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On partitions of N into summands coprime to N

P. ErpOs and B. RicHMOND

Introduction

Let R(n) and R’(n) denote the number of partitions of n into summands and
distinct summands respectively that are relatively prime to n. The first author
proved as a special case of a more general theorem that [1]

log R(n)~ mv3¢'?(n)
log R'(n)~ =3¢ "3(n)

where ¢(n) denotes Euler’s function. The second author proved [2] that the error
terms in the above results are O{exp ((1+t)(log 2)(log n)/log log n)} by showing that
the asymptotic results of Roth and Szekeres [3] hold for this problem. Unfortu-
nately these asymptotic results are not in terms of the usual elementary or
arithmetic functions.

In this note we determine more explicit and more precise asymptotic results
than those mentioned above. In general these results are complicated to state (see
Theorems 1.1 and 1.2 below) however when n=g,q5 where q,=0{n"*"} we
obtain

1 1
R' i —3;43—u4(1_ )
(@:92) 242 " q;

X exp [J_T; (q,— I)IJEQZ‘J‘I[‘:XP (_2_337 (q,— 1)”2)]

+f [eXP (~£5(q; = 1)”2)”[1+0{n‘””}] (0.1)
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whete

= ) x;
=317

B 1+x'

This case illustrates the nature of our formulae which follow
Secticn 1

The following notation is convenient:
Let n be an integer variable.

We let ¢ denote a positive constant, not necessarily always the same constant

e shall denote the same; however relations involving € shall commonly hold for €
sufficiently small.

denote an arbitrary prime.

Let p with or without a subscript denote a prime which divides n, and let g
Let

M==1_lp, rer
4

P

that is r 1s the number of distinct primes dividing n and M is their produc
Let @ (= a(r)) be the unique positive root of

[
n= -
-1 € +1

(1.1)

All following equations and asymptotic relations involving @ may only hold for «
sufficiently small or equivalently n sufficiently large

Let A, (= A.(n)) be defined by

z‘ wl
A= Z

]
(L M)=1 T+

In [2] it is shown that

1/2
= W(%?) n 1/2 + U{n —1+cfloglog n}

) l
R'(n)=Q27mA,, " exp [ Z T?;—lﬂog(l +e"‘}]

(Lmy=1 €

[1+0{a">9] (1.2
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First of all we shall require a more accurate estimate for a than the one just

quoted. To give this estimate it is convenient to define

.—Zh,,,x
-Z(—nd

dim

flx)=

and

S = § C1ap - pfle =

w1

i

where Y’ denotes summation over the range n*'?h '(n)<p,:--

(1.3)

(1.4)

P, - nl?Zh(n]‘_

and h(n) is any monotone function such that n'''? > h(n) > n* for some constant

€ = (0. Furthermore let

T,= ) Y (=13py - =2 p) !

s=1 pyovap, =an Ying

Our improved estimate for e is

LEMMA 1.1,
b(M) )i'ﬂ - S.(h) [n "ft'+f='"gz-"~g'°s"']
1) a2y .
2\;3( M)t T o, h(n)

Proof. We write

Y e b ©

arl ay oxl *
= e+l Tre™+l vy e ]

We note that

—r Z — Z {_li Z Z il?plﬁz P

ol
am-1e"+1 2 Pt

(our notation means the sum over all products of the prime divisors of n

considered s at a time).
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Now with f as defined in (1.3), we see that

N je_ujﬂ iy “ (il

f;i 1+e—nju f(e ]'

It follows from the Euler-Maclaurin sum formula (see [2] for details) that if
a=n'"?h""(n) where h(n) denotes any monotone function such that n''?>
h(n)=n® for some constant € >0, then

= . 2
a e )
Z e"'-:‘ 1 12:.&1-2«2-‘-0{0r ()
i=1

and if a =n'"?h(n) then

i fﬂ — O{e—h(n)!:'.}

= e(xja +1

Hence (1.1) becomes (there are fewer than np''Telog2/logloen termg in (1.1) as
shown in [2])

r

n=—n [H; ) (~l)*(p1-”P,)"]

120:_ =1 pyope=int2hNn)
+ Z 2. (—])‘pl ...psf(e-ur!."'u\)
s=1 n'"h Yny<p, - p,<n'Phin)
n{l+sllug2a’luglug n
+0{ ah(ﬂ) ]+U{e—h(n}f?.n(‘]+e]logZ}’}nglogn}' (]6}

From (1.2) on the range of summation in )

1/2
ap; - p = ”(%?) n~2py -+ po+0{n""2h(n)},

thus

e “P' Pi=exp ["ﬂ(%)”z n~'py - ps][l +0{n""?h(n)}].

Now on the range we are considering ch™'(n)(loglog n)™"*<ap, - - - p, <ch(n).
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From the mean value theorem

HM 12
e = s (B0 2y
+ {}l_f'(cxp [_l(_)%l{%g)_r_l])" 2h(n)

X ex [bM .: W2, ...
p IZM n pl P

As x — () however it is well-known that f(e *)~cx 2, f'(e *)~cx *; hence

M 1/2

s0{n 2R () (=0{n .

Hence

Si(n)= T (IZM) Z (=1)'p (cxp[ (lﬁr’)l.fln"l"""pl---p_‘])

————h {t]}l =O4n "

ahn

Then (1.6) becomes

‘b(M) . ) S|{Fl] {nil-'ealnp_ 2loplog u]
- ¥ +0 a
N 127 (le L) R ah(n) b7}

If one substitutes

M vz =
« _}—Ti(%—f‘“) n "*(1+f(n))

into (1.7) one obtains

Sy(n) v’3(d>{Ml

1/2
.vf( n J . n 1/2 I\f‘ —rﬂ) + ('{ h "R }‘

mT\

Hence we have Lemma 1.1.
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In a very similar way we may estimate

Z log(1+eui)_>: “1+1 Z( 1)° Z i‘,log(1+e“"’-”'

{l, M)=1 j=

We let

Aok

log (1+e7 P " P) = f,(e7@Ps " Py)
1

i

where

filx) = !z(

-1 (28

mil

")

183

(1.8)

that is xf{(x)= f(x) where f(x) is defined by (1.3). Again it follows from the

Euler-Maclaurin formula (see [2] for details) that if a<n'?h™'(n)

2
Y lopline “f“)~L g2,

Z S +0{h~'(n)},

and if a > n"?h(n)
Z log (1+e %) =0{e """},

i=1

We obtain as before:

LEMMA 1.2
2 ¢ (M)
log(l+e u‘]=——(——————T)
(1 M)=1 £ 12 \ M
log2 v
=1+ Y -1 Y 1
2 se=1 P pe<=nh ')

' E'H)’f.(e""p-'"“*>+°|

(1+e€) log 2/loglog n}

h(n)

It has been shown in [2] that the following result holds.
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LEMMA 1.3.
(M) w3 "”(cb(M))-‘“ s .
LT —— + LI BB 3 i 3/ 0 2+e
A, 6M03[1 0(e)] 2 oM n [1+0{n 1.

Hence if we let Y mean the same as in (1.4) and define

Uny=1+ Y, (1) ¥ 1

I prooopesn'h Y
S(n)= Z ’ (—1)%; (cxp l—w((f(;:)) n~'2py .- p,]) (1.9)

(fi(x) is defined by (1.8)), we obtain from Lemmas 1.1, 1.2, 1.3:

THEOREM 2.1.
Yo b ”_l(tb(M))”‘ 354
Rm=353"am) "

1/2 ;
X exp [(?(M—m—- T") n'”m’\/3+5(n)+|£;’—2— U(n)]

n ciloglop n
X [1 +0[ ) ”

where S(n) and U(n) are defined in (1.9) and h(n) is any monotone function
n'"?=h(n) = n. Also T, is defined by (1.5).
If n=q" then

M n q

6(M)_d(n) 1

1z

We miny choose hin)=n""", then

S(n)=—f(e ™), U(n)=1;
hence
COROLLARY 1.1.

T wiis log 2
r:xpjlﬁ ¢ ()t ———

2

1.-4—; 1/4

file "’"2"3’]}[1 +0(g "))
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1/6—e 1/12

If n=q,q5 where q,=0{n } we can again take h(n)=n and

M 1
800_(, 1), 1) g 1,
M q q:2 92 4192

S(n)= -f,(cxp [—E\%m'_q—lnm])+f, (exp [rf\%(q' = l}”z]),
u,=

-1+1=

and we obtain equation (0.1). Similarly we could consider integers of the form
pit -+ - p&pZ,, where p;---p,=0{n"*"“} and obtain an asymptotic formula in-
volving sums of 2" terms. It may well be that this is all one can hope for.

Finally let R(n) denote the number of ways of writing n as the sum of integers
coprime to n. Then by very similar methods one obtains

THEOREM 2.2.
v ¢(M) 1/2 B 2n 1/2 fb(M) 1/2
R{nl:4 L (T) n**exp{m 3 T—Tﬂ
n —(c/loglog n)
+ —————n
+ Wi(n) Y(n)]ll +0{ ") ”
where
l r
W(n) == Y, ) log (py*** p)
2 s=1 py---po=n""h n)

Y=Y (=1)(p: - p.u}g(em _J_Z(?;(;;_’Q_ Tn) # ]n‘”zpr o ps)
and

IJ

_ 3 _ 3 m
g(x)*j)__:],' s lec,,,x,

=2, d "

dim

We would like to close with a couple of problems. Let us say an integer n is
maximal if R'(n)> R'(m) for all m <n. It seems likely that the primes are the
only maximal numbers however this would imply that between an integer n and
n+n'?" there is a prime. Moreover we say that an integer m is minimal if
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R'(m) > R'(n) for all m>n. To characterize the minimal integers also seems
difficult.

This problem is connected with the highly composite and highly abundant
numbers [4].
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