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(v) Suppose that fiz) is transcendental, (3) is satisfied and p>k. Then

{(a) f(z) has at most a finite number of poles if and only if h(z) has at most
a finite number of poles and if M, N denote the poles of f(z), h(z)
respectively then (p—kIM=N=(p+ kM.

(b) pu(=) = ppr(=), where pe(=)=lim, ... (log n(r, f))/(log r), where n(r, f) is
the counting function of poles used in Nevanlinna theory with similar

meaning given to p,(=). It is deduced that = js a Borel exceptional
value of f(z) if and enly if it is a Borel exceprional value of hiz).

(c) If, for any =10
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L’ ) =", (p=m)

then

(p+k) 8= fl-2k_ (p— k) é(=, f)+2k
e =8(», h)= e

where G(=, ) denotes the Nevanlinna deficiency of the value = (In
particular &(=, f)=1 if and only if &=, h)=1.)

(vi) Suppose that f(z) has infinitely many poles and (3) is satisfied then

= nirh) _
}.1_..= n{r f}

unless n(r, f)= O((log r)*) for some constant K (K> 1).

Results (i}~(vi) remain valid, except the Remark in (iii), if (1) and (3) are replaced
by (2) and (4) respectively.
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On a geometric property of Lemniscates

P.Erpds and 1. 5. Hwang

In the Euclidean space R®, we define the product

Palw, Wy )= H [ —w |,

k=1
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where w=(w;, Wz, Wa), Wi = (Wi, Wiz, W), and |[w— wy| is the distance between
w and wy. Let Cin) be the class of all such products with the same degree n. For
any product p, we call E(p)={w:p{w)=1} the lemniscate of p. With the help of
those definitions, we prove the following

THEOREM. Let p,(w, wy) and p}(w, wi) be two products in C(n) such that
E(p.)= E(pY). If all zeros wy of p, lie on the same plane, then we have p,(w, wy ) =

o (w, wi).

The condition that all zeros w, of p, lie on the same plane is necessary.
Without it, the theorem is no longer true.
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