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On a geometric property of Lemniscates

P. Erpos anp I, 5. Hwano

Let f(z)=z"+ ++, gu(z)=2"+--- be two polynomials, denote by E(f)
respectively E(g) the regions where |f, (z)|=1 and |g,(z)| = 1. It is known [1] that
E(f) can not properly contain Eig) and if the regions coincide then f,(z}™ =
gn(z)". We try to extend this result to higher dimensional Euclidean spaces and to
our surprise find that the result does not generalize.

In the Euclidean space R, we define the product

po(wy wid = [ [w—wil,
k=1

where w={wy, wa. wi), Wi ={Wyy, Wiz, wia), and |w = wy| is the distance between
w and we. Let Cln) be the class of all such products with the same degree n. For
any product p, we call E(p)={w:p{w)=1} the lemniscate of p. With the help of
those definitions, we prove the following

THEOREM. Let p,(w, w) and g (w, wi) be two products in C(n) such that
E(p,) = E(p%). If all zeros wy of p, lie on the same plane, then we have p,{w, wy)=
* (w, Wi
Pr-{\"-’- &)

Proof. Since all zeros wy, of p, lie on the same plane, we may, without loss of
generality, assume that the plane is M ={w:w, =0} For points in M, p, and Py
can be represented by

n

ez 2) =[] lz-zl,
k=1
and
otz wii=[] Uz — 25+ wilp,
=1

. . . & %
where z=wy+iwa, 2= Wy + iWea, 28 = wi +iwlz and wi = {(wiy, wiz, wih).
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With respect to the products p, and pY, we associate with the following two
polynomials

anlz, zs:}=k[-[ (z—2z),
]
and

qi(z, 7= ]-[ {z—2%).
k=]

It is obvious that
|an (2, 2) = pulz, 2¢) and g (2, 200 =iz wh).
Now, we consider the function defined by
fiz)=dn(z, Z)gu(z, z)
'I "
1= b kg —ohees
Z =1
Clearly, f(z) is holomorphic at the point = with value f(=)=1. Let L(p,)=
E(p,)NM and L{p5)=E(p)NM, then by the given condition, we can see

Lip)c L{p%). Moreover, by virtue of |gi{z, zi)|=pi(z, wE), we also have
Liph)s Lig%). It follows that

Lip) e L(gi )= Lig%).
For convenience, we let ¢ denote the complement of L{p,}. #G the boundary of

G. and G the closure of G. Since G contains no zero of s [z} is holomorphic on
G. In view of Lip,)= Lig’), we find that for any point z£aG

Iftz) = lqktz, 25 ipalz zu)
=|ff(z, 2D)|=1.

Since the point « lies in the interior of G, it follows from the maximum principle
that |f(z)|=1. This yields the desired result.

In the proof of the above theorem, we can see the condition of the inclusion
Eip,)< E(p*) is absolutely necessary. This important geometric property will
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naturally lead us to ask whether the condition that all zeros of p, lie on the same
plane is also necessary. In other words, we may ask whether the inclusion
E(p,)= E(p%) implies p, = ﬂ The answer is no. As a matter of fact, the following
example will show that if two zeros of p, do not lie on the same plane as the
remaining zeros of p,, then the theorem is no longer true.

Example. For a>=(), £ =), we denote pi(w, a) the product containing the six
points (£({a+€), 0,0}, (0, £(a+&),0), and (0, 0, +(a+ £)). It is sufficient to find
some fixed a>0 and &>( such that E(p;)= E(ps). To do this, we need the
following expansion

(palw, @)’ ={[wy—(a+e)F + wi+ willw, +(a+&)F + wi+wi}.

{wi+[wa—(a+ &)+ wilwi +[wy+(a+e)] + wi}.
Iwi+wit[ws—(a+e)PHwi+wi+[watla+e)l}
3
= [T (8 - 2aw) + 2e(a — wi ) + 2 H(S + 2awe )+ 2e(a + wy ) + &%)
k=1
=(palw, a)) + eqlw, a)+ e y(w, a, £),

where §=wi+wi+wita’

2

da q(w, a)=(S - 2wi)(S*~ 4a’w3)(S* —4a’w3)

(S =2wiNS —da " wi8 —da*wi
+(8-2wiNS —4a*wi S —da wd),
and y(w, a, £} is a polynomial of w,. ws, ws, ¢, and . Let Q(w. a)=(1/4alg(w, a)
and R*={w:l=|w|=2}, then for a=10 and any point we R¥, we have

= T l
Qlw, )= (wi+wit w3 =-5.

By the continuity of Q and the compactness of R*, there exists (< § <} such that

Q(w,a}}% forany O0<a<& and weR™

Fixing a, we obtain.

34

Sii» for any we RY,

glw, a)>
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We then can choose a small # >0 for which

eq(w, a)+ e*y(w, a, £)> 57, weR®.

Jzil“

Now, for any point weaE(py), we have poiw, a)= 1. If we can prove that
AE(p2) = R*, we shall have

(pa(w, @) >1+-2>1, wedEQd).

21!

This implies that aE(py)s R'~ E(py) and therefore we conclude that E(pi)=
E(p#). To prove this inclusion aE(pi) < R*, we need only observe that the choice
of a<) puarantees that pilw,a)<1 for any |w|<}, and piiw,a)>1 for any
|w|> 2. This yields the above inclusion and therefore E(p}) < E(ps) and p§ # pt.

Remark. 1. By the same argument, our theorem can be extended from R to
R".

2, We notice that the reason the same type of example can not hold in R is
that the corresponding polynomial

Q(w, 0)=(w]+wi=2wi)§ +(wi+wi—2w3)§ =0,

3. Between the positive theorem and the negative example, there remain
many problems. One of the most interesting is the following

Problem. Under the same hypothesis of the above theorem, if all zeros w, of
p, with one exception lie on the same plane, is it still true that p,(w, w)=
Pl (w. wi)?
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