
We now assume oh+l=y=w, and that the statement is true for all d=y. Let
w=cf{mi) and let {(S,:v=x) be a standard decomposition of wi, tp 5,=wl,
(v=#). By the induction hypothesis we can choose a system of subsets
{Alig=wsy of 8, (v=%) such that tp Al=ef"** and S,cl){dl:0eD) for
Delwa]”. We now distinguish the three cases 1 s=w,, (2) i=w, (3) x=0,.

Case [. Since y,<w, for v=wy, by Theorem 1.1, we can find sets Bjc S*

{ff=ey) cstablishing
()~ or 1)

We choose a one-to-one mapping o, of v into @y for v=m,. Now for w=das.
let A,=U AL v=allJ{B, ie=v}. Clearly, tp d,=wi*? for =y Let
De[ma]®, v=e,. Put Dy={aeD:v=a}, D,={aeD:a-=v}. Since either D, or D,
is mfnite. either U {aeD, A2} or U{aeD 1 BL o} covers S,. Thus U{A,:acD)
covers %, in any case. It follows that eicl){4,:xcD}. Hence the system
(Age=w,) establishes (6.1).

For cases 2, 3 take cross sections.

The partition telation just established shows the same “#.-phenomena’ as

i1
the relation [ﬁi] - [m!‘*r u]:r) . We do not go into details, but we will show the

following equivalence:

6 (et

The implication from the left is implicitly contained in the proof of Theorem 6.1,
and the reverse implication is an easy corollary of the following lemma. We leave
it to the reader to derive (6.2) from the lemma which we prove in detail since this
will be needed for other purposes.

Lemma 6.2, Assume =y and thar of (wl) is either @ or w,. Let (A :e=ay)
be a sequence of subsers of «f such thar 1p A=t for a=w,. Then there exist
Xowl, y=w, and Deéfma]™ such that tp X=wi and tp A, X=w) for all xcD,

Proor. Let x=cf(wd) and let (S,:v=3x be a standard decomposition of
wl. We distinguish the two cases (1) x=am, (2) x=w,.

Case |. We may assume that tp S,=wj*! for a=w=x Let {5, o=w)
be a standard decomposition of 8, for m—e. Let a=cyg. Using the fact that
tp A,,-:{.JF’*“. for each n-—e there are P, )=, and ple, m)=w, such that
ip (4,18, J=wf®n for ofx, ml<=g-=w;. Pot f{xy=sap {f{e n):n=w)} and
pla)= sup ?@&x, apn=w) Then f{x)=wm; and gle)=ws for z=ws Clearly there
are Delma]®, vy=wmy, and o=wy such that

Bley+1 =9 and gle) <o for acD.
Let X=U{S8, ,in=wm}). Then X, y and D satisfy the requirements of the lemma.
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Care 2. For each x—w, there are Blo)=w, and ple)=w, such that
ip (5,MNA)<cf™ for ple)<v=w,=% There are DE[wy]™, y=oy;, and o=a,
such that fi{z)+ 1=y and gi{x)=ec for aeD. Put X¥=U{(S;:6=v=ey}. Then
X, v and D satisfy the requirements.

We now try to investigate the analogue of (3.1) for the case of #,-sets, ie we
consider the relation

€ ) - e &)

for o, t=w,; and y=a,+2.
First we give an extension of the positive result Theorem 3.1.

THEOREM 6.2, Assumie 1=y, T+Hy=w+y, and y=w,+2. Then

€y I L
n‘.ﬂé-""'l i {,ﬂ?!”"-' il ’

MNote that for y=w, Theorem 3.1(b) yields a stronger result. For y=wy or wy+1
this can be considered as a generalization of ¢) of Theorem 3.1 as well, since, 1 +y=17
holds in this case. In case y=uw; Theorem 6.2 is trivial since among &, sets of
type =g there are ¥, with type <wj§ for some dé=e,. Assume now that
A, cwst=*! and tp A,=wf'*' for x=w,. Then, by Lemma 6.2, there are X<
coitettl Defm,]™ and y=g; such that

tp X =it and tpA, N X <=wmi

for weD. Hence our claim follows from Theorem 3.1(b).

One could conjecture that, at least assuming 2% =y, and 2%=n,, Theorem
6.2 gives the best possible positive result. However, we were not able to prove
this. We now discuss the problem by considering separately the different possible
values of cf (t). In case cf (r)=w, we already noted ((4.16) and (4.17)) that if
THie,) holds, then

i
(6.4) [2;3] A [w@’mﬁl ;‘;] Jor 1=y, offt)=uy
and
: @
(5.5) [;;3,} - [m?"‘l%'-J-l fﬂ’n] for t=uw;, cf(fl=wn;,, 0=y=m.
We are going to prove the following extension of this,
TueoreM 6.4, Assume TH(w,). If t=w,, cf(t)=w; and O=y=uw, +2, rhen

ﬂ?’ ¢ 1 i 1.1
[ﬂg-l-f] g [{H;;-F'}_i_.l u’l] .
ProoF. In view of (6.5) we only have to prove this for p=o, and y=w,+1.

Suppose y=ay, Let (§,:v=wm) be a standard decomposition of wf*™ such that
tp §,=w§*" for v=ay. Foreach v<wm, choose sets AIC S, (a=w,) establishing

(i ) 1 w j*!
it —t 0 o (- E
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For each v-—=um; choosea paradoxical decomposition (B} :n=wm) of §,. By TH{w,)
there are @, almost disjoint functions fian—w (z=w,). Now for x=wmy put

Al =U{dliv =), Al =U{[Bf: v=um,)

Ag=A404;. Clearly tp A,<wf'+1. The union of countably many A, omiis
a set of type —=mf from each 5, (v=ay). The union of countably many A covers
an end section of wi*™. It follows that

tp (witens U {4, ac DY) = wi

for all Defeo,]”.

For the case y=w,;+1, take identical cross sections of the systems obtained
for y=im;.

We now make some remarks about these results.

First of all, it is not worth continuing the induction of the last theorem beyond
y=wn+1. For, by combining the methods used to prove Theorems 6.1 and 6.2,
we can easily prove:

If THwy) holds, t=ay, cf(t)=w, and y=wm,, then

(@)l

Our second remark is that it would be sufficient for our present purposes il
we could prove (6.4) with @ replaced by ;. We do not know if TH{em,) is really
needed for this weaker relation, This leads to the following question.

ProBLEM |. Assuming GCH, does the relarion
(@)~ (- (o))
oy a5 R [ (ogese

The relation (6.4) should be compared with the positive relation

(&)~ (pon i)
wi) — lofa, ol

given by Theorem 4.7 (t=uwy, cf {T)=wm; and d<oy). This shows that the term
wfmy+1 in (6.4) cannot be decreased. Now (6.4) (obtained from TH(w,)) implics
the weaker relation

iy 1 (A
6.7) (m&]'*'[mé"ahﬂ mi]
which should be compared with (3.3) of Theorem 3.2, the corresponding result

for &, sets. We already saw that (3.3) is best possible (Theorem 3.5) and we now
show that (6.7) is also best possible, i.e.

| T
i [EJ?‘J*[agw, 3;] if t=a; cft)=a,.

Proor. Let (S,:v-=wm,) be a standard decomposition of w}. We may assume
that tp §,=wf for v=wm,. Assume A,Cwi (x=w.) and tp Ad,=wfm;. Then

hold?
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for each #=wm, there are g(a)j<=w; and n({z)=w such that tp 4,08, =wj™
for g(#)=v=w,. Thereare Pclwg]™, n=w, p=w, such that n(z)=n and p(x)=p
for weD. Clearly tp(wi\{4,:acD})=w;.

This concludes our discussion of (6. 3)in case of (1)=w, and we know, assuming
TH{w,), that our results are best possible.

In case cf (wi)=es, we already know, by (3.12) of Theorem 3.3, that 2%1=n,
implies

@
(69) i) = (ogritri o)
holds for j=uw,.

Again this can be generalized as follows.

THEOREM 6.5, Assume 2Pi=®.. If =0y and of(t)=ws, then (6.9) holds
for y=ay+2.

Proor. To see this in case y=w, just take cross sections. This works since
cf (wi)=ws. For y=w;+1 we obtain it fram the statement with y=m, vsing
the partition relation (3.8). We omit the details.

This shows that our positive result Theorem 6.2 is again best possible for the
case of (wi)=on, at least assuming 2Mi=4,. Unfortunately, we do net know if
the same is true in the case cf (1)=w. Our main unsolved problem is the following.

PROBLEM 2. Assume 2%o=13,. Iv the relation

o)+ ox 2]

true for some y,o+2=9=m-27

All our methods for constructing counter examples break down. We do know
that (3.2) does not remain true for 8, sets for t=mw, cf (z)=w. The following partial
result shows why we insist that y=w-+2 in Problem 2.

THEOREM 6.6. Assume 2Yo=w,. If w=t=wy, cf()=w and E=w,, then

(6 - g )

Proof. Let {S,:n=w) be a standard decomposition of wj. We may assume
that tp §,=wi** and y,=w for n=w. Let (S, o=w,) be a standard decom-
position of S, for n=w. Assume A,Cwi, tp A,c:m;"“-ﬁ for e=e,.

Assume now, that {=a=an. For each n—<w there is p(x, n)=a such that
tp (4,18, mﬂ{wr“ Put g(@)=sup {o(x, n)in=w). Since {x=w,:f=a=w,,
cf (z)= mj is a stationary subset of w, it follows that there are Dé[w,]* and p=uwy
such that g(x)=p for all acD. Using 2%=4y, it follows that there are D’c[D]*"
and a sequence (g,im=w) such that el n)=g, for w=el'. Considering
LIS, ,.:n=wm} has type w} this shows that it is sufficient to prove only that

(69) - o 2"

Arcig Mathemallcog Academige Scientiorim Hungaricae 11, 1878
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120 Po ERDOS. AL HAINAL AND E €. MILNER

To see this consider again the § and §,  as defined in the first part of the proof
and assume now that 4,cof, tp A, =wd*! for o=w,.
There are glo)=em, and FK(x, #)=a such that

tp (4,118, ) = wi™" for g(x) =p=w,.

Using once again that 2%e=4,, we see that there are Defw.]™ and k,=w (n=w)
such that ke, m)=k, for ocD. Let D'e[D]™ be arbitrary and let g=
=sup {olx):2cD’}. Then tp(A,NS, )=wf for g=p'=w,, n=w and z£D"
Hence tp (S, {4 ;e D))=aw, for n=m and the result follows.

We conclude this chapter by analyzing the analogue of (4.1) for . sets, ie.
the relation

10 (68) = (on 2"

for o, =y, and y=a,+2,
In view of Theorems 6.3 and 6.4, a discussion for (6,10) will be completed by
the following analogue of (4.3).

THEOREM 6.7, Assurne M=, [ft=oy, cf (0 =wor ws, =y, ¥ = 1+ 6 and
v=an+2, then
Wy I oy
(o) = (o i)™

Proor. 1t is clearly sufficient to prove this for y=ey+1. Assume A_cCwi*?,
tp d,=wi**! for w=m,. Now of (wit?) is either « or @, since d=ay. Hence.
by the Lemma 6.2, there are Xcwit?, y,=w, and De[m,]? such that tp ¥=wi+?
and tp (A, 1X)=wi for all z¢D. Hence the statement follows from

[P | I
wzt?) T le' wi*
which is (4.3) of Theorem 4.1,

7. Pointwise-finite systems. A system (A, :x-3) of subsets of § is said to be
pointwise-finite if each point of the underlying set 5 is a member of only a finite
number of the A, (x-=3x). In this chapter we investigate analogues of some of our
earlier results for peointwise-finite systems. This amounts to an investigation of
relations of the form

ey

for g, 0.7=wmy and x=w, wy, or we. While this leads to several quite interesting
new problems we shall not discuss this in the same detail as we did for the case
when the pointwise-finite condition is left out. The results we prove below give
the analogues for (7.1} in the cases #=w, m; and o, which correspond respectively
to the negative relations of (1.2), Theorem 1.1 and Theorem 6.1.

The following theorem is related to our earlier result ([7], Theorem 8) and so
15 the method of proof, but we believe it is worth giving the details.
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THeoREM 7.1, Assume 2Ye=g,. Ler y=wy, t=dy. Then

() (v 3"

) (s 2"

and

(7.4) 52 < LapssV T ot -

We need the following lemma which was also used in [7] (Lemma 5). For the
convenience of the reader we give the short proof.

Lemma 7.2, Let (T n<w) be a sequence of denumerable subsets of . Then
there is a pointwise-finite sequence (Cy:k—=w) of finite subsets of @ such that

(7.5) Cick
and
(7.6} s\ {C ke, iv finite for all n = .

Proor. We can assume that the sets T, are pairwise disjoint (since we can replace
them by infinite disjoint subsets). Let ¢, denote the least member of 7, and let
T,=Tx{1,}. We define the C, (k=w) as follows. If ke U{T,:n=w} put
Ci=. If kelU{T,:n=w) then there are unique integers m(k)=k and n(k)
such that k€T, ¢y, m(K)ET, 4y and iq T, for m(k)<i<k. In this case put C,=
= [m(k), k). It is easy to verify that the C, are pointwise-finite and that (7.5) and
{7.6) hold.

Proor oF (7.2). We prove slightly more. We show that there is a pointwise-
finite system {A,:k=w) of subsets of w} which establishes (7.2) and satisfies the
stronger condition that

(1.7 tpd,<wk for k=ua.

The proof is by induction on y. For y=0 the result is trivial. Now assume
that »=0.

Let {S,:v=cl(w]) be a standard decomposition of wj. By the induction
hypothesis, for each v=cf(w}) there is a pointwise-finite sequence (Al:k=w)
of subsets of §, establishing the corresponding result for tp (S,). We now distinguish
the cases (1) cf (wli=w or m, and (2) cf (wl)=cw,.

Case 1. Take cross sections in the natural way, ie. put 4,=@ and A, ,,=
= U {dp: v=cf (m])}. (Note that, in the case ef (wl)=w, we have that y is a successor
and for each k the w, sets 4} (v=w,) all have the same type.)

Case 2. By the hypothesis 2%=4; we can assume that [w]”={T,:v<=e}.
Let F,={T,:u=v} for v=w,.

For each v—=uwy, let {CJ:k=w) bt a pointwise-finite system of finite subsets
of @ satisfying the requirements of Lemma 7.2 for the countable system F, of de-
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122 P. ERDOS; A. HATMAL AND E C. MILNER

numerable subsets of w. Also, let (Bj:k—=w) be a disjoint paradoxical decomposi-
tion of S, (v=e,) such that tp By=wt and S,={B}:k=w} (see(1.1)). Now put
Ay =U{B: icC)} for k=w and v=uoy.

We know that tp Af<wh since CYck. Moreover, (A}:k<w) is pointwise-finite
since {Cf:k=w) is and the seis BY are pairwise disjoint. Finally, by (7.6) of the
lemma, we also know that
(7.8) tp{S.,\U{J;: keTh) = wd
for any TeF,.

Now put Ay=U{dl:v=m}, Af=U{d}:v=<ey) and A,=4[UA{ for k=w.
Clearly (A4, k=m) is pointwise-finite and tp 4, =wk.

Suppose D€ [w]®. Then D=T, for some p<w, and hence DEF, for p<v=w,.
Therefore, by (7.8) and the fidefinition of A,, we have

tp (S U{4,: acDP) =wf for p=v=uwm,.
Further, by the inductive property of the 4Y, we also have that
A = tp(SNU{A,: aeD)) = wg"
for any v—=w,. Combining these we see that
tp @R\ U{d,: 26D} = 3 {1 v= pl+of oy < o

Proor oF (7.3). Again the proof is by induction on y=wm,. For y=0 the
result is trivial. Also, the induction step in the cases when y is a successor ordinal
or an m-limit is very easy — simply take identical cross sections or cross sections.
The main difficulty in the induction is for the case cf (y)=wmw; which we now con-
sider in detail.

Let (S,:v=ey} be a standard decomposition of w} and let (A}:a=w;) be
# pointwise-finite system of subsels of S, for v=w, which establishes the result
in S,, ie. for v=aw, we have

(7.9 tp Al = wft (= ay),
(7.10) tp (S5 U {42 ae D)) = wgr forall Deloy]®.

_ Let w=v=w,. By (7.2) just proved, there is a pointwise-finite system
{Al:g=v) of ¥, subsets of S, such that

(7.11) tp A = wf,
(7.12) tp (S5 U{4Y: 2cD)) = ot for all De[v]™

By the hypothesis 2%o=#&. we may write [og]"={T,:p=wy}. For v=gy
define F,={T,:u=v, T ,cv}

Again, let w=v<w,. We define another pointwise-finite system {A}:a=v}
of %, subsets of S, as follows. By Lemma 7.2 there is a pointwise-finite system
(Crx=v) of g, finite subsets of v such that
(7.13) v {CY:ae D) is finite for all DEF,.
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Let (BY:a=vd be ¥, disjoint subsets of &, such that S,=U{B!:a=v) and
tp B =w¥. Such sets exist by the ordinary paradox (1.1). Now define

Ar=U(Br: 2eC?) (2 <)

Clearly the system (AJ:a=<V) is pointwise-finite since (Cl:a=v) is and the B]
(#—=ew,) are pairwise disjoint. Moreover, since A is the union of a finite number
of sets of type =wf, we have

(7.14) tpdl =of (z=v=u)
For the same reason we also know by (7.13) that
(7.15) tp (SN UAY: aeD)) = wf for DeF,.
Now define sets 4, ol for =, by putting 4,=A4;U 4], where
Al =LA v=alU A o =v=ay, a=v),
A= w=v=w, 2=}

By (7.9), (7.11) and (7.14) we easily see that 1p 4,=w§? (z=w,). Also the system
{A;:2=ey) is a pointwise-finite since the sets S, are pairwise disjoint and the
(Al:z=am), (A:a=em,) and (AI;x=wm,) are pointwise-finite. To complete the
proof we must verily that
(7.18) tp (o™ U {A,: 26D} = oin
holds for-any DE[u]>

Suppose Defay]® and v=w,. Either DS v is infinite or o=v=w, and D v
i5 infinite. In either case, by the definition of A, we have that

(7.19) tp (S U {4 2£D}) = ofr

by (7.10) or by (7.12). Also D=T, for some p-=w,. Let v,=sup ({u}liT,).
Then for v;=v=w, we have D& F, and hence

(7.20) tp (SN U AL aeDY) < e (vg = v = )
by (7:15) (7.18) easily follows from (7.19) and (7.20).

Proor oF (7.4). Again this is trivial for +=w,+2 and we use induction on 7.
For the case when 1t is an w or @, limit there is no problem, we simply take cross

sections. We have only to prove the induction step for the case when cf (@i =,
T = s

As usual, let (S,:v=wy) be a standard decomposition for @}. By the induction
hypothesis there is a pointwise-finite system (412 =w,) of subsets of S, such that

tpA =™ for g =um, Vv=aoy,
(7.21) tp(SSLU{AL: aeDY) = aft*? for DéfwJ* and v =w,.

_ By (7.3) already proved, for wy=v=w, there is a pointwise-finite system
{A}:a=v) of &, subsets of S, such that tp A=wf* (a=v),

(7.22) tp (SN U4 2€DY) = 0 forall Delv)”.
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Now put A= {4 v=a)U| {4y =v=ay, a=v} (z=m,). Clearly the
system (A,x=my) is pointwise finite and tp 4,=wi*® (a=oy).

Suppose Dem.]®. Put  we=sup (aylJD). Then for vwy=v—=w, we have
PEfv™ and so by (7.22)

tpl:S,.\\U {A‘: I:C[D}} - {'yn =y = wﬂ}
It follows from this and (7.21) that

tp (iU {4,: 2£D}) = wfr ™=
Thus {A,:a=wy) establishes (7.4),
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