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A set {b, , b 2 , . . ., b } C {1, 2, . . ., N ; is said to be a difference intersector set if
{a,, a 2 , . . ., a s } C {1, 2, . . ., N}, j > EN imply the solvability of the equation
a s - av = b' ; the notion of sum intersector set is defined similarly . The authors
prove two general theorems saying that if a set {b, , b 2	bi} is well distributed
simultaneously among and within all residue classes of small moduli then it must
be both difference and sum intersector set. They apply these theorems to in-
vestigate the solvability of the equations (a . -- ay/p = + 1, (a,,. - a„lp) _ -1,
(a, + a,lp) _ + 1, (a t + a.1p) _ -1 (where (a/p) denotes the Legendre symbol)
and to show that "almost all" sets form both difference and sum intersector sets .

1

Throughout this paper, we use the following notations :

C l , C2 , . . . will denote positive absolute constants . We write ex = exp(x) .
For real a, we put e(a) = e 2 ~i . . If p is a prime number and n is an integer
then we denote the least nonnegative residue of n modulo p by r(n, p), i .e .,
r(n, p) is defined by

r(n, p) = n (mod p),

	

0 < r(n, p) zz~; p - 1 .

The number of the elements of a finite set S will be denoted by I S 1 . A, B, . . .
denote strictly increasing sequences of positive integers . We write

A(n)

	

y 1(=I A n {1, 2, . . ., n}I),

	

B(n) _ 1 1— . .
aEA

	

beB
acn

	

b<n

If the infinite sequence B = {b, , b 2 , . . .} is such that the equation

- ay = b,

	

(1)

is solvable for every infinite sequence A = {a, , a2 , . . .} of positive lower
(asymptotic) density (i .e ., B intersects the difference set of each of these
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sequences A) then we say that B is a difference intersector set . (This termi-
nology is due partly to R . Tijdeman .) Similarly, if

a,, ; a, = b ,

	

(2)

is solvable for every infinite sequence A of positive lower density then B is
said to be a sum intersector .set .

We shall use this terminology also for finite sequences B C {l, 2, . . ., N} . In
fact, if

A(N) > EN

	

(3)

implies the solvability of (1) (if N is large in terms of E) then again, B is said
to be a difference intersector set . In the definition of (finite) sum intersector
sets, (3) must be replaced by

(where z > 0) and

A(N) > c~N
(log log log N)3 log log loglog N

__

	

__

	

---(log log N) 2

implies the solvability of

a u -a,,=p-1

(both for large .N) .
In this series, we are going to continue the investigation of difference and

sum intersector sets. In particular, in this paper we will discuss the case
when the intersector set is well distributed simultaneously among and within
all residue classes of small moduli .

In Section 2, we will prove two general theorems, saying essentially that if
a sequence B is well distributed among and within all residue classes of small
moduli, then it must be both difference and sum intersector set .

A([N/21) > EN.

Namely, if a,, , a„ > [N/2] then a, , -;- a,. > N thus B does not intersect the
set of these sums a,, - a„ .

In [41 and [6], respectively, the second author showed that both sequences
{ 1 2 , . . ., z 2 , . . .} and {2 - l, 3 - l, 5 - 1, . . ., p - 1, . . .} form difference inter-
sector sets . More exactly, he proved that

log log N)2/3
A(N) > c i N	(log N)i ,''

implies the solvability of

a,. - ay
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In Sections 3 and 4, we will apply these general theorems to investigate the
solvability of the equations

and

a,_ - av
- p

	

-1,

	

p

( a,	- r-a, ) _ +1

	

( at+az ) - -1
p

	

p

for "large" sets {a, , a z , . . .} of residues modulo p .
Finally, in Section 5, we will apply Theorems l and 2 to show that in a

well defined sense, "almost all" subsets of {1, 2, . . ., N} form both difference
and sum intersector sets .

2

In this section, we will prove the following two theorems :

THEOREM 1 . Let N be a positive integer, and let A = {ai , a2 , . . .} C

implies the solvability of the equation (1) .

THEOREM 2 . Let N be a positive integer, and let A = {ar , a 2 , . . .} C
11, 2, . . ., [N/2]}, B = {b, , b2 , . . .} C {1, 2, . . ., N} . Define G(a), D(a) and Mby (4),
(5) and (6). Then

A([N/2]) > 2 B~N) max{M, 2} (8 )

{1, 2, . . ., N}, B = {b, , b 2 , . . .} C {1, 2, . . ., N}. For 0

	

a < 1, we write

B(N)

G(a) -

	

e(b;a), (4)
1

D(a) = G(a) --
B(N- N

e(na) (5)

and

N

M = max D(a)j . (6)

Then

A(N) 3

	

?M

	

1> max (7)B(N) ,
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implies the solvability of the equation

ax + a y = b z ,

	

x

	

y.

	

(9)

(The condition x ,1= y does not play an essential role ; however, in some
cases, we may need this restriction .)

Proof of Theorem l . Let us write

Then

E _ f 1 F(a)~ 2 G(a) d x -= f 1 F(-ex) F(a) G(a) da
0

	

0

1 A(N)

	

A(N)

	

B(N)
-
f

	

e( -- a,,,(x)

	

e(aya)

	

e(bza) da
o x=1

	

y=1

	

z=1

A(N) A(N) B(N) 1

f e((-
x=1 y-1 z=1 o

E -= f 1 F(a)j2
BN

	

e(na) da

{- f 1 I F(a) 2 (G(a) -
-BN--

e(tix» dla
o

	

n=1

A(N)

F(a) -- Y, e(a,a) .
-1

Thus to prove the solvability of (1), it suffices to show that

E>0.

	

(10)

By (7), and using the Parseval formula, we obtain that

B( N) 1 A(N) e(-a,
.(Y)

A(N)

e(a ?,a)

	

e(na) &t 1 1
F(a)1, 2 D(a) da

`o x=1

	

y-.1

	

n-1

B(N) A(N) A(N) N

	

1

	

1

N -

	

Y- Y' f

	

-i- a + n)a) da
x=1 y=1 ,i-1 0

	

'0

B(N)

	

1
N

	

Y

	

1

	

~ ! F(a)I 2
1<x,?I<A(N)

	

.0
1<n<N
a,-a v=n

ay + bz )a) da ~

	

1
x,y,z

-a,,+a,+ b, --0

.0

F(a) 2 D(a) d x
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B(N )

	

Y

	

1- M f 1 ! F(a)'', 2 da
1<y`x<A(N)

	

o

B(N) A(N)

	

B(N) A(N) - 1
N ( 2 )

- MA(N) - A(N) ( N - 2

	

M

A(N) (BNN) . A(3 ) - M) >
A(N) (BN) . M

NN)
- M) -- 0,

which proves (10) and the proof of Theorem 1 is completed .

Proof of Theorem 2 . We start out from the integral

and we proceed in the same way as in the proof of Theorem 1 . We obtain that

E,

Hence, with respect to (8),

1

ERDŐS AND SÁRKÖZY

1

	

AQN/2])

f F2( (x ) G(-A) da

	

with

	

F(a) _ Y e(a;a)
0

	

)=1

1
x,y .z

ay 4 ay =b,

BN )

	

F2(a)~

which proves the solvability of (9) .

3

In this section, we will apply Theorems I and 2 to prove the following two
theorems :

1<y .x<A(LN/2])
1<n<N

a y}ay ?,

B(N)
(A([/V/2]»2 - M f 1 1 F(a)I 2 da

0

BN) (A([N1 2 1» 2 - MA([N/2]) .

x .y .z

	

x,y.a

	

x.z
x #- -U

	

ax , a -b,

	

2a.c =b _
a,,4-a,, - -b_

S BN ) (A([N/2D) 2 - MA([N/2])~ - 2A([N/2])

--- A([N/2)) ( BN) A([N/2]) - M -



THEOREM 3 . Let p > 2 be any prime number, and let A =_ {a 1 , a,,C
p - 1 ;,
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Proof of Theorem 3 . Throughout the proof, we use the same notations as
in Theorem l . We put N =- p - 1, and B in Theorem 1 will be chosen as the
set of the integers n such that I

	

n < p - I and (n/p) _ + 1 .
In order to apply Theorem 1, we have to estimate M. Obviously, for any

0

	

a

	

1,

Hence,

U(a) _ - G(a)

1
^o4) 1' =- D(a) D(--k, )

1 v--1 11 1
= 4 Y Y1 (

p
)(
P

) e(va) e(-yal

1 n--1 n-i
=

	

x .
--)4

	

e((x - v)í ,£)
x• : •1 y=-1

	

p

1

	

Y2

	

y

	

( (t

	

y)v )~4 t=-(n-2) 1c1jj<p 1

	

p

B(N) I e(na)

e(ba) -- 2 ~~ e(n (x) -
2

	

(Y) e(xa) .
~Göcn-~

	

=1

	

x=1 p'
01W r1

e(ta)

A(p - 1) > 6p' ls(logp) ' 12 . (11)

Then both equations

and

are solvable .

(a. - a„lp) -

(au - avlp) _ -1

(12)

(13)

THEOREM 4 . Let p > 2 be any prime number, and let A = {a,, a2 - . 1, C
{1, 2, . . ., p -- P,

A( p - 1) > 16p 111(Iogp) 1 / 2 . (14)

Then both equations

(15)(ax -!- a,lp) _ +1,
and

(a,, + av lp) _ - 1, u v (16)
are solvable.
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I

	

P-2

4 t-- -z

1

	

y' 2

	

1
4 1 yY (-P-) + 4 y 2

t#o

(Y2 +tY )
max{i-t, i}«-~min{n-t-1,~'-i}

	

p

p - 1

	

1

	

}Y 2

4

	

4, t~~u-2 max(1-t,1}~n~min(u- t-~ .n-i}
t-5, 0

We need the following lemma :

LEMMA 1 . Let p > 2 be a prime number . Let a, b, c, R, and Q be integers,
such that

ERDŐS AND SÁRKÖZY

e(t~x)

	 Y	
niaxP-t,~J<v

	

n{t t-i .r~~}

	

a p ty ~I

+ty
p

(17)

Let

Then

Hence
M -- omax t I D(a)I < (p' l' log p)'/ 2 < P,/s(logp)1/2 .

	

(19)

Thus the right hand side of (7) :

3 max ~ M
BN

,

	

max{ p'i 8(log p)' /2 • 2, 1}

(a, p) - - 1, (b 2 -- 4ac, p) = 1

	

and

	

0 < R < R + Q < p. (18)

T

	

R i Q--1 ax2 1 bx

	

c

~~ (-- p

1
T I

< zp' l ' 1 ogp .

For this lemma and its proof, see 1 . M. Vinogradov [8, Chap. VI,
Problem 15] .

To estimate the inner sum in (17), we apply Lemma 1 with a - 1, b = t,
c - O, R == max{ I - t, l}, Q - min{ p - t -I, p - 1] - max{I - t, 11 +
1 . Then (18) holds trivially (with respect to -p < t < p, t + 0) . Thus we
obtain from (17) that

D(,) 2

	

-

A
	 1- 4 Y-

3 p'I'
log p

t, v-2 2

p 1 -~
3

2(p - 2) p 3 4 log p p + 3 P' 1 ' log p < p' / ' log p4

	

8

	

4 4

6p' /x(log p)' / 2 .

	

(20 )



(11) and (20) yield (7) . Thus we may apply Theorem 1, and we find that (1) is
solvable . In other words, there exist a, , a,,(EA) such that ax - a, c B, i.e .,

or
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P
a, )

which proves the solvability of (12) .
The second half of the theorem (the solvability of (13)) follows from the

first half of it . Namely, let d denote a fixed integer such that (d/p) _ -1 .
Then applying the first half of the theorem with the sequence {r(da i , p),
r(da 2 , p) . . . . } in place of A, we obtain the solvability of

( r(da,,, , p) -- r(da„ , p) )

	

(Ia,, - da,,

	

d

	

au - a
-

	

-p-

	

_ (- --
P
--) _ (

P
) ( p--)

(
a,,,

p all )

and the proof of Theorem 3 is completed .

Proof of Theorem 4. (14) implies that either

A (p2-t) > 8p'/ 8(logp) 1 /2

	

(21)

A(p - 1) - A (p21 ) > 8p'/ 8(log p) 1 /2 .

	

(22)

Assume at first that (21) holds . Let us define N and B in the same way as
in the proof of Theorem 3 . Then (19) holds . (19) and (21) yield that

437

Thus Theorem 2 is applicable . We obtain that (9) is solvable . fn other words,
there exist ax , ajc- A) such that x = y and a,, I ay E B, i .e ., (15) holds .

Now we are going to show that (16) is also solvable .

1
A = A(N12) > 8 M = 4

M
4

	

M 2

	

M>(p 2 )
(p - 1 1 B()

	

B(N)

and

A

	

1
-) -_= A(N12) > 8p 7/8(log p)i/2 > 8 = 2

B(N)
- 2 .(p 2
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Let N = p - 1, and let Bo denote the set of those integers n for which
1 -<-n <p- 1 and (n/p) _ -1 . Let

and
Mo = Amax) I Do(a)I

(while B, G(a), D(a), and M are defined in the same way as in the proof of
Theorem 3) . Then

Hence

and

G,((x) _= Y e(ha),
nea,,

N
D ja) = Go(a) - B0N) I e(na)

Do a) _ - Qa)

ERDŐS AND SÁRKÖZY

n=1

Bo(N) Y e(na)
N n=1

1 v-1e(na) - 2 Y, e(na)
1Gn<_p-1

	

n=I
(n/P)=-1

P-1
= 12

	

e(na) - Y e(na)
n=I

	

l~n~p-1(n/P)=-~ 1

- B(N) Y e(na) - G(a) -D(a) .N =,

Thus
Do((x)l

	

(23)

(19), (21) and (23) yield that

Mo = omaxi I Dja) I = ó axi I D(a) I < pI/e(logp)I/2

< g A (p	2 1)= g A(N/2) .

A(N12) > 8Mo = 4 (p _ 11 Mo = 4 o~ ) Mo > 2 Bo~ ) Mo

A(N12) > 8p'/8(logp)112 > 8 = 2 Bo(N) 2 .
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Thus Theorem 2 is applicable (with Bo in place of B) . We obtain the solvability
of a7 , -}- az e B„ , u -,'- v, i .e ., (16) .

Finally, if (22) holds, then let A, denote the set of those integers which can
be written in form p --- a i where N/2 < az N. Then A, C {1, 2, . . ., N/2} and
by (22),

A,(N/2) -- A(N) - A(N12) > 8p'/ 8 (logp)'/ 2 .

Thus (21) holds with A, in place of A . Hence, by the first part of the proof,
there exist a,, , ay , a,, , a„ such that p - ax , p - ay , p - a,,, , p - av e Ar ,
x-- y, u7=vand

( (P
P

a,) )

	

( 1~(a,.+a„)

	

1
1p p

(p - a.)	. . .}-- (p - a,)

	

1

	

a„	 -f- a„
	 p

	

-) - ( p )	p- -)

This proves that both (15) and (16) are solvable also in case (22) and the proof
of Theorem 4 is completed .

4

In this section, we will investigate how far Theorems 3 and 4 are from the
best possible .

Assume that p =- 1 (mod 4) and Theorem 3 is true with f ( p) on the right-
hand side of (11), i .e ., for

A(p - 1) ---,f (P) . .

This implies that the set A - {1, 2, . . ., [f(p)] -}- 1} contains some integers
(1 <) u < v(< [ f (p)] -i- 1) such that (v -- u/p = 1 . Here 1 < v - u <
[ f (p)], thus the least quadratic nonresidue modulo p must be less than f (p) .
Hence, at the present time, it is hopeless to prove Theorem 3 with O(pl) on
the right side of (11) . (In Theorem 4, the situation is similar.)

On the other hand, in [5], the second author proved the following estimate
from the opposite side :

THEOREM 5 . If p is a prime number satisfying

p-

	

1 (mod 4)

then there exists a set A -_ {a, , a2 , . . ., a,;} C { 1, 2, . . ., p - 1} such that

k -- A(p - l) -_	 log( p	1) + 1]

	

(24)
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and

is not solvable .

(See [5, Lemma 2] .)
Thus the right-hand side of (11) in Theorem 3 can not be replaced by, say,

I log p .
Theorem 5 implies also that for p - = I (mod 4), there exists a set A* C

{1, 2, . . ., p - 1} such that

is not solvable . In fact, let A _ {a, , a z , . . ., ak } be a set satisfying the con-
ditions in Theorem 5 and let d denote any integer such that (41p) -- - 1 .
Then A * can be chosen as the set formed by the integers r(da, , p), r(da z , p), . . .,
r(da k , p) •

Also, the method of the proof of Theorem 5 can be used to prove the
analog of Theorem 5 with (a,, + a„/p) in place of (a, - ay /p) .

THEOREM 6 . For any prime number p > 2, there exists a set A C
{1, 2, . . ., p - I} such that (24) holds and

is not solvable .

Proof of Theorem 6 . Let us define the graph G,-, of p - 1 vertices
Q, , Qz , . . ., Q„-, in the following way :

if

p

A *(p - 1) =
r log(p - I)

	

1
L

	

log4

( a,. - t- a,,

	

} 1
p

and

The vertices Qj , Q ; (where 1

	

i < .j p - 1) are connected if and only

(i +JIM _ - 1 .

(a*-
p

x

	

y

	

(25)

By a Ramsey-type theorem of Erdös and Szekeres (see [I ]), if k is a positive
integer satisfying

P
-

		

(2k - 2~

	

(26)1
k - 1 '

then either G,, ._, or its complement contains a complete subgraph of k vertices .
We are going to show that (26) holds with

k -

	

log(p

	

1 ) ~- 1

	

(27)
log 4



I n fact,
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22A-2 - 22[tog(v-I)/toga-t1-2 < 22logO-I)'tog9

	

p - 1 .

Combining this with the trivial inequality

we obtain (26). Thus the theorem of Erdos and Szekeres can be applied ~ rith
the k given in (27) .

Assume at first that G, ; I contains a complete subgraph of k vertices ;
denote its vertices by Q, , Q,,, ,	Q j . . Then obviously, the set A --
{iI , i2 , . . ., ik , satisfies (24) and (25) is not solvable .

Assume now that the complement of G„ I contains a complete subgraph
of k vertices . Let us denote the vertices of this subgraph by Q, I , Q;2 , . . ., Q; . ,
and let d denote any integer satisfying (d/p) -_ -1 . Then it is easy to see that
the set A in Theorem 6 can be chosen as the set formed by the integers
r(dJi > P), r(dJz , P), . . ., r(ci%r , P) •

Again, it can be shown easily that the statement of Theorem 6 remains
valid with

in place of (25) .

a, -
P
1- a„

(2k -- 2 ) `\ 22i;--2
lk-l

	

'

5

- 1,

	

u /- r,

441

If k, N are positive integers such that I k < N then let r(N, k) denote
the set of those sets B for which B C { 1, 2, . . ., N} and I B = k hold . In this
section, we will show that for

Ne < k < N,

	

(28)

"almost all" sets B c P(N, k) form both difference and sum inteesector sets .
(Note that on the other hand, there exist relatively many sets B C { 1, 2, . . ., N,
which are neither difference nor sum intersector sets ; in fact, if B C {1, 3, . . .,
2k -i- 1, . . ., 2[N - 1/2] 1 l, then B is neither difference nor sum intersector
set .)

We remark that replacing (28) by the slightly weaker

N'
- EN

< k < N

	

where 6N -> 0, arbitrary slowly,

	

(29)

and in case of difference intersector sets, this statement can be proved also in
an elementary way, relatively easily . In fact, (29) implies that for almost all
B c P(N, k), B contains an arithmetic rr-gression of form d, 2d, . . ., td ,,, here
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t ~ t(EN) -->' - - oo as eN - 0 . But it can be shown easily that such a set B is
a difference intersector set .

For B E P(N, k), we write

and

I --
B(N)

	

Y,
-,-

7'7

	

1~9,
j=nslmod a)

	

i-m(mod v)
iEB

for all 1

	

q

	

N2/3

ERDÖS AND SÁRKÖZY

1

k
N

	

1

	

h(,,,,) (B,
n)

i=m(mod 0

	

i=m(mod a)
jCB

1 -

max I h (,n) - Hq(B) .
1 m- g
1= n N

(30)

THEOREM 7 . Let k, N be positive integers, satisfying

N2 /3 log N < k

	

N.

	

(31)

If N is large enough then for all but (1 IN 2)(k) sets B E F(N, k), the conditions

(
A C {i, 2, . . ., Nl

	

and

	

AN)
> 2400 IN

2/3 ~g	 N)1 / 2

	

(32)

imply the solvability of Eq . (1).

THEOREM 8 . Let k, N be positive integers, satisfying (31) . If N is large
enough then for all but (1/N2)(k) sets B e F(N, k), the conditions

(
A C {1, 2, . . ., [N/2]}

	

and

	

A([N/2] )
N

	

j 1600 N2/3
log N)

	

(33)

imply the solvability of Eq . (9) .

(Note that if k/N2 /3 log N d- oo, then for large N, A(N) > EN, respec-
tively A([N/2]) > EN, implies that (31) and (32) hold . Thus in this case,
almost all sets B e F(N, k) are simultaneously difference and sum intersector
sets .)
We shall need two lemmas .

LEMMA 2 . If the positive integers k, N satisfy (31) then for all but
(1/N2)(k) sets B E r(N, k), we have

HQ(B) < 100 ( q log N)
1/2

	

(34)



Proof of Lemma 2 . We use the same method as in [7] . Let 4 denote the
set of those sets B E P(N, k) for which

hence

where
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Let d(q, m, n) denote the set of those sets B E d, for which (36) holds for
some q, m, n, satisfying (35) and (37). Then

J C U J (q, m, n) ;
1 4-N2/3
1 <msa
1G+e<_N

[N 2 / 3) o

	

N

1 d 1 5

	

1 d(q, in, n)] .

	

(38)
q=1 n—I n-1

Thus in order to estimate I d 1, we have to estimate I d(q, m, n)1 .
Let us fix q, m, n and let B E d(q, m, n) . Let

B == B1uB2,

n -
B, C ,iii, in

	

q, . . ., ni + --
q

-
B2 n m, m -F- q, . . ., m

	

[
n
q
-m-

j
J q~ = C .

In J q

j w(mod a)

j <-w
In (mod q)
jCB

11 - nl _~
q

HQ(B) > 100
1/2

(q log N)

holds for some q with
N 2 i3 . (35)i - q

In other words,
1/2

100 (q log N) (36)h(,,,,,)(B, n)1

for some q, m, n with

1<- m q, 1 n C N. (37)



444

	

ERDOS AND SÁRKÖZY

Then

by (36),

and with respect to B c r(N, k),

For fixed u (and m, n, q), B, can be chosen from the t integers in
{m, in L- q, . . ., m -~ (t - I)qI, thus it can be chosen in at most (E4 ) ways .
Similarly, Bz can - be chosen from the N -- t integers in {1, 2, . . ., N} -
{m, m -~ q, . . ., m + (t - 1)q} thus with respect to (41), it can be chosen in at
most (k2u) ways . Summarizing, we find that for fixed u, B can be chosen in at
most (,,,)(ti-u) ways. Thus with respect to (40),

d(q, m, ni)j

Let us write

Cnlgl < t + [n/ql + 1,

	

(39)

kli- N t

IBz ,i -= ;Bi-~B, ; =k-u.

	

(41)

`u )1k - u)
~u-(kjN)t j ._,100((k1q) log N) 112

k

	

'2100 (y log N)' ,

	

( 40)

I

	

t N-t1'

,,<(AIN) t-100((k/q) log N)"I ( U )(k

	

U/

~t)~N-t)_

	

+ 2

	

(42 )
~~ ;u; ; N)r+100(A,g log N)112 u

	

k - u

F(u)
-

	

u l (k

	

u) .

u'N-t --k+u)

First we estimate E, . Let (k/N)t - u =- d. Then for d + 0, u - 0, we have

F(u- 1)

	

t!(N-t)!
F(u)

	

(li- 1)!(t -li+ 1)!(k-u+ 1)!(N-t-k+u- I)!

li! (t-u)!(k-u)!(N-t-k-l-u)!
t! (N - t)!

_

	

tk uN F- k +t 2u f 1
(t-u

	

1)(k-u -}- 1)

	

(t-u+ 1)(k-u+ 1)

(t - - u + 1)(k
1 - -

	

1)(k -~ 1)
dN (

	

(t u --L 1) 1

	

(IN

N ( 1),

	

(43)



since k --- u > 0, t - u -?- 0 follow from d = ( kt/N) - u

	

0. Let us put
r,

	

[kt/n] and

s,

	

[-N- t - 100 (k log N)~ ~,

	

,

	

1 - [100 1 q log N) 1 ~] . (44)
t

Then by (43), we have

(kt

	

N
) )

~'(s,)

	

k(r,) 1~ F-(FF(u)	 I

	

F(r,) f

	

l - -N 4tk

u

s,

for s,

	

0. Writing u -- r, - j :
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r,

	

i ((N -r,)N , JN)
F(s,) -- F(r,) jl

	

1 -

	

4t ki _o

F(r,)

	

`1 -
JN

-)~~

	

4tk

- F(r,) exp (

	

N

	

(r, - .s, - 1)(r, -- s,) ,
1 4k - -

	

- 2 --

	

-- ~

F(r,) exp 1-- 8
k

(r, --- s, - I )2

since I - x

	

e- for .x : 0 . By (35), (37), and (39), we have

,1l

	

l

	

' '3

	

5 N
t

	

[ql

	

q

	

4 N

	

4 q

for N

	

43 . Furthermore, by (31) and

thus with respect to (44) and (46),

Í

	

JN)F(r,) exp - -

	

4tkj-( ~

k

	

' -=

	

N'-'- 3 log N,

	

s
log N)

	

2,'3 - - lo'. , J

	

log N,

N r

	

s

	

-1)L

	

N -- ( i0
F'

log N)
i /z l

1
- 2)

z

8tk (`

	

'

	

8 5 N k

	

q
4 q

I Ok
150

(-q
lo

	

250 log N

(45)

(46)

(47)
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for large N. Putting this into (45), we obtain that

F(,5,) < F(r,) exp{-250 log N ; - N
1
211) F(r,) .

Thus for large N,

(since F(u) is increasing for 0 < u

	

s, , by (43)) .
G2 can be estimated similarly . Let e == u - (klNt . Then for e

	

0, u
u <k,k-u ~N-t,wehave

(obviously, 0 < I - e/6u

	

1) .
Let us put r., = [(k/N)t] -1 1 and define the integer s 2 by

Obviously,

1, -- Y, F(u)

	

1) F(S ' )
U-0

N249 F <(r < N249

	

F(u) - N24su=0

F(u -!- 1)

	

(t - u)(k - u)
F(u)

	

- 1)(N - t - k -}- u -}- 1)

eN ;-(N-t-k -- u+1)4-u
(u- -- 1)(N - -t-k+u--1,-1)

eN

	

e
< 1

	

2u • 3N

	

1

	

6u

1!2
t

	

100 ( log N
Ar

	

-q
)

1/2
S"

	

2 - 1 4- 1000 log N)
q

and with respect to (31), (35), (37), and (39),

s,' - 100 (
k
k log N)

N 2y - ;- 100 (k log N) -- 2 q
k

N (Lq1

<2
q

(1 --50(
N2/3

	 -kg - ) _\
< 102

q
.

k

	

1
N250 F(r, )

( N ~,
Jk

t,

+ 100 (q-log N)
t/2

i
0( k log N)

2
)

(49)

(50)
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By (47), (49), (50), and (51), we have

k
s 2-~I

	

s2 1

	

n - - t
F(s 2) = F(r2) [1 F(

F(u)
1 ~ < F(r2) 11 1

	

6u
u=r2

	

u=r2

s,-r2-I

	

(r2 - N t ) + j

	

s .- r2-- 1

= F•( r2)

	

\ 1 -

	

6(rs + .l)

	

) < F(r2) F1
i =o

1 s 2 -ry I 1-r2-r2-12)

exp y, --7 < F(r 2 ) exp - y6 i . o r2 1- j

	

f

	

6 i=o

	

s2 - 1

= F(r2) exp f

	

1

	

1

	

(s2 --- r 2 - 1)(s 2	 - r2)
6 sz.

	

1

	

2

< F(r2) exp
f - 12 S2 1 1 (s2 - r2 - 1) 2 J

-

F(r2) exp - 12	1 k (100 (k log N)
1/2

-- 2) 2

102 -

	

q
q

< F(r2) exp(-8 log N) =

	

F(r2)-
_W8-

Thus for large N,

e
E2 = Y F(u) < (t + 1) F(s2) < 2t • Na F(r 2 )

U_ '2

t

< Ns F(r2)

	

Ns

	

F(u)
No ( k )'u=0

Equations (42), (48), and (52) yield that for fixed q, m, n and large N,

d(q, in, n) I < N249
( k )

L
No ( k ) < Ns ( k ) < Nb ( k )'

Thus we obtain from (38) that
[N 2/'] v

	

N

d

	

N
d(q, n7, n)i < N 3 . --

_

q=1 na=1 7a-~

	

N 5 ( k ) - N2 ( k
N

)

which completes the proof of Lemma 2 .

LEMMA 3 . If a, q are integers, q

	

1, g is a real number, B E r(N, k), and

447

6(r 2 -i I)

(52)
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G(a), D(a), HQ(B) are defined by (4), (5), and (30), respectively, then we have

and

Dn((x) = Gn(a) - -g T.(.)

(so that GN(a) = G(a) and D,,,(a) = D(a)). Then for n = 1, 2, . . ., N, rwe,have

Dn
(a )

G(q+~)-N e{j(q -!-

Proof of Lemma 3 . For any real number a, we put

Gn(a) _ I e(ja),
j<71
jEB

Thus we obtain by partial summation (putting D,(a) = 0) that

Dn (a) {e(np) - e((n + 1)P)} + DN (a) e((N + 1ffl)
a

	

q

	

q

N

=t
D,,

(q)

ERDŐS AND SÁRKÖZY

n

Tn(cx) _

	

e(ja),

Gn (q) - N Tn (q)

(j a)__k n

	

a
Ye(, q) -- NjYe(.1 q)

jCB

(

	

1

	

k

	

1 )e(m
a )

na=1

	

Jcn

	

N

	

jcn

	

q
j-m(mode) j =-m(moda)jEB

4

	

(
n) e m

q)
-

m=1

4

H,(B) = qH,(B) .
m=1

(Dn (q) - Dn-, (q)) e(np)
n=1

1 1 - effl) 1 +

< gHa(B)(27rN S 1 + 1) .

a

h(m.v)(B~ n)1
7n=1

DN (a)

N
qH,(B) • 2T71 ~ 1 + qH,(B) = gHv(B)(27rN 1 i + 1)

n=1



sínce

for every real number g and this completes the proof of Lemma 3 .

Completion of the proofs of Theorems 7 and 8 . Assume that a set
B c I'(N, k) satisfies (34) for all 1 q 5 N2 /3 . For any real number a, there
exist 'integers a, q such that

and

hence

M

	

max I D(a)l < 800(kN2,3 log N)1 1 2o _, s1

This holds for all the sets B E F(N, k) satisfying (34) and by Lemma 2, (34)
holds for all but (1/N2)(k) sets B c I'(N, k) (if N is large) . Thus for large N and
for all but (1/N2)(k) sets B e r(N, k), we have

D(a) i =
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1 _ e(P)1 ` Z7r i ~ l

1

	

q - N2 !3

(a, q) = 1,

a
q

1
qN2 13 .

Thus writing P = a - (a/q), Lemma 3 yields that

D (q

	

< gH4(B)(27TN Í + 1)

< q • 100 (kq log N)"" • (2 ,7TN Iq _3
-{ 1)

100 ~27r (-- log N)i
tz
N'/ 3 + ( kq log N)' / 2 ~

q

100{27T(k log N)' i2 N' i 3 -1 (kN 2 / 3 log N)'/2 }

= 100(2a ; 1)(kN 2 / 3 log N)'/ 2 < 800(kN 2 / 3 log N)' / 2 ;

3 max ~X B(N) , 1

	

3 max ~800(kN2,1 3 Iog N)'/2
N

= 3 max'800 N2 13 g N )
1/2 N, 1

= 2400 ( - Ny,13kg
N-)1/2

N

	

(53)
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(with respect to k < N) and

N
2 B(N) max{M, 2} 2 k max,800(kN 2 3 log N)i 2 , 2

1600 (N2~s log N
)1/2 N (54)

Combining (32) with (53), we obtain (7) . Thus Theorem 1 yields the solvability
of Eq. (1) which completes the proof of Theorem 7 . Similarly, (8) follows
from (33) and (54) thus Theorem 2 yields the solvability of (9) and this
proves Theorem 8 .
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