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For cach natural number n, let ay(n) = n, and il ayn),..., a.(n) have already
been defined, let a4 (1) > a(n) be minimal with {a;.,(n), @y(n) -+ ain)) = 1. Let
g(n) be the largest a,(n) not a prime or the square of a prime. We show that
g(n) ~ n and that g(n) = n 4+ cn'/? log(n) for some ¢ > 0. The true order of
magnitude of g(n) — n seems to be connected with the fine distribution of prime
numbers. We also show that *most™ a,(n) that are not primes or squares of
primes are products of two distinct primes. A result of independent interest
comes of one of our proofs: For every sufficiently large n there is a prime p << n'/2
with [n/p] composite.

l. INTRODUCTION

In a recent paper [3], one of us (P.E.) considered the following family of
sequences. For each natural number n, let ay(n) = n, and if a,(n),..., a,(n)
have already been defined, let a;,,(#) > a{n) be minimal with

(@i a(m), ay(m) - a(m)) = 1.
So, for example, if n = 31, then the sequence is
31, 32, 33, 35,...,

where the succeeding terms, other than 13%, 172 192 23% and 293, are just
the primes. The following facts were established in [3]:

I. Every prime p = n appears in n's sequence and every a,(n) > n®
is prime. For every prime p, there is a unique member of n's sequence
divisible by p. Denote this number by a'™(n).

451
0022-314X/78/01 040451802 .00/0




452 ERD{OS, PENNEY, AND POMERANCE

2. Let fy(n) denote the number of a,(n) which are squares of primes
and let f(n) denote the number of remaining composite @,(n). Then

0 < w(n) — =(n'? — 1) — fo(m) < fi(n), (1.1)
0 < fi(n) < n(n*2). (1.2)

Hence, fy(n) = m(n) + O(=(n*/?).

3. The largest n for which every ain), / > 0, is a prime power is
n =170 '

Also stated without proof in [3]:

4, For all sufficiently large n, some a,(n) with i > 0 is the product of
two distinct primes,

In addition, the following two problems were raised in [3]:

5. Can one do better than (1.2) in estimating f,(n)?
6. For n > 70, let g,(n) denote the largest a,(n) which is not a prime
power. Is g,(n) ~n?

In this paper we deal with these and related questions. In particular,
relevant to (4), we show that

Sun) = w(n'?) + O(=(n'7)), (1.3)

where f,(n) denotes the number of a,(n) which are products of two distinct
primes (Section 2). We also show that n = 272 is the largest n for which
no a,(n), i > 0, is the product of two distinct primes (Section 5).

Since fi(n) < fi(n), (1.2) and (1.3) show that

filn) = m(n*?) + O(m(n'F?)), (1.4)

which deals with (5). Note that (1.1), (1.4), and the fact that fy(n) <
w(n) — w(n'/* — 1) — fo(n) give

Joln) = m(n) — 2m(n) + O(m(nt/3)).

For each n > 4, let

def .
g(n) = max{a®(n): primes p < n'/2},

Then g(n) is the largest a;(n) that is neither a prime nor the square of a prime.
In our opening example we have g(31) = 35. Note that g;(n) < g(n) for all
n > 70. We show that g(n) ~ n, which answers (6) affirmatively (Section 2).
We conjecture that g,(n) = g(n) for all sufficiently large n. In fact we con-
jecture g(n) is the product of two distinct primes but for finitely many n
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(Section 6). Our numerical work suggests that 118 is the largest value of n
for which g,(n) < g(n) and that 1478 is the largest value of n for which
g(n) is not in the form pg. We prove that g(n) << 2n for all but 10 exceptional
values of n, the largest being n = 371 (Section 5).

Many of these problems seem to be intimately connected with some deep
questions in the distribution of primes. For example, we show a relationship
between g(n) — n = o(n) and the order of magnitude of the error term in
the prime number theorem (Section 2). In addition, the above-mentioned
question on whether every sufficiently large g(v) is in the form pg is related
to the order of magnitude of the difference between consecutive primes.

We show how a certain result of Selberg [13], which says that the distribu-
tion of primes in very small intervals is “usually well-behaved,” shows that
the set of n for which some a;(n) is a prime power with exponent at least 3
has density O (Section 5). We use a new result of Warlimont [15] that is
similar to Selberg’s theorem to show that the set of values of g(n) has
density 0 (Section 6).

We show that the asymptotic density d(t) of the set of n for which
n -+t = a,(n) for some i exists and that d(t) ~ e ¥/logt, where v is Euler’s
constant (Section 4). The proof uses a result of Hooley [7] on the mean
square of the differences of the members in a reduced residue system modulo
an integer.

We prove that (g{n) — n)/n'/* — oo (Section 3). Our proof uses the upper
bound obtained from Brun’s method for the number of representations of
a number as a sum of two primes.

Many of the theorems, arguments, and conjectures of this paper carry
over almost intact to the family of sequences {b,(n)}, where by(n) =
n>bn) > >b(n) and b;.,(n) < b(n) -is maximal with (b;,,(n),
by(n) =+ b(n)) = 1. This family of sequences is studied in a forthcoming
paper of Eggleton, Erdos, and Selfridge. Some other somewhat related
papers are those by Erdds and Selfridge [4, 5] and Eggleton ef ai. [2].

2. UppER BounDs FOR g(n)

THEOREM 2.1. g(n) ~ .

Proof. Let € > 0 be arbitrary and let p <2 #'/2 be a prime. We now show
that if

(1 + &) nfp) — =(n/p) = n(p) — =(p/(1 4 &) + n(p'?) (2.1

holds, then a'™(n) << (1 4+ e)n. Let ¢, ,..., g, be the primes in (n/p, (1 -- €) n/p],
D1y po the primes in (p/(1 + €), p), and r .., r, the primes below p'/2,
Then (2.1) implies s > ¢ -~ u. For 1 =X i << 5, consider pq; . If pq, = a'"(n),
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then a'™(n) << (1 + €) n. So say no pg; = a'”'(n). Then {or each /, there is a
number j(i) with a;w(n) < pg: and (@;(n), pg.) > 1. If p ! a;»(n), then

a”(n) = a;(n) < pg; < (1 + € n.

So say no a;¢y(n) is a multiple of p. Then g, | a;»(n) for each i. Now a;,(n)/¢; €
(pf(1 - €), p),soif a;;n(n)/q;1s a prime, itisone of py ,..., p, . If it is composite,
it is divisible by one of ry,..., r, . Hence there can be at most ¢ + u choices
for a;(;(n). Buti — j(i) is one-to-one, since if ¢,q, | a;(1(n), then a;,y(n) > pq,,
a contradiction, Thus there are at most t -+ v choices for i, contradicting
s =t - n. Hence if (2.1) holds, a'(n) =< (1 -+ €)n.

Thus g(n) =< (I 4 en will follow if we can prove (2.1) holds for every
prime p << n'/2, Now by the prime number theorem we have

(1 + €) nfp) — =(nfp) > (¢ — €/4) n/(p log(n/p))
= (e — €2/4) nVi2flog n'/?

for all sufficiently large n. We also have

w(p) — #(p/(l + &) < (e — €/2) p/log p
< (e — €%2) n'*{log ni/3,
a(p'?) < p'* < n* < En'(4 log i)

for all sufficiently large p and n. Hence there is a p, so that (2.1) holds for all
sufficiently large # and all p with p, < p < n'/% But for p < p,, the right
side of (2.1) is bounded, so (2.1) holds for all sufficiently large n and all
p <n** As we have seen this implies that &'"(n) << (I — ¢)n, and so
gm < (1 + en.

We recall now that f,(n) is the number of a,(n) that are products of two
distinct primes. We have the following.

CoROLLARY. For each € = 0, there is an ny(€) so that for all n = ny(e),
0 < w(n'?) — fu(m) < (3 + €) m(n*/®). (2.2)

Proof. Let n(e) be such that for all n > n(e), gn) < (I + e)n. Let
n = n(e). For each prime r << #%/% we have a'"'(n) divisible by no more
than two primes in /= ((1 + € n'/% n'2], since r((1 + ) n*?*P® >rn >
g(n) = a'”(n). Hence with at most 2={(n'/?) exceptions, for every prime p €/,
a'®(n) is not divisible by any prime r << n'/3. Then for these p, a'”(n) is the
product of two distinct primes. Indeed,

a®(m)fp < gm)ip < (1 + € nfp < n?h,
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so that a''(n)/p 1s prime. Thus (2.2) now follows from the fact that
w((1 -+ €) n'/3) < (1 4 €) =(nt/?) for all sufficiently large .

In Section 5 we show that the largest n for which no a;(n), i > 0, is the
product of two distinct primes is n = 272. Now, however, we return to the
topic of this section. The following theorem shows we can get good upper
bounds for a'®'(n) provided p “keeps its distance” from n'/2

THEOREM 2.2, For every & >0, € > 0, there is an ny(8, €) such that for
all n > ny(8, €) and primes p < (1 — 8) n'/2, we have

aP(n) < n <+ p(nfp)' e < n + nld2e (2.3)

Proof. Let v = (n/p)~3/*2+< It follows from the proof of Theorem 2.1
that (2.3) will hold if we have

#((l + 7) nfp) — w(njp) = n(p) — =(p/(l + 7)) + =(p'). (2.4)

We now use a recent result of Huxley [8] that, when combined with results
of Hoheisel and Tchudakoff as reported by Ingham [9], yields

m(x + x%) — m(x) ~ x°/logx as x — 2.5)
if @ > 7/12. Now (1 - 7) nfp = np + (n/p)?/12+, so that (2.5) implies
#((1 + 7) njp) — =(nlp) ~ wn/(p log(n/p))  as njp — oo.
Then using p < (1 — 8) #'/2, we have
m((1 + 7) nlp) — =(n/p) > (1 — 8/2) wn/(p log(n/p)) (2.6)
for all n > n,(8, €). Now using (I + 7)=* > 1 — 7 and (2.5), we have
a(p) — w(p/(l + 7)) < w(p) — #((l — 7)p) ~ rpllogp as p— .
Thus since p < (1 — &) n'/2, we have
n(p) — n(p/(1 + 7)) < (I + ) 7p/log p < (1 — 8) wa/(p log(n/p)) (2.7)

for all p > p,(8, ). Now using the trivial cstimate = (p'/?) < pl/2 < ni#
and the fact that rn/p > »?/2!, we have from (2.6), (2.7),

(1 + 7) n/p) — w(n/p) — =(p) + w(p/(1 + 7)) — =(p*?)
> 7 onf(4p log(n/p))

for all n > ny(8, €), p > pi(8, €); (2.4) follows for these p, n. Now for
P < pi(d, €), the right side of (2.4) is bounded. Hence it follows from (2.6)
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that there is an ny(8, €) such that for all n > n,(8, €) and all p << (1 — 8) n'/?,
we have (2.4).

Remark 2.1. 1t is known that if the Riemann hypothesis holds, then
(2.5) is true for all @ > 4. Hence on the Riemann hypothesis, we have:
For each § > 0, € > 0, there is an ny(3, €) such that for all n > ny(8, €)
and all primes p < (1 — 8) n*/3,

a'?(n) < n -+ p(nfp)t/*+e < n + ndfire, (2.8)

We remark that even if (2.5) is true for some € <}, we cannot by our
method improve (2.8) very much. This is due to the term =(p'/®) in (2.4)
which would no longer be negligible.

THEOREM 2.3. For each € = 0 there is an ny€) so that for all n > ny(e)
and primes p < n3"\"=<, we have a'"(n) < pq, where q is the first prime above n/p.

Proof. By (2.5) we have g < n/p + (n/p)"/**<, all n > ny(e). Then by a
simple calculation we have

pg —n < p(njpy’’** < nfp <gq.

Hence (p — q) g < n, so that ¢ divides no a,(n) < pg. Thus a"”'(n) < pq.

Remark 2.2. If the Riemann hypothesis is valid, the conclusion of
Theorem 2.3 is true for all primes p < n'/*~<. Moreover, from the conjecture
of Cramér [1] (in slightly weaker form),

lim sup (pa., — pa)floghn < oo. (2.9)

where p, denotes the nth prime, we have the conclusion of Theorem 2.3
true forall p < en'/?flog nand alln > 1, where ¢ > 0 is an absolute constant.
Thus for these p we would have

a'?(n) — n < plog® n & n'* log n. (2.10)

We now turn to an improvement of Theorem 2.1. Let E(x) be a concave
function for all x > x, such that

| w(x) — li(x)] < E(x) forall x > x,.
We omit the details, but following the proof of Theorem 2.1 for the case

p = n*?j2 and the proof of Theorem 2.2 for the case p = n'/*/2, we have
the following.
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THeOREM 2.4, Given E as above, there is a constant ¢ such that for all
n > 4 we have

g(n) < n + cn®(log n)!/2 (E(n'/2))/2,
Remark 2.3. Since it is known [14, Chap. V] that we can take
E(x) = c;x - exp(—co(log x)3/® (loglog x)~/%),
where ¢, , ¢, > 0 are constants, we have for alln > 4
g(n) < n 4+ e3n - exp(—e,(log n)*/® (loglog n)=1/%), (2.11)

where ¢, ¢, > 0 are constants. If the Riemann hypothesis is true, it would
follow that we can take £(x) = cx!/? log x, so that in this case we would have

g(n) — n < n''® log n. (2.12)
It 1s known [10] that
E(x) 5= o(x'/? logloglog x/log x),

so no improvement in the error term in the prime number theorem could
establish by our methods that g(n) — n < n7/8,

Remark 2.4. Although we cannot do better than (2.11) for all n, one
might try to do better for infinitely many #, In particular, is

“T—-i\nf log(g(n) — n)flogn < 1?

At present we cannot answer this question (see Remark 3.2 and Fig. 1).

Remark 2.5. Let 0/ be the set of all subsets 4 of the natural numbers
such that the terms in A are pairwise relatively prime and such that each
prime divides some member of 4. For each n > 4 let

o(A, n) b max{ia —nliac Aand 3 primep << n'? 23 pal.
def .
G(n) = min{g(A4, n): A e ().

For each n, let A(n) == {ay(n), a,(n),...;. Then A(n)ec and g(A(m), n) =
g(n) — nif n > 4. Hence g(n) — n = G(n). Thus from (2.11) we have

G(n) < n - exp(—c,(log n)*® (loglog n)-1/%). (2.13)

We cannot do better than (2.13), not even for infinitely many »#. From
(2.12) we would have G(n) <Zn?/®logn if the Riemann hypothesis holds.
But we conjecture that G(n) <€ n'/**¢ for every € > 0 (compare with Remark
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3.2). Tt will follow from the proof of Theorem 3.1 that there is a constant
¢ > 0 such that

G(n) > en'? logn

for all sufficiently large n.

3. Lower BounDs FOR g{n)

Because of the many constants in this section, we have numbered them
€y, C3,... . From the corollary to Theorem 2.1 we easily obtain

gln) > n 4 cn*?/log n 3.1

for all large n where ¢, > 0 is a constant. The following short argument
removes the “log n’’: Let € > 0 be small and suppose that g(n) < n +- en'/2
The set {a'"'(n): p =< n'/*} lies in [n, n 4 en?/?) and has cardinality asymptotic
to m(n'/?) (again using the corollary to Theorem 2.1). Delete from this set
those a'”(n) with p < n'/4, The cardinality of the resulting set is still asymp-
totic to «(n'/?). Also, this set still lies in [n, n + en'/?) and its members are
not divisible by any prime up to n'/4. By Brun’s method, an upper bound for
its cardinality is ¢, € n'/?flog n*/%. Hence we cannot choose € < 1/cy . This
proves that

g(n) >n + cptl?

for all large n, where ¢; > 0 is a constant.
We now show that (g(n) — n)/n'/? tends to infinity,

THeoreM 3.1.  There is a constant ¢, > 0 such that for all large n
g(n) > n 4 ¢e,n'® log n.
Proof. Let n be large. Consider the function
F(x) = x + [njx] — (2]

defined for integers x € [1, n*/?). Then F(x) is integer valued and decreasing
(but not strictly). Say j = F(x,) > F(x, -+ 1). Then define b; = x, 4+ 1/2.
We have

x 4+ [nfx] = 2222} + for integers x € (b;,y, b)). 3.2)
Let m be maximal, so that

nUE > by > by > e > by, > nE — g,
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‘We note that

m e~ niis, by — byyy ~ fnt/E for 1 <j<m—1,

(3.3)
ni?2 — b, &€ i, by — mE M3 s,

Let € > 0 be small and let t = [e log n]. Assume that g(n) <n + (t— 1) n*/2
We shall show that this assumption leads to a contradiction. For every prime
p € (n'? — n13, n'i?) with p + n, we have

a®(n) = p([n/p] + i) forsomei, | <i <t (3.4)

We now consider a subset S of these primes: S is the set of primes p for
which p 1 n, a'P(n)/p is prime, and b,, < p < b, . If a'®(n)/p is composite,
it is divisible by a prime g < 2n'/4, so the number of such p is less than n'/4,
Then from (2.5) and (3.3) we have

i S| =@+ o(1)) n*Bflog n, (3.5)

where | S | denotes the cardinality of .S.
Let 1 <j<<m—1 and suppose p (b, ,b;) NS 1s prime. Then by
(3.4) we have ¢ = [n/p] + i prime for some i, | <i <1, and so by (3.2),

p+qg=0Rm"+i+] (3.0)

By Brun’s method we have for fixed j, i that the number of primes
p € (b;., ,b;) for which there is a prime ¢ satisfying (3.6) is at most

cs(by — bivy) 0]+ i+
log*(b; — b31)  @([27'7] + i +))’

where ¢; is an absolute constant. Hence using (3.3) we have

(18 + o)) con'/t i = v R

N Vi (T k

(3.7

Similar to the old result of Landau, ¥ ., 1/@(s) ~ ¢; log x, we can prove

Y. s/@(s) = cex + O(log x).
3gx
Hence (using m ~ n''®)
m-1 [2}1”2] _,_ i + ,,'
jo Rp(2m ] - § - )

= (cgm + O(log m))/(m — 1)/
am—1 v 1/2 T
4+ J yn Y [272/2] - i 4§ dy
1

I
i Fanl ?"([2"“”2] + i+ )
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ml/e

= ¢gmt/? + O (j

1

o]

+ 2
mliz * mfe

y~ti? loglog n a‘y)

it

y=32log n dy)

~ 2c,m!it,

Thus from (3.7) we have

(36 + o(1)) eseqn*/t i mi,

kSl = log? n

jm=]
so that there is a constant ¢, with
| S| < eptn'/3flog® n < c,en/log n.

This upper bound contradicts (3.5) if e is sufficiently small.
Hence our assumption that g(n) < n -+ (r — 1) n*/% is false, and so

g(m) = n + (t — 1) n'/* > n + fen'’* log n.

This proves our theorem.

Remark 3.1. Using a method similar to the proof of Theorem 3.1 we
can show that if € > 0 is sufficiently small then a positive proportion of the
primes in (n'/2 — n'/3 n'/?) do not have a multiple in [n, n + en'/?). No
doubt this is true for a positive proportion of all the primes up to n'/2,
That is, we conjecture that for a positive proportion p(e) of p < n/* we have
n/p — [n/p] = €, where € > 0 is fixed, but small. In fact we conjecture that
ple€) is continuous, monotonic, and that p(0+) =1, p(1—) = 0. The same
should be true if we replace “n/2” in the definition of p(e) with “»¢” for any ¢
with 0 < ¢ < }. The method of proof of Theorem 3.1 also demonstrates that
for almost all primes p € (n*/2 — n'/3, B*/?), we have [n/p] composite, We
conjecture that, except for o(w(n'/*)) primes p << n*’2, [n/p] is composite.

Theorem 3.1 is not best possible for all ». Indeed we have

THEOREM 3.2. There is a constant cg > 0 such that, for infinitely many n,
we have

g(n) > n + cgn**(log n)(loglog n)(loglogloglog n)(logloglog n)—2.

Proof. From Rankin [11], we know that for each r > e, there is a
sequence of at least

a(r) = cor{log? r)(logloglog r)(loglog r)—2
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consecutive integers, each divisible by one of the first r primes. Let
m, [0, P,] be 1 less than the first member of Rankin’s string, where P,
denotes the product of the first r primes. Then

(m,, P) =1, (m, + i, P) > 1 for 1 <i<alr) (3.8)

Let p denote the first prime in the arithmetic progression m, (mod P,)
for whichp > P, . Then p iseither the first or second prime in the progression.
By a theorem of Fogels [6] generalizing Linnik’s well-known work, there is an
absolute constant ¢,y so that p << P, Let x be such that if

n=p*+x

then P, | nand 0 < x < P, < p. Finally, leti be such that a'?(n) = p(p + i).
Since p = m, (mod P,) and P, | n, we see by (3.8) that i > a(r). Hence,

gn) = a'®(n) > p* + poalr) > n + jnt’a(r). (3.9
Now note that log P, ~ rlogr, so that n < 2p® < 2P} implies
r = ¢y, log nfloglog n, (3.10)
where ¢;; > 0 is a constant. Our theorem follows from (3.9) and (3.10).

Remark 3.2. Let

h(n) = log(g(n) — n)flog .

From Theorem 3.1 we have A(n) > ] for all but finitely many n. We can show
that the problem of finding the largest n for which A(n) << } is effectively
computable. We have not rigorously determined this value of n, but our
numerical work suggests that it is 1331. We have computed /A(n) for every
n < 27,500 and for many other larger values of n. These data suggest that
n = 4366 is the largest n for which A(n) < 0.6. The largest n we found with
h(n) > 0.95 was n = 12,834. We cannot prove /(n) has any limit points
exceeding  (compare with Remark 2.4). All we know for sure is that all the
limit points of A(n) lie in [, 1]. From (2.12) we would have all limit points in
1, %] if the Riemann hypothesis is true. Let

o= Iimaionf h(n), B = ]im_.s;oup h(n).

Our numerical work suggests that « > 1 ; perhaps « is as large as } . We
also believe that 8 is near { . For o << x < B, let 8(x) denote the asymptotic
density of the set of m for which h(n) <X x. We conjecture that §(x) exists
for each x, 8(x) is monotonic and continuous, and that 8(a) = 0, 8(8) = 1.
In Fig. 1, we have three numerical experiments recorded that may approxi-
mate the graph of 3(x).
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ExeerimMENT 1. We computed A(n) for every ne(104,2 x 101 =17, .
A point (x, y) on the dotted curve in Fig. | means that p/10* of the ne ],
have fi(n) < x.

ExperIMENT 2. We computed A(n) for one random » in each consecutive
subinterval of length 10 in (10%, 2 x 10%] = [, . The dashed curve represents
the approximate distribution of &(n) forne 7, .

ExPERIMENT 3. We computed h(#n) for one random » in each consecutive
subinterval of length 1000 in (109, 2 x 10¢] = J;. The solid curve in Fig. |
represents the approximate distribution of i(n) forn e 7.

4. THe Size ofF a'™(n) FOR FIXeD p

We now say a word about fixed p: If p is a fixed prime, what can be said
about a'?(n) as n — w? If p =2, we meet with immediate success, for
a'®(n) = n or n+ 1. But already for p == 3 we have a difficult problem.
It is clear from Theorem 2.2 that a®(n) << n + n™/1%* for every e >0
and every n > ny(e). Moreover if Cramér’s conjecture is true, Remark 2.2
gives us a¥(n) — n < log® n. On the other hand, if n is the product of the
primes p < x with p = 2 (mod 3) and if » = 1 (mod 3) then a®(n) > n -+ x.
This proves there are infinitely many n for which

a®(n) > n + clogn,

where ¢ > 0 is a constant. No doubt this can be improved slightly using a
Rankin-type result, as in Theorem 3.2. These comments for the case p =3
can be generalized easily for any odd prime.

For each integer ¢t = 0, let M, = P, denote the product of the primes
up to t. Let p be an odd prime. It is possible to determine whether a'#(n) >
n + t solely by considering to what class n belongs modulo pM, . Moreover,
there is at least one of these classes for which a'"(n) > n + r, namely,
if p|n — 1 and n is divisible by every other prime up to r. Hence D(p, t),
the asymptotic density of the set of n for which a'™(n) > rn - t, exists
and is positive. In the next theorem we shall in addition insist that n is in a
fixed residue class modulo p.

THEOREM 4.1. For each two integers t = 2, a, and each odd prime p,
let D(p, t, a) denote the asymptotic density of the set of n - = a (mod p), with
a'®™(n) > n + 1. Then there is an absolute constant ¢ such that

D(p, t, a) < c log® t/t.

We shall use the following:



464 ERDOS, PENNEY, AND POMERANCE

LemMA.  There is an absolute constant ¢’ such that for any y > 1, t = 2,
we have

Sy, 1) < c'(log? 1)y

Here f( y, t) denotes the asymptotic density of the set of n with each n -+ i,
0 < i <y, divisible by a prime not exceeding t.

Proof. Let N=M,and let | = b, < b, < ** < by =N — 1 be the
integers in [I, N] relatively prime to N. Say (n + i, N) > 1 for each i,
0 <i <y Then every n" = n (mod N) has the same property, so we shall
assume that 0 <n < N. Tt is clear that 1 <n < N — 1, so that there is
some j with b; <n << b;.,. Hence, b;.; — b; > b;,; — n >y. Thus the
number of such » < N is less than

1 e(N)-1

S by — b <=

Ly N(loglog N)2,
y & g (loglog N)

r 1 L
Y b —b; < ¥ Y by — b)) <

where ' denotes the sum over all b;,; — b; > y and where for the last
inequality, we use a theorem of Hooley [7] (¢" is an absolute constant).
The lemma now follows, since loglog ¥ ~ log ¢.

We note that Hooley’s is not the best result known on the mean square
gaps in a reduced residue system. Certain improvements have been obtained
independently by Hausman and Shapiro [16] and Norton [18). These
improvements, however, do not appear to be of help in a possible strength-
ening of the lemma.

Proof of Theorem 4.1. Since we trivially have D(p, t,a) << l/p, we may
assume that ¢ == 3p. Say a'?(n) = n -~ t. Letm = [n/p] + l andletm =+ y =
[(n + t)/p]). Then y = 1. Say that for some i, 1 <7<y, m-+ iis divisible
by no prime up to t. Then a'?(n) = (m 4~ i)p < n + ¢, contradicting our
assumption. Thus by the lemma,

Il ¢'log*t 1 c¢'log*t _ 3¢ log*t
e SRR A <
D(p, t, a)<p v <p 2= 7 .

which proves our theorem.

Remark 4.1. Theorem 4.1 implies that for each prime p, D(p,t) <
cp(log? t)/t, so that lim,.. D(p,t) =0. Thus for each ¢ > 0, there is a
t = (e, p) such that a''(n) << n 4 ¢ but for a set of n of density at most e.

Tueorem 4.2, Ler d(t) denote the asymptotic density of the set of n for
which an) = n - t for some i. Then (y is Euler’s constant)

d(t) ~ eflog as !~ oo,
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Proof. We first observe that whether a;(n) = n + ¢ for some / is deter-
mined solely by what class » is in modulo M, , so that 4(r) exists. Moreover,
if (n + 1, M) = 1, then n -+ ¢t = a,(n) for some i. Hence

d(t) = [] (0 — 1jp) ~eflogt
bt

by Mertens’ theorem. Now assume that n + t = a,(n) for some i. Lither
n -+t is divisible by a prime p < t/log®f or not. For p in the former case
we have, by definition, a'?(n) = n + 1. Hence by Theorem 4.1 the asym;itotic
density of such » is at most

D(p,t — 1, —1) < clog¥t — 1)/t — 1).

Then summing over p << {/log® ¢ and considering # in the latter case,

clogit — 1) ot . g
d(ty < —="— ﬂt.]ogh) . Mﬂgu (o Ypr

since the first term is O(1/log® t). This completes the proof of our theorem.

Remark 4.2, Even though Theorem 4.2 shows that d(7) — 0 as 1 — oo,
the local behavior of d(t) is probably irregular. The values of d(t) for
0<r<<1larel, 1, 142, 1/3, 1/3, 2/5, 415, 2/7, 2/7, 1/3, 4]15, 2/11.

5. MULTIPLICATIVE PROPERTIES OF THE a,(n)

Our first goal is to show that n = 272 is the largest n such that a,(n) is
never the product of two distinct primes for all { > 0. To show this, the
following result of independent interest will be useful.

TueOREM 5.1,  The set of n for which g(n) > 2n is {10, 27, 51, 52, 151, 152,
170, 367, 368, 371}.
Proof. From the proof of Theorem 2.1 we see that g(n) < 2n will follow

if for every prime p < n'/2 we have

w(nfp) + 7(p) + #(p**) < 7Q2nip) + =(p/2). (5.0
We consider separately the following cases:
() 9210 < p < 0
(i) 3In24 < p < 9310,
(i) 3 < p < 3n'/%4,
(iv) p = 3.
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We suppress the details, but using the estimates

X
L S ; C >
log % — 3 < m(x) forall x = 67, (5.2)

x 3
5 (1 2 ) forall x> 1, (5.3)

m(x) < 2 Tog x

due to Rosser and Schoenfeld [12], we are able to show that (5.1) holds
for all p in case (i) if # = 13,111, all p in case (ii) if # = 3476, all p in case
(iiiyif m = 311, and all p in case (iv) if # = 17. Hence, we conclude g(n) < 2n
for all = 13,111. A computer check up to this point reveals the 10 values
of n stated in the theorem.

TiHeoreM 5.2, The set of n for which no aln), i = 0, is the product of
two distinct primes is {1, 2,3, 4,6,7,8, 11, 12, 15, 17, 18, 22, 23, 24, 29, 30,
35, 39, 43, 44, 69, 70, 103, 104, 119, 268, 271, 272}.

Proof. Let S(n) denote the set of primes p e ((27)'/3, »n'/*] such that
a'""(n)/p is composite. By Theorem 4.1, for each n > 371 and each p € S(n),
we have a'(n) divisible by a prime r < (2n)'2. Moreover, a'?(n) is divisible
by at most one other prime in S{(n). Hence

| S(n)] < 2m((2n)'). (5.4)

Now il p, . p, are two primes in ((22)1/%, n'/2] and not in S(n), then both
a'?(n), a'"(n) are the product of two distinct primes and are unequal.
Hence, onc is an a,(n) for i = 0. Thus we would like to show two such primes
exist: that is, that :

w(nl/?) — 3w((2mi3) = 2, (3.5)

using (5.4). From (5.2) and (5.3) we have (5.5) for all n = 108,037. Using
a table of primes, we have (5.5) for all n = 26,569. Hence for these n, there
is some a,(n), i > 0, the product of two distinct primes. A computer check
for n <2 26,569 reveals the 29 cases reported in the theorem.

Remark 5.1. From the corollary to Theorem 2.1, the number of a,(n)
in the form pgq is asymptotic to w(n'/2), and hence tends to infinity. Thus for
each k. the set of n for which fewer than & of the a;(n) are in the form pg is
finite. [n fact, the above proof shows that for any such n > 371,
w(n'?) — 37((2n)/*) < k. The set of such n can then be computed using
(5.2) and (5.3).

It has been conjectured by Erdds [3] (sce also [4]) that for every & and all
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sufficiently large n, there is a square-free integer m with exactly & prime
factors such that
n<m<n-+ pm), (5.6)

where p(m) denotes the least prime factor of m. Since every m satisfying (5.6)
must be an a,(n), this conjecture would imply that for every k and all suffi-
ciently large » there is some a,(n), i > 0, that is the product of & distinct
primes. Another conjecture is that for all sufficiently large n there is some
afm), i > 0, composed entirely of primes below n*/2. Much weaker than these
conjectures is this: For all sufficiently large n there is some a,(n), i = 0,
not in the form p, p% or pg. We tested this last conjecture numerically and
found there are fairly large choices for n, where every a,(n), i > 0, is in the
form p, p% or pg (e.g., n = 362,610). We also found that »n = 1,021,482
has no a,(n), i =~ 0, divisible by three distinct primes.

In a somewhat different direction, we conjecture that the set of n for
which every a;(n), [ > 0, is square-free or the square of a prime is infinite.
In fact we think that this set has positive asymptotic density. Our numerical
work suggests this density may be larger than 1/10. If true, this conjecture
would imply that the set of n for which every m satisfying (5.6) is square-frec
has positive lower density. We can, however, give a direct proof of this luast
statement and in fact show the density exists, but we do not present the
details here.

Another conjecture supported by our calculations is that there are infinitely
many n for which no a,(n) < g(n) is the square of a prime.

For each n, let M(n) denote the set of m satisfying (5.6). As a corollary
to Theorem 3.1 we have that for all large » there is a.prime p << »#'/2 with
p 1 n and p dividing no member of M(n). The analogous statement is also
true if we replace (5.6) with the inequality n — p(m) < m < n.

We now prove the following.

THEOREM 5.3,  The number of n < x for which some a(n) = p* for some
prime p is O(x/log x).

Proof. We shall use the following result of Selberg [13]: If ®(x) is a
positive increasing function with

lim inf log @(x)/log x > 19/77,

then w(y + D(y)) — m(¥) ~ DP(»y)/log y for all values of y < x but for an
exceptional set of measure O(x/log x). That is, for each € > 0, the set of
y < x for which

| w(y + P(¥)) — #(y) — P(W)log y | = «D(y)/log y
is O x/log x).
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Let S be the set of n << x for which
w(n?/ 4 6n'3) — w(n*) < 6n'flog n.
Then for each n € §, we have
((n — 1?2, n®R1 C{y: 0 S y <223, n(y + 6p1%) — m(y) <4'logy + 1},
so that by Selberg’s theorem, we have

): (m2B — (n — 12" = 0(x?3/log x).

HES
A simple calculation then shows the number of # €5 is O(xflog x). Hence
except for at most O(x/log x) choices of n << x we have

m(n?® + 6n') — m(n?/3) = 6n'/3log n.
/108

Another calculation shows that except for O(x/log x) choices of n < x,
there are no primes in the interval [nl/3, /3 - 3].

Let € >0 be small and let p; << ** << p, denote the primes in [nl/3,
(1 <€) n'/3). By Theorem 2.1, if p is another prime, then a'®(n) = p.
Let ¢, < '+ < ¢, be the primes in (#*/, n?/ 4- 6n'/%), By the above con-
siderations, except for O(x/log x) choices of n < x, we have

py>nB 43 and t = 6n'¥log n. (5.7)
Now
Gy < M 4 6n13 < (M3 + 32 < p?

so that each p;q, < pp® < p,°. Hence to show no a™(n) =p? it will
suflice to show each a'®(n) << p,q,. But if a'7?(n) > p,q,, then each
a'"(n) < p,q; . Thus each a'"'(n) is divisible by a prime below p,. No
a'"(n) is divisible by a g;- with j* # j. Hence

a(mtf?) + i =t

But w(n'/%) ~ 3n'{logn and i < s ~ 3en'/3flogn. Thus, we have contra-
dicted (5.7) if n 1s sufficiently large.

Remark 5.2. [f Cramér’s conjecture (2.9) is true, then Theorem 5.3
can be considerably strengthened. Indeed if some a,(n) = p?, then Theorem
2.1 and (2.10) imply #'2 << p < n'/® 4+ O(n=1/log? n). Hence for all suffi-
ciently large n there would be at most one a,(n) = p*. Moreover the number
of n < x with such an a,(n) would be O(x*/ log x).

THEOREM 5.4. There is a constant ¢ > 0 such that the number of n < x
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Jor which some afn) == p* for some prime p and some integer k =4 is at
most x*~¢ for all sufficiently large x.

Proof. If a'®(n) = p* where &k =4, then by Theorem 2.1, we have
p << 204 for all large n. Then by Theorem 2.2, we have

n < p* = a'®(n) << n + p11/10+ke

for all n = ny(e). Then since k& = 4, we have for n = nye),

it £ p < phE A AR, (5.8)

Since k <€ logn, a simple computation shows that the number of n < x

=z

for which some prime p satisfies (5.8) for some integer k is at most x18/16+o(l),

6. THE NUMBERS g(n)

In this section we shall look at the distribution of the numbers g(n) as well
as their multiplicative properties.

THEOREM 6.1.  The number of values of g(n) << x is O(xjlog x).

Proof. We shall use the following recent result of Warlimont [15):
Let p,, denote the mth prime and let d,, = p,,,; — p... Then there is an
absolute constant K > 0 such that for all € > 0 we have

z dm < _\-!-—K’(_
mgx
dm?ﬂn{ S+e

The actual value “}” does not appear in Warlimont’s paper, but we obtain
this number by using Huxley [8]. We shall apply this result with e = 1/12,
so let K/12 = ¢. Then

Y dy<€xte (6.1)
mexE

2l

Let p be an arbitrary prime. From (6.1) we immediately have that the
number s5,(x) of n < x for which there are no primes in the interval [n/p,
nlp -+ (nfp)t/*] satisfies s,(x) <€ p{x/p)'~¢ uniformly. Let ¢ >0 satisfy
¢ < c/(l + c¢)and ¢’ < 5/17. Then

Y, 5,(x) L X1t L xflog X,

nezt

So we may assume that if n < x, p < x, there is a prime g € [n/p, n/p



470 ERDOS, PENNEY, AND POMERANCE

(n/p)}/*]. Theorem 2.3 then implies for each such »# and each prime p < n®,
aP(n) < n + plnfp)tt < n + 7 < g(n),

the last inequality coming from (3.1). Hence except for O(x/log x) choices of
n << x we have g(n) not divisible by any primes p << n®’. Since n < g(n) < 2n
for large n, our theorem now follows.

If g(n) is not in the form pq, then it is divisible by a prime r < g(n)'/3 <
(2n)*/3 for n > 371 (using Theorem 5.1). Suppose that Cramér’s conjecture
(2.9) holds. Then by (2.10) we have a'"(n) — n <€ nl/3log?n. Then (3.1)
contradicts a'”(in) = g(n) if n is large. Hence Cramér’'s conjecture implies
that all but finitely many values of g(s) are products of two distinct primes.
Moreover, if the prime factorization of g(n) is pg where p < ¢, then (2.10)
implies that if p << n'/%flogin, then g(n) =a'Pn) <n -+ cut’¥login
again contradicting (3.1). Hence p = n'/%flogtn. Then by Theorem 2.1
and a simple computation we find that Cramér’s conjecture implies the
number of g(n) < x is O(x loglog x/log? x).

For the numbers below 27,500, the largest value of g(n) not in the form
pq is 1519 = 7%+ 31. We conjecture that 1519 = g(1478) is the largest
such value of g(n). We cannot, however, even prove that g(n) is infinitely
often in the form pg. We also conjecture that the ratio of the two conjectured
primes in g(n) approaches 1 (or, at least, is bounded).

From the proof of Theorem 6.1 we have the following: There are positive
constants € and N such that for all large x there are fewer than x'-< choices
of n < x for which g(n) has more than N prime factors. Indeed, we just
choose N =1 + [1/c']. We are not sure what the exact value of K is in
Warlimont’s theorem. If this value of K were large enough we could prove
the above statement for N = 2 thus obtaining infinitely many g(n) in the
form pgq. Also if K were large enough we could improve the estimate in
Theorem 5.3 to x'~=,

For cach n, let y(n) be the number of integers m with g(m) = n, Then
from Theorem 6.1, we have y(n) = 0 on a set of density 1. Are there infinitely
many n for which y(n) = 1? Our numerical data suggest the answer is yes,
but that these n have relative density 0 among all » for which y(n) > 0.
In fact, our data suggest that 1 is the second most popular nonzero value
for y, the most popular being 2.

Theorems 2.1 and 6.1 imply that (1) is unbounded. Our numerical
work has uncovered some values of n for which (n) is very large. For
example, ¥(2623) = 190 and 9(23,381) = 514. We conjecture that

c= lin}ﬂiup log y(m)/log n > 0,

perhaps ¢ > £ . We note that (2.12) implies that on the Riemann hypothesis,
c<§.
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7. ADDITIONAL COMMENTS

Let P(#) denote the largest prime factor of an integer n >> 1. For each n,
let C(n) denote the set of P(a,(n)) for all i = 0 such that @,(n) is not a prime
nor a square of a prime. Then for n = 30, C(n) is not empty. There is a
positive constant ¢ and an a, such that

max C(n) > cn®?® forall »n = n,, (7.1)

where, of course, max C(n) denotes the largest member of C(n). Indeed,
if € > 0, it follows from the corollary to Theorem 2.1 that for all large n,
there are primes p < (3 + €) n'® with a'(n)/p prime. Hence, ¢ can be
taken as any number less than § . We can prove that ¢ can be taken a little
larger, but we cannot show max C(n)/n*/® — oo, [t is an easy consequence of
Theorem 2.1 that for all sufliciently Jarge »

max C(n) = (n - 1){2. (7.2)

Equality holds for all sufficiently large » of the form 2p — 1, where p is
prime. However, il n is the product of the first & primes, then as k - ~,

max C(n) << (1 -+ (1)) n/log n. (7.3)

We do not know how to narrow the gap between (7.1) and (7.3).

In Section 5 we conjectured that for all sufficiently large n, there are some
a/(n), i > 0, composed entirely of primes below n'/%; that is, min C(n) < n'/2
We now conjecture that for every € = 0, there is an n,(€) such that

min C(n) < n* for all n = nye). (7.4)

Perhaps it is possible to prove (7.4) for almost all i, but we cannot quite show
this. Tt is easy to see that for each prime p, there arc infinitely many n for
witich min C(n) = p. However, if p,(n) denotes the second smallest member
of C(n), then

Po(n) — o as o — . (7.5)
Indeed, let K be large. If p.(n) << K| then there are 0 << i << j with q,(n) < g(n)
and Pla{n)) < K, P(a;(n)) < K. From a result of Mahler, for each ¢ = 0,
there is an ny(K, €) such that for all n > ny(K, €), a,(n) — a,(n) > n*—.
But from Theorem 2.2, a;(n) — a,(n) < n™/*+< Then for small € we have a
contradiction. Thus for n > ny(K, €), p,(n) > K.

Now let s(n) be the largest a(n), i > 0, not the square of a prime but not
square free. In Section 5 we conjectured that 5(i7) does not exist for a positive
density of n. Now we conjecture that the upper asymptotic density of the set
of n for which s(n) = n + ¢ tends to 0 as 1 — oo,
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In another direction, we conjecture that all sufficiently large integers m
are of the form g(n) — n. In fact this may be true for every nonnecgative
integer m. We have verified that every m in the interval [0, 1000] is so
representable. We cannot even show that such m contain a positive density
of integers.

We now say a word about a,(n) for fixed i. Clearly a{n) =n 4 i for
i =0, 1 for all n. It is not difficult to show a,(n) = n -~ p where p is the
least prime which does not divide n. Moreover, if n is odd, then a,(n) =
n - 1 — g, where ¢ is the least prime that does not divide n 4 1. If n is even,
we do not have a simple formula for ay(#), but we do note that ay(n) << n -+ p?
and that equality can hold for every p and infinitely many n. We conjecture
that for every fixed i,

an) < n -+ (1 + o(l)) logn as n— oo. (7.6)

By the above comments we have (7.6) for i =0, 1,2 and for i = 3 in the
case n is odd. We note that from recent work of Iwaniec [17] we have

a;(n) = n 4 ci?log®n,

where ¢ is an absolute constant. Finally we conjecture that if f,(n) is the
least integer larger than n - k, with ([T, (n -+ i), fi(n)) = 1, then fi(n) <
n 4 (1 -+ o(1)) logn as n — oo. We note that if we ignore a sequence of n
of density €. (where e, — 0) we have fi(n) = Fi(n), where Fi(n) is the least
number larger than »n -+ & and relatively prime to k!. Furthermore, except
for density ¢, choices of n, Fi(n) << n -- k 4 clogk.

[t is clear that a(n) —n ~ilogi for fixed n as { — oo. [t might be
interesting to determine for which range of i, n this result becomes true.

8. PROGRAMMING NOTE

This is an abstract of the computer program used for the majority of the
results in the paper “On a Class of Relatively Prime Sequences,” by Erdds,
Penney, and Pomerance. The heart of the program is the construction of the
integer @;.,(n) mentioned in the Abstract and on the first page of the paper
itself. We remind the reader that for a given natural number n, we put
ag(n) = n, and if ay(n),..., a(n) have been defined, then a;,,(n) is the least
integer exceeding @,(n) that is relatively prime to all the previously constructed
terms ay(n),..., a(n).

The results of the paper require the computation of no term of the sequence
beyond g(n), the largest a,(n) that is neither prime nor the square of a prime.
In addition, no prime members of the sequence need actually be computed.
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It is easy to see that in the finite sequence actually computed, each prime
p < n'/2 will appear as a factor of at most one term of the sequence, and that
terms of the sequence not divisible by such primes will be squares of primes
g > nt/2

The program used takes advantage of these observations as follows.
Suppose that »n is given. Note that we always have a, == n - 1. Initially
store the primes p < #'/? in array A. Move to array B those primes in A
that are divisors of n or of n + 1. The other prime factors of n and n +- 1 are
stored in a third array, say, C.

The inductive step proceeds as follows. Suppose that a,, a4, ,..., a; have
been chosen. Form a fourth array D by this method: For each prime p
remaining in A, let mp be the least multiple of p exceeding a; . The array D
consists of all such multiples, together with ¢g* where ¢ is the least prime
exceeding n'/? that is not already stored in C.

The array D is then examined; its least element extracted. If this is g2,
we have found the value of a,,, . Otherwise, this element must be tested;
if it is divisible by any prime in each B or C, it must be replaced by the next
larger multiple of its ‘“‘corresponding™ prime, and D reexamined. If not,
we have found a,,, .

The process terminates when A4 is exhausted. Running records are kept of
various information needed for the paper, including statistics on g(n) and A(n),
existence of terms in each sequence of forms other than pg and p?, and several
other related records. Certain accelerating options—such as use of only odd
multiples of the primes p in 4 in construction of D—were used, since this
program does not run rapidly with values of n > 107. We omit data on such
accelerators from this abstract, since they are many in number and about
as trivial as the example cited. All programs were run in FORTRAN on the
University of Georgia’s CDC Cyber 70 Model 74, under Batch mode in the
interactive system NOS 1.2, release 446. The program consists of a driver/
prime generator and seven subroutines, amounting to about 350 lines of
FORTRAN, and a photocopy may be obtained from the author of this
note (D.E.P.).
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