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Abstract
Let X be a finite set of cardinality »n. If L ={l,,...,1,} is a set of non-
negative integers with [; < [, < ... <[, and k is a natural number, then
by an (n, L, k)-system we mean a collection of k-element subsets of X such
that the intersection of any two different sets has cardinality belonging
to L. We prove that if .7 is an (n, L, k)-system, with |.o7| > en™ (¢ = ¢(k)
is a constant depending on k), then

(i) there exists an l;-element subset D of X such that D is contained

in every member of .27,

(ii) (32_ 31) [ (la_lz) | =22 | (Er" Zr—l) 1 (k - zr)!

(i) TIfy (n—1)/ (k1) > || (For n > mo(k).

Parts of the results are generalized for the following cases: (a) we
consider {-wise intersections, where £ > 2; (b) the condition |4| =k is
replaced by |4| e K where K is a set of integers; (¢) the intersection
condition is replaced by the following: among ¢+1 different members
Ay, ..., Ay, there are always two, 4;, 4;, such that |4;n4;| e L.

We consider some related problems. An open question: let L' < L;
do there exist an (n, L, k)-system of maximal cardinality (/) and an
(n, L', k)-system of maximal cardinality (.2/’) such that o7 > 7’7

1. Introduction

Throughout this paper lower case latin letters denote integers,
capital letters stand for sets, and capital script letters for families of
sets.

Let L ={l,...,1,}, where [, <l, < ... <1l,, and K be sets of integers.
By an (», L, K)-system we mean a family o7 of subsets of a set X, with
| X | = n, such that for 4,4, € o/ we have |4,|,|4,| € K, |4,04,| € L.
If K = {k} then the notation (n, L, k)-system is applied, too.

A family B = {By, By, ..., B} of sets is called a A-system of cardinality ¢
if there exists a set Dc< B, with ¢=1,...,¢, such that the sets
BA\D,..,B\D are pairwise disjoint. D is called the kernel of the
A-system.
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Trrorem 1 (Erdés and Rado [7]). There exists a function @ (k) such
that any family of o/ k) distinct k-element sets contains a A-system of
cardinality c.

An old conjecture of Rado and the second author is that there exists an
absolute constant ¢’ such that g (k) < (cc’)®. The best existing upper
bound (of order about ¢¥k!) is due to Spencer [16].

TreoreM 2 (Erdés, Ko, and Rado [8]). If o isan (n,{I,1+1, ...,k— 1}, k)-
system of maximal cardinality, then for n = ny(k,l) there exists a set D of
cardinality 1 such that for every 4 € o, D = A holds. In particular, for
I =1, ny(k,1) = 2k+1 is the best possible value for ny(k,1).

(For I > 2 the best existing upper bound on n(k, I) is due to Frankl [10].)

Tueorem 3 (Deza [1]). An (n,{l}, k)-system of cardinality more than
I2—k+1 is a A-system.

The object of this paper is to generalize Theorems 2 and 3 for (n, L, K)-
systems. In the proofs heavy use is made of Theorem 1.

The next four theorems express properties of (n, L, k)-systems.

Throughout the paper we assume that n > ng(k,¢) for £ > 0. Let us
set ¢(k, L) = max(k—1,+1, [,2—1,+1)+e. & is an (n, L, k)-system.

Toworum 4. If || = c(k, L) [1ios (n—1,)/(k—1;) then there exists a sel
D of cardinality 1, such that D < A for every A € .

THEOREM 5. If |27 | = k22" n"1 then
l=1) | G =Ta) |- | Oy —Tpy) | (B =T,).
TarOREM 6.

rn—I;
1< k=1

The following result is a generalization of Theorems 4, 5, and 6 for
(n, L, K)-systems. Let K = {k,,...,k;}, with k; < ... < k,. Let us define
Ky = En{0,.c.. i}y Bp={l+ 100l 0 K, for § = 1,...,#—1, and

K,=Kn{l,+1,...,k}.
Let us set k¥ = min{k|k € K}, fori =0, ...,7.

TuroreM 7. Lel o7 be an (n, L, K)-system.

() If || > ke(kgy L) [T (n—1,)/(k* —1;) then there exists a set D of
cardinality 1, such that D < A for every A € 7.
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(i) If || > k20" then there exists a k € K, such that

(=) [Ua=To)| .. | L= bpy) | (R =1,).

(1ii)
r r -1
1< Se 1T
i=0 _§=1 Mg — 4
<k

where e, = 0 if K; = 0, &; = 1 otherwise.

The next theorem is a common generalization of Theorems 4 and 6 and
a theorem of Hajnal and Rothschild [11].

THROREM 8. Let o7 be a family of k-element subsets of the n-element set X
such that whenever A, ..., A, are g+ 1 different sets belonging to o7 we can
Jind two of them Ay, A; such that |A;0 A;| € L (g > 114s fixed).

(i) There exists a constant ¢ = c(k,q) such that
n—I;

o

1> @1 11 5=

P=

e

implies the existence of sets Dy, D,, ..., D, such that for every A € of there
evists an i, with 1 <1 <s, satisfying D;< A, |Dy|=...=|D,| =1,.
Further, if q; denotes the maximum number of sets A,, ..., A, such that, for
1<j<q, Dy=d; but for i'#4i, Dy Ay and |A;nAy|¢ L for
1 <Jjy <Ja < Qi then Xi, 9= 4.

(il

n—i;
1< a1 3

W) (> nglk, ).

In the next theorem we generalize Theorems 4, 5, and 6 for the case
of t-wise intersections.

TeEOREM 9. Let o7 be a family of k-subsets of X. Swuppose that, for any t
different members Ay, ..., A, of &, |Aj0...04,| € L. Then
(1) there ewists a constant ¢ = c(k, 1) such that

| 7] > en™?

wmplies the existence of an ly-element set D such that D < A for every
Ae .,

(ii) || > en™* implies that (I,—1)|...|(I,—,_y) | (k—1,),

(i) 2] < (1= 1) Ty (0—1)/(k—1)  (n > mo(l, ).

First versions of Theorems 4, 5, 6, and 7 were announced in [2], the case
where | L| = 2 was considered in [4].
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2. The proof of Theorems 4, 5, and 6

In the case where r = 1 the statements of the theorems follow from
Theorem 3.

Now suppose > 2. We apply induction on k. The case where k& = 1 is
trivial.

Let us first consider the case where [, = 0. Then the statement of
Theorem 4 is evident. Let @ be an arbitrary element of X. Let us define

= {4\ {z}|x € A}. Then & isan (n—1,{,—1,...,1,—1},k—1)-system.

Hence, by the induction hypothesis,

(n e rp—1
s (b— 1)—(3_1) ,r_lak-zi‘ (1)

Counting the number of pairs (x,4), for x € 4 € &/, in two different
ways we obtain

ARSI

k|| = X |yl. (2)

ze X
From (1) and (2) it follows that
IX[ r n—1;

%

which proves Theorem 6 for this case.
Now we wish to prove Theorem 5. So we may suppose that

|| > k22r-1pr1,

Let us set d = k22722 and .&/° = /. If 277 is defined and there exists
an element « € X such that 0 < |27%| < d then define

ST = ofi\{A € o1 |x € A}.

After finitely many steps the procedure stops, that is, we obtain a
family &7’ in which every element of X has either degree 0 or degree more
than d, and

|| > | |—nd > k22721,
Let X' be the set of elements of X which have non-zero degree in .o/’. If
x € X' then o7 is an (n—1,{l,—1,...,l,— 1}, k— 1)-system, and
|| > d= k22r-nm2,
whence by the induction hypothesis there exists a set D, = X\ {«}, with
|D,| = l,—1, such that D, < A for every 4 € o7,

We assert that for any y € D,, D, = (D, \ {y}) u{z}.

Suppose that for some y it does not hold. As any member 4 of &7}
contains y so it has to contain D, as well and consequently
A4 2 (D,uD)\{2}). [(D,uD,)\{z}| = l;, which implies that any two
elements of .7 intersect in at least I, elements. Hence .27} is an
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(n—1,{l3—1,...,l,—1},k—1)-system. So Theorem 6 implies that

EARY i

a contradiction. So we have proved that, for sy, D,u{e} and
D, u{y} coincide or they are disjoint.

Consequently the sets D, u{x}, for z € X', form a partition of the set
X' such that any member 4 of 7' is the union of some of them. Hence
Iy| k. We assert that for any 3 < ¢ < r there are two sets 4, B € .2’ such
that |4 n B| = I;. Indeed, otherwise 27’ is an (n,{ly, ..., {;_y, gy o ous b}, B)-
system, so by Theorem 6

n—I
_33' \{\ .n!‘-—l’

'] <

j#i
a contradiction. Now if |4 nB| = I, then that 1,|l; follows from the fact
that 4 and B, whence 4n B too, are the unions of some of the pairwise
disjoint /,-element sets D, u{a}. In particular it follows that

ly = (la—1y) | (Ig—15).
Applying the induction hypothesis to .27/, we obtain that

((ls— 1) = (= )| (s =) = (s — )] .. [ (b~ 1) = (1, 1)),
that is, (Il3—1,)|(ly—1s)]...|(k—1,), which finishes the proof for the case
where [; = 0.
Now we need a lemma.

Lemwma 1. (i) Lef the sets 4, ..., A, form a A-system with kernel D, where
| D=1, and c¢>k—1,+2. Then for any set B, with |B|<k,
|BaA;| =21 fori=1,...,c implies B> D.

(ii) Let the sels Fl,F 3o FY form a A-system with kernel E,;, where
| =kfors =1,...,8 =1,k

Suppose that the sets E; form a A-system with kernel D, where |D| =1,
and that t > (s—1)(k—1). Then there are indices 1 < j, <t for t = 1,.
such that the sets Fit form a A-system with kernel D.

Proof. Let us set |[BnD|=1 <1l;. Then |BnA4;|>1, implies that
[Bo(A;\D)| =2, =1" for i =1,...,c. As the sets 4;,\ D are pairwise
disjoint we obtain

=|B|>V+ely—1) > U+ (k=1 +2)(,—1)
=

or equivalontly (k—1)) = (k=14 1)(l, =), which yie]ds I, =1 as desired.

Now we prove (ii). Suppose that for i =1,...,s’ we have chosen
indices 1 < j; < ¢ such that the sets Fii form a A-system with kernel D.
Now we wish to choose the index j = j,.; in such a way that Fi,n Fii = D
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fori=1,...,8 and i, nE; = Dfori=s"+2,...,s. Anindex j does not
satisfy the condltlons if and only if FJ_,\ D is not disjoint from the set

i, = (UEND)u( Y (E\D)).

i>s'+1

As the sets Fi,,\E,,, are pairwise disjoint, for j=1,...,¢, and
|Hy| =8"(k—1)+ X5 g1a| @B\ D| < (s—1)(k—1) < ¢, the appropriate
choice of FJ.,, is always possible, which proves the lemma.

Now we turn to the proof of Theorem 4 for the case where I, > 0. If we
can find k—1,+2 sets 4,,...,4;_ ., belonging to o/ which form a A-
system with kernel D, where |D| = 1,, then it follows that D = 4 for
every A € o/, since |[And;| =1, for i=1,...,k—1;+2, and from the
lemma.

So we may assume that such a A-system does not exist. Now let us
choose a set D} of cardinality 7, such that D7 is the kernel of a A-system
formed by k* members of .o (42%,...,4}"), and let us define

—{d e /| D} & A).

Now we choose a set D3 of cardinality I, which is the kernel of a A-system
formed by k2 different members of &/2 and define =73 = {4 € &/%| D} & 4},
and so on. After a finite number of steps, say ¢,, we cannot find a set
D2, of cardinality I, which is the kernel of a A-system formed by &2
different members of 277,

Now we choose a set D? of cardinality I; which is the kernel of a A-
system formed by k® different elements of 72, and define

={4 e | D} ¢ 4};
after say ¢, steps we cannot find such a D ;. Then we look for an [,-
element set which is the kernel of a A-system formed by k* members of
/3, and so on. At last we obtain a family .7 which does not contain
any A-system with kernel D, where |D;| =1;, and of cardinality &/
(j=1,...,7). As o7 is an (n, L, k)-system it means that /] does not
contain any A-system of cardinality at least k", implying that

|7,| < pyr(k). (3)
Now we assert that
9 < ‘;okj'l(zj) (J =3, --'sf) (4)
and that
gz < o(k, L). (5)

If it is not true then we could find among the kernels of cardinality /; a
A-system of cardinality k% and kernel D, with [ D,;| = [, for some 1 < 1 < j,
or, for j = 2, a A-system of cardinality £—1,+2 and with a kernel D, of
cardinality 1.
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Applying Lemma 1 we obtain that, for the corresponding j, 27i-%
contains a A-system consisting of k% sets and having a kernel D;, with
|D;| =1;, for 1 <i<yj, or for j =2 that o/ contains a A-gystem of
cardinality & —1,+ 2 and with kernel D,, with |D,| = [,.

The first possibility contradicts the choice of g;_; while the second one
is contrary to our assumptions. So (4) and (5) are proved.

If 1 <u<g; then define o7(j,u) ={A\D}| A € .o/,Di < A}. Then
A (j,u)is an (n—1;, {0, 1, =1, ..., L, — L}, k—1;)-system.

Hence by the induction hypothesis

(n v=l)—(—l) _ rn-=l;
M E] - =~y "y -'___tl
ol B ey-u-1y~ L&,
Consequently,
r p—1;
yi;;ll ‘f_fi S tl;Ij ke— l,, (6)
for j = 2,...,r, where &7} = /. From (3), (4), (5), and (6) we obtain
|| = Zlﬂ"'l\ o] |+, |
l
— (7)
i

In (7) we use the conventions t-hat Z,. 1 =Fkand that thc, empty product
is 1.

From (7) we obtain

n—1;
i=3 k zi
which is a contradiction as n > ny(k). Now the proof of Theorem 4 is
finished. So in proving Theorems 5 and 6 we may suppose that there
exists a set D, with | D| = [, such that D = 4 for every 4 € o7,

Let us define /(D) = {4\ D| 4 € o7}. It follows then that .=7(D) is
an (n—10,{0,l,—1,....[,—1,}, k—1,)-system. We know that k-1, <k as
I, > 0. Hence both Theorem 5 and Theorem 6 follow from the induction
hypothesis.

| 7| < (c(k, L)+0(1))

Equality in the estimation of Theorem 6 (briefly ‘equality’) is realizable
by the hyperplane-family of any perfect matroid-design (cf. [14]) of rank
|L|+1, such that for any j-flat F7 we have |F\U| =k, |FIEH =p,
|Fi| =14, 0 <j<|L|. Forexample,in the case when L is an arithmetic
progression with difference d = 1,—1;, we may obtain equality by an
(I,—1,)-inflation of an S(|L|, k/d, n/d) if this Steiner-system exists. The
affine and projective geometries provide other examples when equality
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is possible. (The collection of all the j-flats #7 with | Fi| = k¥ for some
0 <1 < | L] gives equality in the estimation (iii) of Theorem 7.)

In the case where L = {0, 1, 3} the equality implies the existence of an
S(2,3,k), whence 2|(k—1), 6|(k—1)k. In the first case, k = 5, equality is
not possible, moreover it can be proved that no (n, L, 5)-system has more
than 214 = o(n/t) elements though (1—0)|(3—1)|(5—3). The collec-
tion of the 2-dimensional subspaces of PG(s,2), AG(s,3), respectively,
provide equality for the cases where k = 7,9. The first open problem is to
decide whether there are infinitely many values of n for which we can have
equality in the case where k = 13.

REMARK 1 (on Theorem 4). Without changing the argument we can
prove the following: if ' > k and
n— Z‘i
o k—1;
then there are sets A4,,...,4; .o € & which form a A-system with a
kernel of cardinality 1,.

|| > e(k L)H

REMARK 2 (on Theorem 5). For the case where L = {0,[} in [4] it was
shown that |.«7| > n implies Ik and this estimation is the best possible
(this is a generalization of the Fisher-Majumdar inequality [15]).

REMARK 3 (on Theorem 6). In [16] it was shown by Ray-Chaudhuri
and Wilson that | .o/ | < (é!) for any (n, L, k)-system .o/ (this is another

generalization of the Fisher—-Majumdar inequality [15]). This estimation
does not depend on k, but it is weaker than Theorem 6 for
|| > C(k)n/M=1. Tts proof (using, a propos, linear independence of
certain systems of vectors) will be interesting to extend for the cases of
Theorems 7, 8, and 9.

3. The proof of Theorem 7
We apply induction on ». If &' denotes {4 € &Z||A4|> 1} then it
follows from the induction hypothesis that

i
]M\M’ Z Ei H ’
i=0 gul
when # > 2, while the same inequality holds trlwally for r =1 as well.
Hence
ai

|\t | > | L |- _1“ =
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First we prove (i). As |K,|<k,—[, <k,—r and c(k,, L) > 1, there
exists a k € K, such that
n—l

i

k* c(kS’L)I;Ig&;_J .

{d e | |A| =k} = (k)| > clky, L) H

.

Hence by Remark 1 there exist k,—1,+2 elcments Al, s Ay 40 € H(k)
such that for D = 4,04, | D| =1, and the sets A)\ D, ..., 4;, ;..\ D are
pairwise disjoint. So by Lemma 1, for every 4 € &/, A = D and hence (i)
holds.

Now let us prove (ii). Now we can find a & € K, for which

| (k)| > k22r-1nr-1

holds. As .eZ(k)is an (n, L, k)-system, Theorem 5 implies that (ii) is true.

To prove (iii) observe first that, fora € X\ D, o/, ={A\D|2z € 4 € o/}
satisfies the hypothesis of the theorem with

n'=n—1, K ={k-l|kek) L={,-1,..1,-1}
g0 by the induction hypothesis it follows that
" r ?%—EJ‘
el < I ey -
Counting the number of pairs (z, A), where x € A, 2 € X\ D, and 4 € .&/’,
in two different ways we obtain
X |l = | (kF—1)
ze X\D
and consequently
rop— Z ,
(=) I g5 — > || (k7 = 1y),
j=2 % J

and (iii) follows.

From the estimation (iii) of Theorem 7 it follows that in the case where
L=[lk-1), K =[g,k], and n > nyk), any (n, L, K)-system satisfies

k (n—1
< 265)
which generalizes Theorem 2 of Hilton [13] for the case where I > 1.

4. The proof of Theorem 8

We apply double induction on k,q. Let us first consider the case where
[, = 0. In this case (i) holds automatically. To prove (ii) observe that if we
define o7, = {A\ {x}| A € &, @ € A}, then &7, satisfies the hypothesis of the
theorem with #»’'=n—1, L' ={,-1,...,I,—1}, ¥ =k—1, and ¢ =q.
Hence by the induction hypothesis |27, | < ¢ [1%, (n—1;)/(k—1,), and this
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equality holds for the case whcle L ={l} too. As | |-k =Y,.x|H| it

follows that |o7| < (n—1)/(k=1,).
Now suppose that l > 0 Let us choose a set D,, with | D, | =1[,, such
that there exist 4}, ..., 4}, € o satisfying A}n A} = D, for 1 <i < j < kq.

Then let us set &e‘l {A € | A 2 D,}. Now we choose D, in the same
way and define .2#2, and so on. After a finite number, say p, of steps .o/?
does not contain any A-system of cardinality kg and with kernel D, where
| D] = 31 We assert that p < ¢. Otherwise we have at least ¢+ 1 A-systems
Ai, A5, ..., A}, with kernels D;, where |D;| =1, fori=1,...,q+1. As the
sets A1\D1: voey A}, \ D, are pairwise disjoint and

< hg < kq,

we can find an index j; such that (4} \ Dy)nD; =@ fori=1,...,¢+1.

fwe ha\r(‘ chosen A4}, ..., 43 then we want to choose 45/ in such a way
that ?+f,\Dsa1 n(A A\D) =0 = (452\ D)o D, for 1<i<s,
s+2<¥ <q+1. As

< s(k—1L)+(g—9) < qk

q+1
+| U D,
=842

and the sets A5\ D, are pairwise disjoint, for j=1,...,kq, such a
choice of AjfY, is possible. But if 1 <s < s’ <g¢+1, then

A3 n 4§, = Dyn Dy,
which implies that
|45, n 45, |¢L,
a contradiction.

Now we want to show that |.&7?| = O(n"1). We proceed in essentially
the same way as in the proof of Theorem 4 for the case where [, > 0, so
the proof will only be sketched.

Let us choose Dj, with |D}| =1, in such a way that there exist
Ay, ..., A2, belonging to 77 which form a A-system with kernel D3.

\ow define /2 ={4 € .o/?| A $ D?}. Then choose D}, and so on.
When there are no more l,-element sets which are kernels of a A-system
of cardinality ¢k? then try to find an [;-set which is the kernel of a A-
system of cardinality ¢&?, and so on.

By Lemma 1, among the A-systems of kernel ; there are no gk~* which
form a A-system, whence their number is less than ¢ (l;). If D} is an
l;-element set, then &7, = {4\ Dj|A € o/, D; = A} satisfies the hypo-
thesis of the theorem withn' =n—1, k' = k-1, L' = {0,l;,,—1;, ..., 1,— 1},
and ¢’ = q.
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The induction hypothesis yields

(o] < 0+ 1) IZ= = 0w for i >
from which it follows that |.&/?| = O(n"1).
If I is a set of cardinality more than [, then the family
Ay ={Aecd|Ec A}

satisfies the assumptions of the theorem with »' =n—|E|, k' =Lk—|H|,
L' ={l,-\E|....,l,—|E|}n{0,1,...,],}, and ¢’ = q.

Hence it follows by induction that |o7;|= O(n™1). Let us set
B={Aesd|D;< A, D; & A for j #i}. Now it follows that

IM\Q%

= 0(n™1)

as this family can be written as the union of the families 27, ,, where
Dy, =DyuDy, for 1 <4y <iy<p,and |DyuD,|>1,.
Let ¢’ be a sufficiently large constant and let us set

r n—l.
¢—1= [{l'@il —0’?"'—1}/{};{1:_3;*- co(k, Q)nf*]’”

([#] is the greatest integer not exceeding a).

As || < | P |+| A\ ULy %1+ 22| %], it follows for ¢ > ¢o(c’, k, q)
that 32 ,q; > q. Let q; denote the greatest integer such that there exist
43, ..., A}, € B, satisfying | A5 n A} |¢ L for 1 < j; < js < ¢

As B, = {B \D;| B e %;} satlsﬁes the assumptions of the theorem with
w'=n—l, k' =k-1, L' ={0,l,—1,,...,1,— 1}, and ¢’ = ¢, by induction
we obtain ¢; > ¢q;. If q; =q; for ¢ = 1 ,jp and Y% ,q; = q then we are
done. So we may suppose that elther 3 q; > q or, for some 1 <j < p,
7; > q;- In the latter case we may assume that ¢i > ¢;. Hence in any case
i+ Zfaq; > ¢

Let us choose q; sets A,,...,4,.€ % such that [4;n4,|¢L for
1 <j; <Ja < q1- Suppose that 4,5, ..., Ay 1q,, aTe defined already.
Let us set

= %\ {B € %,| there exists j,
1 <j<qi+qy+... +¢;y, such that | Bn4,| > I,}.

It can be seen as above that |%;| =|4%;|+0(n™1). Hence by the
induction hypothesis we can find ¢; sets

A‘m’+qs+<-<+m-1+1‘ Fey Aq1’+qs+...+m-1+m
such that the cardinality of the intersection of any two different sets
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among them does not belong to L. Moreover, if

< S@+@et o+ <Jo < @1+t +4;

then [4;nAd;| <!, implying that |4;nA4;|¢L. Fina.lly we obtain
Q1+ 2XPeq;>q sets Ay, .., Agrig e, such that |A;0d;|¢L for
1 < j; <J, < q+1, a contradiction. So necessarily ¢} = ¢;, ¢ = E?_lq{, and
by the induction hypothesis

-1
%, = | % 9‘1,1'1 L= }+Cn(k —l, ggn™
yielding
| <q H +ca(k gt

for an appropriate choice of ¢,(k, q), which proves (ii).
To finish the proof of (i) we have to show that .&/? = . Suppose it is
not the case and let 4, € 27?7, We define 4; recurrently. If, for some

1> 0, 4y, 4,,...,4,, A,BH, PR | are defined then first define

A = B;\{B € %;| there exists j,

s S /TR Y

0<j<q+...4¢;,, such that | Bn 4;| > I,}.
Then | Z;| = |#;|+0(n"1). So by the induction hypothesis we can define
4 € %

ftaat.. g+l e Aqa+---+q:-—1+m

such that, for ¢, +... +¢; ;1 +1 <j; <jy < g4+ ... +q;, | 4;,n 4;,|¢ L. But,
as Y2, ¢; = ¢, this means that in the end we find g+ 1 sets 4,,...,4, € o/
such that |4; n4;|¢L for 0 <j, <j, <¢, and this final contradlctwn
concludes the proof of the theorem.

REMARK 4. We conjecture that the assumptions of Theorem 8 imply
that
n—I;
By
that is, we may omit the last term in (ii). If this conjecture is true then
it is the best possible in certain cases.

Let k > 2r and X = {1,...,n}. Letw,,...,w, be ¢ random permutations
of X and let ./ be an (n, L, k)-system of cardinality [17_; (n—1,;)/(k—1;) if
such a system exists. If ¢ € X then w(i) is the image of i by w. Further,
set w(d) = {w(a)|a e A} for A € X and w() = {w(4)| 4 € &/}. Then
@y (&), ..., @ () are (n, L, k)-systems, and if n > n(e) it can be easily seen
that they are pairwise disjoint with probability not less than 1 —e. So for
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an appropriate choice of @, ...,w, the family
B = wy(A)vwy(L)U... Uwq(,ﬁ’)

satisfies the assumptions of Theorem 8 and has cardinality

ReEmaRk 5. In the case where L = {l,,l;+1, ...,k —1} Theorem 8 yields
that for a system 7, of maximum cardinality there are ¢ different /,-sets
D, ..., D, such that every element of .o/ contains at least one of the D/s.
The maximality of .o implies that .o/ = {4 < X| there exists ¢, 1 <1 < ¢,
such that D; = A}, and the sets D,,..., D, are pairwise disjoint, that is,
Theorem 8 is indeed a generalization of the Hajnal-Rothschild theorem
[11].

5. The proof of Theorem 9

We proceed in essentially the same way as with the proof of Theorems 4,
5, and 6. Therefore the proof is only briefly sketched. We apply induction
on k; the case where k = 1 is trivial.

(a) I, = 0. In this case (i) holds automatically with D = @. In proving
(i) we may suppose that r > 2 as otherwise we have nothing to prove.
Choosing the constant ¢(k,¢) in such a way that it satisfies

c(k,t) = 2c(k—1,1t)

we may, as in the proof of Theorem 5, successively omit the elements of
X which are contained in at most ¢(k—1,{)n"2 members of .o/. Finally,
we obtain a family .o/" which consists of subsets of a set X' = X, where
every element of X' has degree greater than e(k—1,4)n"? and
|| > e(k—1,t)nm1.

Now using the induction hypothesis we obtain that for every = € X'
there exists a set D, such that |D,|=1,—1, fora ¢ D_, and 4 € o7', for
ze A" imply D, = 4. It follows, as in the proof of Theorem 5, that the
sets {a}u D, form a partition of X’ and, by the induction hypothesis,

| 7" | > e(k—1,t)n"1
implies that for any [ € L there exist 4,, ..., 4, € /' such that
|[4in...04,| =1L

But 4,n...n 4, is the disjoint union of some of the I,-element sets xu D,
and it follows that I,|l; and l,| k. The property I5|1,]...|7,| k follows from
the induction hypothesis applied to one of the families

A, ={A\x|zecde’}, forzeX'.
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Now we prove (iii). Let 2 € X. If r > 1 then we can use the induction
hypothesis for the family o7, = {4\ x|z € 4 € &/} and obtain

EARN G 1)1'[

t==2

nlf

If r = 1, that is, L = {0}, then it is obvious that |#Z,| < t—1. Counting the
number of the incident pairs (x, 4), where z € 4 € &7, in two different
ways we obtain that |7, | = k|27, yielding

n—1;

|| < (t-1) H Gy
as desired.

(b) Iy > 0. First we prove (i). If there are k+t sets A,,...,4;,,€ A
which form a A-system with kernel D, where | D| < 1, then by the assump-
tions of the theorem |D| = [, and it follows that D = 4 for every A € ..
So, in the case where r = 1, the assertion follows from Theorem 1 for
¢ = ppi(k).

Now we do the same thing as in the proof of Theorem 3. We select all
the I,-element subsets of X which are kernels of a A-system of cardinality
(k+1)?, consisting of members of 7.

As we may suppose that no (k+¢)-element A-system with an [;-element
kernel exists, Lemma 1 yields that there are at most ¢, ,(I,) such l,-element
sets. Then we omit all the sets containing some of these l,-element sets
and look for A-systems of cardinality (k+1)® and with a kernel of car-
dinality 1,, and so on.

Finally, using the fact that by the induction assumption a given
li-element subset of X is contained in at most (¢—1) [1.; (n—1;)/(k—1;)
members of .o, we obtain that

?kﬂ(zz) = (t— 1)

which is a contradiction, for ¢ sufﬁcmntly large.
To finish the proof of (ii) and (iii) it is sufficient to apply the induction
hy pothesis to the system s/, = {4\ D| 4 € &/}

REMARK 6. It is possible to prove Theorem 9 when the condition | 4| = k
is replaced by |4,n...0n4,_;| < k for any ¢t—1 different members of 7.

n— ?}

+0(“*‘?rr %)

Remark 7. Let us introduce the following two functions:

Jri(n) = max{|.oZ|| .o/ satisfies the assumptions of the theorem
with L = {l}, and |, 4| < 1};
gri(n) = max{| o7 || o satisfies the assumptions of the theorem

with L = {0,1} and 1.y k}.
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We know only that f,,(n) < ¢, (¢, = K*—k+1 in the case where ¢ = 2)
and g,,(n) < ¢;n (¢, = 1 in the case where ¢ = 2), where ¢, ¢}, are constants
depending only on k.

REMARK 8. Itis proved in [9] that in the case where L = {1,2,...,k—1}
(iii) holds already for k = (t—1)t~'n. It would be interesting to obtain
better bounds for the general case as well.

6. Concluding remarks

(1) Let L' = L. Is it then true that there exist an (n, L, k)-system .o/
and an (n, L', k)-system 7', both of maximum ecardinality, such that
o' < . (n>ngk)? 1t is easy to prove that this is true whenever
L={,l+1,..,k—1}. In the case where L =1{0,2,3,...,k—1} and
L' =1{2,3,...,k—1} this is equivalent to a conjecture of Sés and the
second author stating that for & > 4 an (n,{0,2,3, ..., k—1}, k)-system has
n—2
k—2
shows that the answer is negative in the case where L' = {2} and L = {0, 2}.

cardinality at most ( ) In the case where & = 3 it is not true, which

(2) In the case where L ={1,2,...,k—1} a theorem of Hilton and
Miluer [12] gives that Theorem 4 holds already for

1> (300) - (" i)+

and this bound is the best possible. It would be interesting to obtain best-
possible bounds in the general case, too. The third author can prove that
in the case where L = {/,1+1, ..., k—1} the optimal bound is

(n—l) B (n—k—l) +1 for k> ky(l), n > ny(k).

k-1 k-1
(3) Let s be a positive integer. Let B be an m x k matrix with entries
0,1,...,s. Suppose that any two rows of B coincide in at least | positions.

The authors can prove that, for s > s.(l), m < (s+ 1)*. They conjecture
[3] that if s = k—1 and every row of B is a permutation of {0,1,...,k—1}
then m < (b—1)! for k > ky(l). This was proved by Deza and Frankl in [5]
for the following cases: 1 =1, k arbitrary; =2, k=¢q; 1 =3, k=q+1
where ¢ is the power of a prime.

(4) Itis possible to generalize Theorems 7 and 9 simultaneously, that is,
for families of sets ./ such that, for i; < i, < ... <4, |4, | € K,
|A,n...0nd;| e L.

Such families are called quasi-block-designs by Sés in [17] where the
problem of studying these objects was raised.
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